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Abstract. In this paper, we study the scalar curvature defined by H. Akbar-Zadeh

in Finsler geometry and obtain the formula of scalar curvature for Randers metrics.

We prove that a Randers metric of isotropic scalar curvature must be of isotropic S-

curvature. Further, we consider Yamabe problem on Randers manifolds and give a

negative answer to Yamabe problem on Randers manifolds with isotropic S-curvature.

1. Introduction

In 1960, in order to solve Poincare conjecture, H. Yamabe considered con-

formal metrics and the following question as the first step (see [3], [10]):

For a Riemannian metric α on a compact manifold M of dimension n ≥ 3,

is there a non-constant smooth real-valued function σ = σ(x) on M such that the

Riemannian metric ᾱ := eσα is of constant scalar curvature?

H. Yamabe attempted to solve this question using techniques of calculus of

variations and elliptic partial differential equations ([10]). He claimed that every

compact Riemannian n-manifold M has a conformal metric of constant scalar

curvature. Unfortunately, his proof contained an error, discovered by N. Trud-

inger in 1968 ([9]). Later, because of the outstanding contributions made by

N. Trudinger, T. Aubin and R. Schoen, etc., the solution of the Yamabe
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problem has been completed in 1984 (see [3], [7]). The solution of the Yamabe

problem marks a milestone in the development of differential geometry and the

theory of nonlinear partial differential equations.

Finsler geometry is just Riemannian geometry without the quadratic restric-

tion. Hence, it is natural to extend Yamabe problem in Riemannian geometry to

Finsler geometry. To study Yamabe problem in Finsler geometry, the first work

that we have to do is to define scalar curvature in Finsler geometry. However,

there is no unified definition of scalar curvature in Finsler geometry, although se-

veral geometers have offered several versions of the definition of scalar curvature.

Here, we adopt the definition of scalar curvature introduced by H. Akbar-Zadeh

([1], [2]). For a Finsler metric F on an n-dimensional manifold M , let Ric denotes

the Ricci curvature of F (see section 2 for the details). The scalar curvature r of

F is defined as follows ([1], [2]):

r := gijRicij , (1)

where

Ricij :=
1

2
Ricyiyj , (gij) := (gij)

−1

and gij :=
1
2 [F

2]yiyj . We say a Finsler metric F to be of isotropic scalar curvature

if there exists a scalar function µ(x) on M such that r = n(n− 1)µ(x).

Randers metrics were introduced by physicist G. Randers in 1941 in the

context of general relativity. Later on, these metrics were used in the theory of

the electron microscope by R. S. Ingarden in 1957, who first named them Ran-

ders metrics. Randers metrics form an important and ubiquitous class of Finsler

metrics with a strong presence in both the theory and applications of Finsler geo-

metry, and studying Randers metrics is an important step to understand general

Finsler metrics (see [5]). A Randers metric on a manifold M is a Finsler metric

that can be expressed in the following special form:

F = α+ β,

where α =
√
aij(x)yiyj is a Riemannian metric and β = bi(x)y

i is a 1-form on

M such that the norm of β with respect to α satisfies that ‖β‖α(x) < 1. In this

paper, our main focus is on the Yamabe problem of Randers metrics. Firstly, we

compute the scalar curvature of Randers metrics and get the following theorem.

Theorem 1.1. Let F be a Randers metric on an n-dimensional manifold M .

If the scalar curvature of F is isotropic, that is, r = n(n − 1)µ(x), then F is of

isotropic S-curvature.

Based on Theorem 1.1, we give a negative answer to Yamabe problem on

Randers metrics with isotropic S-curvature and obtain the following theorem.
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Theorem 1.2. Let F be a non-Riemannian Randers metric with isotropic S-

curvature on an n-dimensional manifoldM(n ≥ 3). Then there is no non-constant

scalar function σ = σ(x) such that F̄ := eσF is of isotropic scalar curvature.

A Finsler metric is called conformally flat Finsler metric if it is conformally

related to a Minkowski metric. Note that any Minkowski metric has zero scalar

curvature. According to Theorem 1.1 and Theorem 1.2, it is easy to reach the

following result.

Corollary 1.3. Let F be a conformally flat non-Riemannian Randers metric

on an n-dimensional manifold M(n ≥ 3). If the scalar curvature of F is isotropic,

that is, r = n(n− 1)µ(x), then F must be Minkowskian.

2. Preliminaries

Let M be an n-dimensional smooth manifold and TM be the tangent bundle.

A Finsler metric on M is a continuous function F : TM → [0,∞) with the

following properties:

(1) Smoothness: F (x, y) is C∞ on TM\{0}.
(2) Homogeneity: F (x, λy) = λF (x, y), ∀λ > 0.

(3) Strong convexity/Regularity: the fundamental tensor
(
gij(x, y)

)
is po-

sitive definite, where

gij(x, y) :=
1

2

[
F 2

]
yiyj (x, y).

For a given Finsler F = F (x, y), the geodesics of F are characterized locally

by a system of 2nd ODEs:

d2xi

dt2
+ 2Gi

(
x,

dx

dt

)
= 0,

where

Gi =
1

4
gil

{
[F 2]xmylym − [F 2]xl

}
.

Gi are called the geodesic coefficients of F .

For any x∈M and y ∈TxM\{0}, the Riemann curvature Ry=Ri
k(x, y)

∂
∂xi ⊗

dxk is defined by

Ri
k(x, y) := 2

∂Gi

∂xk
− ∂2Gi

∂xm∂yk
ym + 2Gm ∂2Gi

∂ym∂yk
− ∂Gi

∂ym
∂Gm

∂yk
. (2)
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The Ricci curvature Ric(x, y) is the trace of the Riemmann curvature defined by

Ric(x, y) := Rm
m(x, y). (3)

Obviously, the Ricci curvature is a positive homogeneous function of degree two

in y. The Ricci tensor is defined by

Ricij :=
1

2
Ricyiyj .

Then Ric(x, y) = Ricijy
iyj . A Finsler metric F is called an Einstein metric if

there is a scalar function µ = µ(x) on M such that F satisfies

Ric = (n− 1)µF 2. (4)

The scalar curvature of F introduced by H. Akbar-Zadeh ([1], [2]) is defined by (1),

that is, r := gijRicij . By the definition, a Finsler metric F on an n-dimensional

manifold is of isotropic scalar curvature if r = n(n − 1)µ(x), where µ(x) is a

scalar function. Obviously, Einstein metric must be of isotropic scalar curvature.

However, the converse may not be true.

Define the Busemann–Hausdorff volume form of F by

dVF = σBH(x)dx1 ∧ · · · ∧ dxn,

where

σBH(x) :=
Vol

(
Bn(1)

)

Vol
(
(yi) ∈ Rn|F (x, yi ∂

∂xi ) < 1
) .

Here Vol(·) denotes the Euclidean volume function on subsets in Rn. Further,

the distortion of F is defined by

τ(x, y) := ln

√
det

(
gij(x, y)

)

σBH(x)
.

The distortion τ is a basic invariant which characterizes Riemannian metrics

among Finsler metrics, namely, τ = 0 if and only if the Finsler metric is Rie-

mannian. The vertical derivative of τ on tangent spaces gives rise to the mean

Cartan torsion I = Iidx
i, Ii = τyi . The horizontal derivative of τ along geo-

desics is the so-called S-curvature, S(x, y) := τ|m(x, y)ym. In a standard local

coordinate system, we have the following formula for S-curvature:

S(x, y) :=
∂Gm

∂ym
(x, y)− ym

∂

∂xm

(
lnσBH(x)

)
.



On Randers metrics of isotropic scalar curvature 67

We say that F is of isotropic S-curvature if

S(x, y) = (n+ 1)cF (x, y),

where c = c(x) is a scalar function on M .

For a Randers metric F = α+ β on an n-dimensional manifold M , we have

([5], [8])

gij =
α

F
aij − α

F 2
(biyj + bjyi) +

b2α+ β

F 3
yiyj , (5)

where b := ‖β‖α denotes the norm of β with respect to α. The mean Cartan

tensor I = Iidx
i of F = α+ β is given by ([6])

Ii =
n+ 1

2F

(
bi − βyi

α2

)
, (6)

where yi := aijy
j .

Let “|” denote the horizontal covariant derivative with respect to α. Denote

rij := (bi|j + bj|i), sij :=
1

2
(bi|j − bj|i),

rij := ailrlj , ri := bjrji, r := bibjrij ,

sij := ailslj , si := bjsji,

eij := rij + sibj + sjbi,

qij := rimsmj , tij := simsmj , qij := ailqlj , tij := ailtlj ,

qi := bjqji, ti := bjtji, t := tib
i,

wij := rimrmj , pj := rjis
i, (7)

and s0 := siy
i, r00 := rijy

iyj , e00 := eijy
iyj , q00 := qijy

iyj , etc..

According to [5], we have the following lemma.

Lemma 2.1 ([5]). Let F = α+ β be a Randers metric on an n-dimensional

manifold M , then F is of isotropic S-curvature, S = (n+ 1)c(x)F , where c(x) is

a scalar function on M , if and only if

e00 = 2c(x)(α2 − β2).
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3. Scalar curvature of Randers metrics

In this section, we compute the scalar curvature of Randers metrics. For a

Randers metric F = α+ β, the Ricci curvature of F is given by (see [5])

Ric = Ricα + (2αsm0|m − 2t00 − α2tmm) + (n− 1)Ξ, (8)

where Ricα denotes the Ricci curvature of α and

Ξ :=
2α

F
(q00 − αt0) +

3

4F 2
(r00 − 2αs0)

2 − 1

2F
(r00|0 − 2αs0|0).

Then the scalar curvature of F is expressed as

r = gijRicij = (Ricα)ijg
ij +

1

2
Eijg

ij +
1

2
(n− 1)Ξijg

ij , (9)

where (Ricα)ij denote the Ricci tensor of α and

E := 2αsm0|m − 2t00 − α2tmm,

Eij := Eyiyj , Ξij := Ξyiyj .

Now we calculate each term on the right side of (9) as follows. Firstly, we

can get

(Ricα)ijg
ij =

α

F
rα − 2α

F 2
(Ricα)ijb

iyj +
b2α+ β

F 3
Ricα, (10)

where rα denotes scalar curvature of Riemannian metric α. Further, we obtain

the following

Eijg
ij = 2

{
α

F

[
n+ 1

α
sm0|m − (n+ 2)tmm

]

− 4α

F 2

[
sm0|ms+ αbismi|m − 2t0 − βtmm

]
+ 2

b2α+ β

F 3
E

}
, (11)

where s := β/α.

In order to determine Ξijg
ij , let

A := r00 − 2αs0, B := r00|0 − 2αs0|0,

D1 := q00 − αt0, D := αD1.

Then Ξ = 2
(
D
F

)
+
(
3
4

)(
A2

F 2

)− (
1
2

)(
B
F

)
. Write

Ξij := Ξ1
ij + Ξ2

ij + Ξ3
ij , (12)
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where

Ξ1
ij := 2

[α
F
(q00 − αt0)

]
yiyj

= 2

(
D

F

)

yiyj

,

Ξ2
ij :=

[
3

4F 2
(r00 − 2αs0)

2

]

yiyj

=

(
3

4

)(
A2

F 2

)

yiyj

,

Ξ3
ij := −

[
1

2F
(r00|0 − 2αs0|0)

]

yiyj

= −
(
1

2

)(
B

F

)

yiyj

.

We have

Ξ1
ijg

ij =
2

F

{
α

F

[
(n+ 3)

D1

α
+ 2αqmm − (n+ 1)t0

]

− 4α

F 2

[
sD1 + α(q00·ibi − st0 − αt)

]
+ 6

b2α+ β

F 3

}

+
4

F 2

{α

F

[
(3 + s)D1 + α(q00·ibi − st0 − αt)

]

− α

F 2

[
F (sD1 + α(q00·ibi − st0 − αt) + 3D(s+ b2))

]
+

b2α+ β

F 3

}

− 2(n− 1)
D

F 3
+ 4

D

F 3

[
α

F
(1− b2) +

b2α+ β

F

]
(13)

and

Ξ2
ijg

ij =
6

F 2

{α

F

[
w00 − 2

r00s0
α

− 2αp0 + 3s20 − tα2
]

− 2α

F 2
A(r0 − ss0) +

b2α+ β

F 3
A2

}
+

3A

F 2

{α

F

[
rmm − (n+ 1)

s0
α

]

− 2α

F 2
(r0 − ss0) +

b2α+ β

F 3
A

}
− 12A

F 3

{α

F

[r00
α

+ r0 − (2 + s)s0

]

− α

F 2

[
F (r0 − ss0) +A(s+ b2)

]
+

b2α+ β

F 2

}
− 3(n− 1)A2

2F 4

+
9A2

2F 4

[
α

F
(1− b2) +

b2α+ β

F

]
(14)

and

Ξ3
ijg

ij =
1

2F

{
2α

F

[
2rm0|m + rmm|0 − (n+ 3)

s0|0
α

− 2αsm|m
]

− 4α

F 2

[
r00|0·ibi − 2ss0|0 − 2αs0|0·ibi

]
+ 6

b2α+ β

F 3
B

}

+
1

F 2

{
α

F

[
3r00|0
α

− 2(3 + s)s0|0 + r00|0·ibi − 2αs0|0·ibi
]
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− α

F 2

[
F (r00|0·ibi − 2s0s0|0 − 2αs0|0·bi) + 3B(s+ b2)

]
+ 3

b2α+ β

F 3
B

}

− n− 1

2F 3
B +

2B

F 3

[
α

F
(1− b2) +

b2α+ β

F

]
. (15)

Plugging (10)–(15) into (9) yields the expression of scalar curvature for Randers

metric F = α+ β as follows,

r =
α

F
rα +

1

4F 5

{
Σ1 +Σ2α

}
, (16)

where

Σ1 : =
{[− 12sm|m + 24qmm − 48smi|mbi + 16t− 8(2n+ 3 + 2b2)tmm

]
β

− 4(n− 7 + 6b2)t0 + 4rm0|m + 2rmm|0 + 4(n+ 1 + 4b2)sm0|m

− 8(Ricα)ijb
iyj − 12s0r

m
m − 16q00·ibi − 24p0 + 8s0|0·ibi

}
α4

+
{[

8(1− 2n)tmm − 16smi|mbi + 8qmm − 4sm|m
]
β3

+
[
4(29− 5n)t0 − 24q00·ibi + 16b2sm0|m + 12rm0|m + 6rmm|0 − 24p0

+ 24sm0|mn− 24(Ricα)ijb
iyj − 12s0r

m
m + 8sm0|m + 8s0|0·ibi

]
β2

+
[
2(n+ 5 + 6b2)(2q00 − s0|0) + 12r00r

m
m + 24w00 + 72s0r0

− 16(1 + 2b2)t00 + 12(n+ 20)s20 + 8Ricαb
2 − 8r00|0·ibi + 4Ricα

]
β

− (n+ 3− 6b2)r00|0 + 6(n− 29− 12b2)r00s0 − 36r00r0

}
α2

+ 4(n− 3)sm0|mβ4 + [4(n− 3)q00 − 16t00 + 4Ricα + 2(1− n)s0|0]β3

+ [(3− n)r00|0 + 6(1− n)r00s0]β
2 + 3(18− n)r200β

and

Σ2 : =
{
8qmm − 4(n+ 2 + 2b2)tmm − 4sm|m + 4t+ 16smi|mbi

}
α4

+
{[

24qmm + 12t− 12sm|m − 8(3n+ 2 + b2)tmm − 48smi|mbi
]
β2

+
[− 8(2n+ 3b2 − 10)t0 − 24(Ricα)ijb

iyj + 16(n+ 1 + 2b2)sm0|m

+ 6rmm|0 − 24s0r
m
m + 12rm0|m − 40q00·ibi − 48p0 + 16s0|0·ibi

]
β

− 4r00|0·ibi + 12w00 + 192s20 + 24b2q00 + 6r00r
m
m + 72s0r0 + 4Ricαb

2

− 12b2s0|0 − 16b2t00 + 72b2s20

}
α2 +

[
4(2− n)tmm

]
β4

+
[
8(8− n)t0 + 16(n− 1)sm0|m + 2rmm|0 + 4rm0|m − 8(Ricα)ijb

iyj
]
β3
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+
[
8(n+ 1)q00 − 16(2 + b2)t00 + 4Ricαb

2 − 4(n+ 2)s0|0

+ 6r00r
m
m + 12(n− 2)s20 + 12w00 + 8Ricα − 4r00|0·ibi

]
β2

+
[− 240r00s0 + 6b2r00|0 − 36r00r0 − 2nr00|0

]
β − 3(n− 12− 6b2)r200.

It is clear that Σ1 and Σ2 are homogeneous polynomials of degree 5 and 4 in y,

respectively.

4. Proof of Theorems

In this section, we will prove Theorem 1.1 and Theorem 1.2 respectively.

Proof of Theorem 1.1. Assume F = α + β is a Randers metric with

isotropic scalar curvature.

Note that

r00 = e00 − 2s0β, (17)

and then

r00|0 = e00|0 − 2s0|0β − 2s0e00 + 4s20β. (18)

Then plugging (17), (18) into (16) and multiplying (16) by (α+ β)5, one has

(α+ β)5r = Γ1 + Γ2α, (19)

where Γ1 and Γ2 are polynomials in y.

By direct computation, we can find that

Γ2β − Γ1 = −18(1− b2)βe200 + (α2 − β2)H000, (20)

here H000 is a polynomial of degree 3 in y.

On the other hand, by assumption, we have

r = n(n− 1)µ(x). (21)

Then

(α+ β)5r = n(n− 1)µ(x)(Π1 +Π2α), (22)

where

Π1 : = 5α4β + 10α2β3 + β5,

Π2 : = α4 + 10α2β2 + 5β4.
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It’s easy to obtain

Π2β −Π1 = −4(α2 − β2)(α2 + β2)β. (23)

Comparing (19) and (22), we have the following

Γ1 = n(n− 1)µ(x)Π1, Γ2 = n(n− 1)µ(x)Π2.

Then by (20) and (23), we have

18(1− b2)βe200 = (α2 − β2){H000 + 4n(n− 1)µ(x)(α2 + β2)β}. (24)

It is well-known that b2 := ‖β‖2α < 1 for Randers metric F = α+β. Because α2−
β2 is an irreducible polynomial in y, e00 must be divided by α2 − β2. Therefore,

there is a scalar function c = c(x) such that

e00 = 2c(α2 − β2). (25)

By Lemma 2.1, F is of isotropic S-curvature. ¤

As we mentioned in Section 2, Einstein metrics must be of isotopic scalar

curvature but the converse may not be true. Hence Theorem 1.1 generalizes a

result given by D. Bao and C. Robles in 2004 which says that any Einstein–

Randers metric is of isotopic S-curvature.

Next, we prove Theorem 1.2.

Proof of Theorem 1.2. Assume that F is a Randers metrics of isotropic

S-curvature,

S = (n+ 1)µ(x)F. (26)

If Randers metric F̄ := eσF is of isotropic scalar curvature, where σ = σ(x) is a

scalar function, then by Theorem 1.1, F̄ is of isotropic S-curvature,

S̄ = (n+ 1)λ(x)F̄ . (27)

According to [4], for any Finsler metrics F and F̄ := eσF , their S-curvatures

have the following relationship

S̄ = S+ F 2σrIr, (28)

where σr := grjσj , σj :=
∂σ
∂xj and Ir is the mean Cartan tensor of F .

Substituting (5), (6), (26) and (27) into (28), we have

− n+ 1

2(α+ β)

{
(−τ + 2λeσ − 2µ)α2 + (−τβ + 4λeσβ − 4µβ + σ0b

2)α

+ (2λeσβ2 − 2µβ2 + σ0β)
}
= 0, (29)

where σ0 := σiy
i, τ := aijσibj .
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From (29), we obtain

(−τ + 2λeσ − 2µ)α2 + (2λeσβ − 2µβ + σ0)β = 0, (30)

and

−τβ + 4λeσβ − 4µβ + σ0b
2 = 0. (31)

Since α2 is not reducible, by (30), we have

2λeσ = τ + 2µ (32)

and

2λeσβ − 2µβ + σ0 = 0. (33)

Plugging (32) into (33) and (31), we get

τβ = −σ0, τβ = −b2σ0.

Then (1−b2)σ0 = 0. However, we know that, for regular Randers metrics, b2 < 1.

Therefore, σ0 = 0, which implies that σ is a constant. ¤
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