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Abstract. Let (M,F ) be a complete Finsler manifold and P be a minimal and

compact submanifold of M . The k-Ricci curvature Rick(x), x ∈ M is a differential

invariant that interpolates between the flag curvature and the Ricci scalar. We prove

that if the k-Ricci curvature satisfies the condition
∫∞
0

Rick(t) > 0 along any geodesic

γ : [0,∞) → M, t → γ(t) emanating orthogonally from P or
∫ 0

−∞ Rick(t) > 0 along any

geodesic γ : (−∞, 0] → M, t → γ(t) arriving orthogonally to P , then M is compact.

Introduction

The classical Gauss–Bonnet Theorem opened a series of results that are ext-

racting topological properties of a differentiable manifold from the various proper-

ties of certain differential geometric invariants of the manifold. The basic topics

in this framework consist of the Hopf–Rinow Theorem, the theory of Jacobi fields

and the relationship between geodesics and curvature, the Theorems of Hada-

mard, Myers, Synge, the Rauch Comparison Theorem, the Morse Index Theorem

and others. In the Finslerian setting the most recent account of results of this

type is due to D. Bao, S. S. Chern and Z. Shen in [3], Chapter 6–9. For a

weakened version of the Myers theorem we refer to [2].

The main differential geometric invariants involved in these results are the

flag curvature and the Ricci scalar. Among the many others there exists one
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denoted by Rick and called k-Ricci curvature that interpolates between the flag

curvature and the Ricci curvature. In this paper we consider an n-dimensional,

complete Finsler manifold (M,F ), a minimal, compact submanifold P of it and

we prove that if the k-Ricci curvature satisfies the condition
∫∞
0

Rick(t) > 0

along any geodesic γ : [0,∞) → M, t → γ(t) emanating orthogonally from P or∫ 0

−∞ Rick(t) > 0 along any geodesic γ : (−∞, 0] → M, t → γ(t) arriving ort-

hogonally to P , then M is compact. For the Riemannian case there are many

similar results (see [4] and the references therein). By our knowledge our result

is the first of this type for general Finsler spaces but the techniques we use here

can be adapted to find many others. Some results for Berwald spaces are obta-

ined by Binh and Tamássy (see [5]). The differential invariant Rick was deeply

studied by Z. Shen. In [16], he proves various results concerning the vanishing

of homotopy groups under the assumption that the k-Ricci curvature satisfies

Rick ≥ k.

We outline the proof of our result. Considering the submanifold P the notion

of conjugate points is replaced with that of focal points. The Morse index form

written on a geodesic emanating from or arriving in P takes a special form that

involves the second fundamental form of P (see [13]). The conditions M complete

but non-compact, and P compact imply that any geodesic emanating orthogonally

from P or arriving orthogonally to P is free of focal points. But choosing a

convenient orthogonal frame along the geodesic emanating from P or arriving

to P , we reduce the Jacobi equation to a scalar differential equation of order two

that by our hypothesis on Rick admits on [0,∞) or (−∞, 0] a solution with at

least one zero. In combination with a form of the Index Lemma from [13] one

yields that the said geodesic has focal points. The contradiction shows that M

has to be compact.

In the Sections 1–3 we prepare all we need for the detailed proof given in the

Section 4.

1. Preliminaries

Let M be a real manifold of dimension n and (TM, π,M) its tangent bundle.

The vertical bundle of the manifold M is the vector subbundle of the double tan-

gent bundle TTM denoted by (V, π̃, TM) and defined by V = Ker dπ ⊂ T (TM),

where dπ is the linear tangent map to π. Let (xi) denote the local coordinates on

an open subset U of M , and (xi, yi) the induced coordinates on π−1(U) ⊂ TM .

The radial vector field ι is the vertical vector field locally given by ι(x, y) = yi ∂
∂yi .
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A Finsler metric on M is a function F : TM → R+ satisfying the following

properties:

(1) F 2 is smooth on M̃ , where M̃ = TM \ 0.
(2) F (u) > 0 for all u ∈ M̃ .

(3) F (λu) = λF (u) for all u ∈ TM , λ ∈ R?
+.

(4) For any p ∈ M , the indicatrix Ip = {u ∈ TpM | F (u) < 1} is strongly convex.

A manifold M endowed with a Finsler metric F is called a Finsler manifold

(M,F ).

An important fact related to a Finsler metric is that it may be not reversible,

that is, F (u) 6= F (−u). There are a lot of examples of non-reversible Finsler

metrics, perhaps the most known being Randers metrics.

From condition (4) it follows that the quantities gij(x, y) =
1
2
∂2F 2(x,y)
∂yi∂yj form

the entries of a positive definite matrix so a Riemannian metric 〈·, ·〉 can be

introduced in the vertical bundle (V, π̃, TM).

On a Finsler manifold there is not, in general, a linear metrical connection.

However, there are several metrical connections and among them the analogue of

the Levi–Civita connection in the vertical bundle of (M,F ).

We will use the Cartan connection which is a good vertical connection on V,
i.e., an R-linear map

∇v : X(M̃)× X(V) → X(V)

having the usual properties of a covariant derivative, is metrical with respect

to 〈·, ·〉, and ‘good’ in the sense that the bundle map Λ : TM̃ → V defined by

Λ(Z) = ∇v
Zι restricted to V is a bundle isomorphism. The latter property induces

the horizontal subspaces Hu = KerΛ for all u ∈ M̃ , which are direct summands

of the vertical subspaces Vu = Ker(dπ)u. They define a vector bundle called the

horizontal bundle H such that

TM̃ = H⊕ V.

For a tangent vector field X on M we have its vertical lift XV and its

horizontal lift XH to M̃ .

Let be δi =
(

∂
∂xi

)H
. These local vector fields provide a local basis for the

distribution H. Define Θ : V → H as the vector bundle morphism locally given

by Θ
(

∂
∂yi

)
= δi. It is in fact the inverse of the mapping Λ and is clearly an

isomorphism of vector bundles. It is called the horizontal map associated to the

horizontal bundle H.
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Using Θ, first we get the radial horizontal vector field χ = Θ ◦ ι. For a curve

σ on M let σ̇ be its tangent vector field. Its horizontal lift σ̇H is just χ in the

point σ̇(t) of TM . Locally, σ̇H = dσi

dt δi.

Secondly we can extend the covariant derivation ∇v of the vertical bundle to

the whole tangent bundle of M̃ . Denoting it with ∇, for horizontal vector fields

H we set

∇ZH = Θ(∇v
Z(Θ

−1(H))), ∀ Z ∈ X(M̃).

The covariant derivative of an arbitrary vector field Y ∈ X(M̃) is decomposed

into vertical and horizontal parts:

∇ZY = ∇ZY
V +∇ZY

H .

Thus ∇ : X(TM̃)× X(TM̃) → X(TM̃) is a linear connection on M̃ induced

by a good vertical connection. Its torsion θ and curvature Ω are defined as usual:

θ(X,Y )=∇XY−∇Y X−[X,Y ], Ω(X,Y )Z =∇X∇Y Z−∇Y ∇XZ−∇[X,Y ]Z

and the torsion has the property that for horizontal vectors, θ(X,Y ) is a vertical

vector [1].

The Riemannian metric 〈·, ·〉 on V can be moved to a Riemannian metric on

the vector bundle H and these two Riemannian metrics provide a Riemannian

metric on M̃ (a Sasaki type metric) just by stating that H is orthogonal to V.
All these metrics will be denoted with the same symbol whose meaning will be

clear from context.

The metrical property of the connection ∇ holds good:

X〈Y, Z〉 = 〈∇XY,Z〉+ 〈Y,∇XZ〉.

The sectional curvature of ∇ along a curve σ is given as follows:

Kσ̇(U
H , UH) = 〈Ω(σ̇H , UH)σ̇H , UH〉,

for any U ∈ X(M). This is called the horizontal flag curvature in [1].

2. The Morse index form

We recall some facts about the variation of energy and Morse index form,

mainly from [13].
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Definition 1. [1]. A regular curve σ : [a, b] → M is a C1-curve such that

T (t) ≡ σ̇(t) = dσt

(
d

dt

)
6= 0, for all t ∈ [a, b].

The length, with respect to the Finsler metric F : TM → R+, of the regular

curve is given by

L(σ) =

∫ b

a

F (σ̇(t))dt

and the energy is given by

E(σ) =

∫ b

a

F 2(σ̇(t))dt.

The Finsler metric induces naturally the (Finslerian) distance by

d(p, q) = inf
σ∈C(p,q)

L(σ),

where C(p, q) is the set of piecewise smooth curves from p to q. The properties of a

distance, except the symmetry, are verified. The pair (M,d) is called sometimes a

generalized metric space. For a non-reversible Finsler metric d is not symmetric,

because the length of a curve may not coincide with the length of the reverse

curve σ̃(t) = σ(a + b − t) ∈ M . The non-reversibility property is also reflected

in Cauchy sequences. We say that a sequence (xi)i∈N in M is forward (resp.

backward) Cauchy if for every ε > 0 there exists N ∈ N such that for i, j > N

implies d(xi, xj) < ε whenever i ≤ j (resp. i ≥ j).

In this setting the classical Hopf–Rinow theorem splits into a forward and a

backward version (see [3], [8]).

The non-reversibility of the distance implies the existence of two open balls,

forward balls

B+(p, r) = {x ∈ M | d(p, x) < r},
where p ∈ M and r > 0, and backward balls,

B−(p, r)) = {x ∈ M | d(x, p) < r}.

A symmetrized distance can be defined as

ds(p, q) =
1

2
(d(p, q) + d(q, p)).
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The closed balls will be denoted by a bar, i.e., B
+
(p, r) and B

−
(p, r). The

topologies induced by these two kind of balls agree with the topology of the

manifold. We also denote the associated balls of ds by Bs(x, r). In [8] (Proposit-

ion 2.2) a Hopf–Rinow theorem for symmetrized closed balls is proved, i.e., the

symmetrized distance ds is complete if B
+

s (p, r) are compact for all x ∈ M and

r > 0 (or equivalently B
+
(p, r) ∩ B

−
(p, r) is compact for all x ∈ M and r > 0).

The conditions here are weaker that those in the theorem involving forward and

backward completeness. In the same paper [8] an example of Randers type with

compact symmetrized balls is constructed, which fails to be forward or backward

complete.

The non-reversibility of the metric also induces two types of geodesic comp-

leteness, forward, when the domain of the geodesic can be always extended to

(a,∞) for some a ∈ R and backward when it can be extended to (−∞, b) for

some b ∈ R.
The critical points of the (length) energy functional are the geodesics σ in

the Finsler manifold M , whenever they are parameterized by arc-length, i.e.,

F (σ̇) = 1. A geodesic parameterized by the arc-length will be called normal. One

proves that the geodesics are characterized also by

Theorem 2 ([1]). A regular curve σ is a geodesic for F if and only if

∇THTH ≡ 0

where TH(u) = σ̇H = χu(σ̇(t)) ∈ Hu for all u ∈ M̃σ(t).

The second variation formula provides the Jacobi fields and suggests the

consideration of the index form. It is derived by using a two parameters geodesic

variation. For details we refer to [1], [12].

Let σ : [a, b] → M be a normal geodesic in a Finsler manifold M . We will

denote by X[a, b] the space of piecewise smooth vector fields X along σ such that

〈XH , TH〉T ≡ 0.

Definition 3 ([1]). The Morse index form I = Iba : X[a, b]× X[a, b] → R of a

normal geodesic σ : [a, b] → M is the symmetric bilinear form

I(X,Y ) =

∫ b

a

[〈∇THXH ,∇THY H〉T − 〈Ω(TH , XH)TH , Y H〉T ]dt

for all X,Y ∈ X[a, b].
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After some computations one gets another formula for the Morse index

form [1]:

I(X,Y ) = 〈∇THXH , Y H〉T
∣∣∣
b

a
−
∫ b

a

〈∇TH∇THXH +Ω(TH , XH)TH , Y H〉T dt.

Definition 4 ([1]). A Jacobi field along a geodesic σ : [a, b] → M is a vector

field J which satisfies the Jacobi equation

∇TH∇THJH +Ω(TH , JH)TH ≡ 0

where JH(t) = χσ̇(t)(J(t)).

σ̇ and tσ̇ are Jacobi fields; the first one never vanishes, the second one vanishes

only at t = 0.

Two points σ(t0) and σ(t1), t0, t1 ∈ [a, b] are said to be conjugate along σ if

there exists a nonzero Jacobi field J along σ with J(t0) = 0 and J(t1) = 0.

3. Minimal submanifolds. Focal points

Let P be a submanifold of M of dimension r < n. We consider the set

A = {(x, v) | x ∈ P, v ∈ TxM \ {0}} = {x̃ ∈ M̃ | π(x̃) ∈ P}.
Let Hx̃TxM and Hx̃TxP be the horizontal lifts of TxM and TxP to x̃ and

HPTM =
⋃

x̃∈A

Hx̃TxM

and

HPTP =
⋃

x̃∈A

Hx̃TxP.

For horizontal vector fields X,Y ∈ HPTP let X∗, Y ∗ be some prolongations of

them to HPTM . The restriction of ∇X∗Y ∗ to P̃ = TP \ 0 does not depend of

the choice of the prolongations.

Let P⊥
x̃ be the 〈·, ·〉x̃ orthogonal complement of Hx̃TP in Hx̃TM . By the

orthogonal decomposition

Hx̃TxM = Hx̃TxP ⊕ P⊥
x̃ , x̃ = (x, v) ∈ A

we obtain that

∇X∗Y ∗ = ∇∗
XY + Iv(X,Y ).

We will call Iv(X,Y ) the second fundamental form at X and Y in the direction

of v. Note that for x̃ = (x, v) with v ∈ TxM \ TxP we have

〈∇X∗Y ∗, vH〉v = Iv(X,Y ). (1)
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Definition 5. Let P ⊂ M be an r-dimensional submanifold of a Finsler ma-

nifold (M,F ). The submanifold P is called minimal if for every tangent vector v

to M and for any horizontal orthogonal vectors V H
i , i = 1, r (i.e., 〈V H

i , V H
j 〉v = 0

for i 6= j) we have
∑r

i=1 Iv(V H
i , V H

i ) = 0.

The condition of minimality is equivalent with the vanishing of the trace of

the linear operator AvH defined by

〈AvHXH , Y H〉v = 〈IT (XH , Y H), vH〉v.
For details we refer to [9], [15].

Now let σ : [a, b] → M be a normal geodesic in M with σ(a) ∈ P and σ̇H(a)

in the normal bundle of P (i.e., σ̇H(a) ⊥ (Hσ̇(a)Tσ(a)P )).

Let X̃P = XP [a, b] be the vector space of all piecewise smooth vector fields X

along σ such that XH(a) ∈ Tσ̇(a)P̃ and let XP be the subspace of X̃P consisting

of these X such that XH is orthogonal to σ̇H along the curve σ.

We have

〈∇THXH , Y H〉T = 〈∇XHTH + [TH , XH ] + θ(TH , XH), Y H〉T
= 〈∇XHTH , Y H〉T , (2)

because [TH , XH ] and θ(TH , Xh) are vertical vectors ([1]). If Y H is orthogonal

to TH , then

0 = XH〈TH , Y H〉T = 〈∇XHTH , Y H〉T + 〈TH ,∇XHY H〉T . (3)

By considering the vector fields XH , Y H such that XH(a), Y H(a) ∈ Tσ̇(a)P̃ and

taking account of formulas (1), (2), (3), the Morse index form IP : XP ×XP → R
becomes

IP (X,Y ) = 〈∇THXH , Y H〉T
∣∣b + 〈IT (XH , Y H), TH〉T

∣∣
a

−
∫ b

a

〈∇TH∇THXH +Ω(TH , XH)TH , Y H〉T dt.

From [13] we know that IP is symmetric.

Definition 6 ([13]). Let P ⊂ M be an r-dimensional submanifold of a Finsler

manifold (M,F ). A P -Jacobi field J is a Jacobi field which satisfies in addition

J(a) ∈ Tσ(a)P

and

〈∇THJH +ATHJH , Y H〉T
∣∣
a
= 0,

for all Y ∈ (Tσ(a)P )H .
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The last condition means in fact that

∇THJH +ATHJH ∈ ((Tσ(a)P )H)⊥.

The dimension of the vector space of all P -Jacobi fields along σ is equal to

the dimension of M and the dimension of the vector space of the P -Jacobi fields

satisfying

〈JH , TH〉 = 0

is equal to dimM − 1.

If P is a point, then a P -Jacobi field is a Jacobi field J along σ such that

J(a) = 0.

A point σ(t0), t0 ∈ [a, b] is said to be a P -focal point along σ if there exists

a non-null P -Jacobi field J along σ with J(t0) = 0.

We shall use the following Lemma from [13].

Lemma 7. Let (M,F ) be a Finsler manifold and σ : [a, b] → M be a geo-

desic, and P ⊂ M be a submanifold of M . Suppose that there are no P -focal

points along σ. Let X, J ∈ X̃P be vector fields orthogonal to σ with J a P -Jacobi

field such that X(b) = J(b). Then

IP (X,X) ≥ IP (J, J)

with equality if and only if X = J .

4. Main result

First, we introduce the k-Ricci curvature, following [16]. For a (k+1)-dimen-

sional subspace V ∈ TxM the Ricci curvature RicyV on V is the trace of the

Riemann curvature restricted to V, with flagpole y, and is given by:

Ricy(V) =
k∑

i=1

〈Ry(bi), bi〉y =

k∑

i=1

〈Ω(y, bi)y, bi〉y,

where Ry(bi) ≡ Ω(y, bi)y and y, (bi)i=1,...,k is an arbitrary orthonormal basis for

(V, 〈 , 〉y), with bk+1 = y. Ricy(V) is well-defined and is positively homogeneous

of degree two on V,

Ricλy(V) = λ2Ricy(V), for λ > 0, y ∈ V.

It is clear from the definition that Ricy(TxM) is nothing but the Ricci cur-

vature Ric(y) for y ∈ TxM .
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If V = P ⊂ TxM is a tangent plane, the flag curvature is given by

K(P, y) =
〈Ry(u), u〉y

〈y, y〉y〈u, u〉y − 〈u, y〉2y
,

where u ∈ P \{0}, span(y, u) = P . This is independent of the choice of u ∈ P \{0},
and for u being gy orthogonal to y and of gy-norm 1 it becomes

K(P, y) =
RicyP

F 2(y)
, y ∈ P.

Consider the following function on M :

Rick(x) := inf
dim(V)=k+1

inf
y∈V

Ricy(V)
F 2(y)

,

the infimum being considered over all (k + 1)-dimensional subspaces V ⊂ TxM

and y ∈ V \ {0}. From the above definitions it can be seen that

Ric1 ≤ · · · ≤ Rick
k

≤ · · · ≤ Ricn−1

n− 1
,

and

Ric1 = inf
(P,y)

K(P, y) and Ric(n−1) = inf
F (y)=1

Ric(y).

We will say that the Finsler manifold (M,F ) has positive k-Ricci curvature

if and only if Rick > 0.

Secondly, we recall a result from the theory of differential equations which

will be essential in the proof of our main result.

Theorem 8 ([14]). Consider the differential equation

f ′′(t) +H(t)f(t) = 0, t ∈ [0,∞)

with continuous H. If ∫ ∞

0

H(t)dt > 0,

then there exists a solution f satisfying the conditions f(0) = 1, f ′(0) = 0, and

there exists t0 > 0 for which f(t0) = 0.

Here
∫∞
0

means lim inf l→∞
∫ l

0
. The conditions satisfied by the solution f

are similar to those met in the definition of focal points. A differential equation

f ′′(t) +H(t)f(t) = 0 admitting such a solution f will be called focal. There are

several other sufficient conditions for a differential equation f ′′(t) +H(t)f(t) = 0

be focal, [10], [11].

Now we state and prove our main result.
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Theorem 9. Let (M,F ) be an n-dimensional Finsler manifold which satisfies

the condition

B+(x, r) ∩B−(x, r) is precompact for all x ∈ M and r > 0, (4)

and let P be an r-dimensional compact and minimal submanifold of M . If the

k-Ricci curvature satisfies the condition

∫ ∞

0

Rick(t) > 0 (resp.

∫ 0

−∞
Rick(t) > 0)

along any geodesic γ : [0,∞) → M, t → γ(t) emanating orthogonally from P

(resp. γ : (−∞, 0] → M, t → γ(t) arriving orthogonally to P ), then M is compact.

Proof. Suppose by contrary that M is not compact.

Then there exists a normal geodesic γ(t) emanating from P and orthogonal

to P free of focal points, i.e., there exists a sequence (pi) such that the distance

d(pi, P ) (or d(P, pi)) tends to infinity, since it is supposed that M is non-compact.

Otherwise, because of the fact that P is compact, M would be contained in an

intersection B+(x1, r1) ∩ B−(x2, r2) with x1, x2 ∈ M and r1, r2 > 0 and (see [7],

Proposition 2.2) should be compact.

By condition (4) on M and the compactness of P there exists for each pi
a normal geodesic γi which realizes the minimum distance d(pi, P ) (or d(P, pi))

since the Palais–Smale condition for the energy functional is satisfied (see [8] and

[6]) so we can apply Morse theory for geodesics (see [7]). Suppose now that the

minimum distances d(pi, P ) are realized and γi : [0, ai) → M, t → γi(t) along any

geodesic emanating orthogonally from P (the reverse case is the same via a change

of variables in the integral). Denote by xi the point in P which is joined with pi
by γi, γi(0) = xi ∈ P , γi(ai) = pi. It is known that the geodesic γi intersects

P orthogonally with respect to the inner product 〈 , 〉γ′
i(0)

, that is Ti = γ′
i(0) is

orthogonal to P with respect to 〈 , 〉γ′
i(0)

. By the compactness of P there exists

an accumulation point x ∈ P of the sequence xi and also Ti → T with T ⊥ P

with respect to 〈 , 〉T and F (T ) = 1. It follows that the length of the geodesic γ

with initial data (x, T ) is equal to d(x, γ(t)), so γ(t) is P -focal point free.

On the other hand from the conditions in the theorem we will show that γ

has P -focal points. This contradiction shows that M has to be compact.

The index form along the geodesic γ with variation vector field V is

IP (V, V ) =

∫ l

0

[〈∇THV H ,∇THV H〉T − 〈Ω(TH , V H)V H , TH〉T ]dt
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= 〈∇THV H , V H〉T
∣∣l + 〈IT (V H , V H), TH〉T

∣∣
0

−
∫ l

0

〈∇TH∇THV H +Ω(TH , V H)TH , V H〉T dt. (5)

We are going to use the parallel transport with reference vector T . We

construct a moving frame Vi(t), i = 1, r along γ such that

• Vi(0) is an orthogonal basis in Tγ(0)P and 〈V H
i (0), TH(0)〉T (0) = 0,

• Vi(t) are parallel along γ, i.e., ∇THV H
i = 0.

It follows that the vectors V H
i (t) are orthogonal to each other and to TH(t) along

γ with respect to the inner product 〈 , 〉T (t).
We have, for i = 1, . . . , r,

IP (Vi, Vi) = 〈∇THV H
i , V H

i 〉T
∣∣l + 〈IT (V H

i , V H
i ), TH〉T

∣∣
0

−
∫ l

0

〈∇TH∇THV H
i +Ω(TH , V H

i )TH , V H
i 〉T dt. (6)

We sum up from i = 1 to r. Since P is minimal, we have

k∑

i=1

〈IT (V H
i , V H

i ), TH〉T
∣∣
0
= 0

and one yields,

r∑

i=1

I(Vi, Vi) =

r∑

i=1

〈∇THV H
i , V H

i 〉T
∣∣l

−
r∑

i=1

∫ l

0

〈∇TH∇THV H
i +Ω(TH , V H

i )TH , V H
i 〉T dt.

Let us take Xi(t)= f(t)Vi(t) with f : [0,∞)→R satisfying f(0)= 1, f ′(0)= 0.

Then

Xi(0) = Vi(0), X ′
i(t) = f ′(t)Vi(t), X ′′

i (t) = f ′′(t)Vi.

It follows that

r∑

i=1

I(Xi, Xi) = rf(t)f ′(t)
∣∣l − r

∫ l

0

(f ′′(t) + f(t)
1

r
RicT (V)f(t)dt, (7)

where V is the linear space spanned by T, Vi, i = 1, . . . , r.
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In our hypothesis on Rick, setting rH = RicT (V) it comes out that the

equation f ′′(t) + f(t)H(t) = 0 is focal. By Theorem 10, there exists t0 > 0 such

that f(t0) = 0. We take l = t0. In the r.h.s. of (7) the first term vanishes because

of f(t0) = 0 and the second is null since f is a solution of the focal equation

f ′′(t) + f(t)H(t) = 0. Thus (7) reduces to
∑r

i=1 I(Xi, Xi) = 0. It follows that

there exists Xi with I(Xi, Xi) ≤ 0.

Then, Lemma 7 implies that there exists P -focal points on the geodesic γ,

which contradicts the assumption that M is not compact. It follows that M has

to be compact. ¤

The observations in the beginning of section 2 and the previous theorem leads

to the following:

Theorem 10. Let (M,F ) be a forward (resp. backward) complete Finsler

manifold and P an r-dimensional compact and minimal submanifold of M . If the

k-Ricci curvature satisfies both conditions from Theorem 9, then M is compact.

Remark. For Berwald manifolds our result follows directly from [10]. More-

over, for Berwald manifolds some results from [11] holds. Indeed, in the case of

Berwald manifolds the connection of the Berwald metric lives on the tangent level

(the reference vector is irrelevant). Szabó’s structure theorem (see [17]) implies

that there exists a non-unique Riemannian metric g on M such that the Ber-

wald connection is the connection of the Riemannian metric. Taking into account

that the flag curvature of a Berwald metric is equal to the sectional curvature of

the Riemannian metric g and the second fundamental form of a submanifold with

respect to the Berwald metric will be the analogue counterpart of the Riemannian

metric, the results from [10], [11] apply.
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[6] E. Caponio, M. Á Javaloyes and A. Masielo, Morse theory of causal geodesics in a
stationary spacetime via Morse theory of geodesics of a Finsler metric, Ann. Inst. H.
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