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Metric structures associated to Finsler metrics
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Dedicated to Professor Lajos Tamássy on his 90th birthday

Abstract. We investigate the relation between weighted quasi-metric spaces and

Finsler spaces. In particular, we show that the induced metric of a Randers space

constructed by means of an exact one-form is a weighted quasi-metric space. We also

investigate some of the geometrical properties of these spaces.

1. Introduction and motivation

Riemannian spaces can be represented as metric spaces. Indeed, for a Rie-

mannian space (M,a) we can define the induced metric space (M,dα), with the

metric

dα : M ×M → [0,∞), dα(x, y) := inf
γ∈Γxy

∫ b

a

α(γ(t), γ̇(t))dt, (1.1)

where Γxy := {γ : [a, b] → M | γ (piecewise) C∞-curve, γ(a) = x, γ(b) = y} is

the set of curves joining points x and y, γ̇(t) := dγ(t)
dt the tangent vector to γ at

γ(t), and α(x,X) the Riemannian norm of the vector X ∈ TxM . It is easy to see

that dα is a metric on M , i.e. it satisfies the axioms:

1. Positiveness: dα(x, y) > 0 if x 6= y, dα(x, x) = 0,

2. Symmetry: dα(x, y) = dα(y, x),
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3. Triangle inequality: dα(x, y) ≤ dα(x, z) + dα(z, y),

for any x, y, z ∈ M .

More general structures than Riemannian ones are Finsler structures (see

[BCS00], [S01], [MHSS01] for definitions).

Similarly with the Riemannian case, one can define the induced metric of a

Finsler space (M,F ) by

dF : M ×M → [0,∞), dF (x, y) := inf
γ∈Γxy

∫ b

a

F (γ(t), γ̇(t))dt, (1.2)

but in this case, unlike the Riemannian counterpart, dF lacks the Symmetry

condition 3 above. In fact dF is a special case of quasi-metric space.

We recall here that a quasi-metric d on a set X is a function d : X ×X →
[0,∞) that satisfies the axioms:

1. Positiveness: d(x, y) > 0 if x 6= y, d(x, x) = 0,

2. Triangle inequality: d(x, y) ≤ d(x, z) + d(z, y),

3. Separation axiom: d(x, y) = d(y, x) = 0 ⇒ x = y,

for any x, y, z ∈ X.

Remark 1.1. Remark that in the definition of quasi-metric spaces, it is com-

monly used dF (x, y) = 0 ⇒ x = y, without assuming that both dF (x, y) and

dF (y, x) are zero (Definition 2.1 in [JLP13]). This guarantees that the distance

is zero only in the diagonal. Our definition here is stronger than the usual one.

In general, the distance associated to a Finsler metric is a generalized metric,

namely, a quasi-metric such that the forward and backward topology coincide,

see Remark 2.2 in [JLP13].

A quasi-metric that satisfies the symmetry axiom d(x, y) = d(y, x) for all

x, y ∈ M is a metric on M . One can easily see that this happens in the case of

Riemannian and absolute homogeneous Finsler metrics, i.e. Finsler norms F for

which F (x, y) = F (x,−y), for all (x, y) ∈ TM \ {0}.
Finsler manifolds have a richer geometrical structure than Riemannian ones.

Indeed, for a given Finsler manifold (M,F ) we can define the reverse Finsler

structure (M, F̄ ), where F̄ (x, y) := F (x,−y). This means that on M we obtain

the reverse (or the dual) quasi-metric dF̄ (x, y) := dF (y, x). Moreover, from the

metric point of view we can define

• the symmetrization of dF , namely

ρ(x, y) :=
dF (x, y) + dF (y, x)

2
, (1.3)
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• the max-metric

d∗(x, y) := max{dF (x, y), dF (y, x)}, (1.4)

for any x, y ∈ M . One can easily see that these are metrics on M . We also recall

that because of the lack of symmetry of distance function dF it is customary to

make distinction between balls, neighborhoods, etc. by calling them forward or

backward, respectively.

One special class of quasi-metric spaces are the so called weighted quasi-

metric spaces (M,d,w), namely d is a quasi-metric on M for each there exists a

function w : M → [0,∞), called the weight of d, that satisfies

4. Weightability: d(x, y) + w(x) = d(y, x) + w(y), ∀x, y ∈ M .

In the case the weight function w is R-valued, w is called generalized weight.

Remark 1.2. If (M,d) is a metric space, then it can be regarded as a weighted

metric space with a weight function w = constant.

The weighted quasi-metric spaces were initially introduced in the context of

theoretical computer science [M94] and their topological properties are extensively

studied (see [KV94] and references herein). It is worth mentioning that the study

of denotational semantics of programming languages imposes a topological model

defined on a weighted quasi-metric space. From topological point of view, a

topological T0-space X admits a weighted quasi-metric provided it has a base⋃
n∈N Bn for its topology with the property that for each n ∈ N there is an mn ∈ N

such that each point of X belong to at most mn elements on Bn ([KV94]). We

recall that a topological space is a T0-space or Kolmogorov space if for every

pair of distinct points of X, at least one of them has an open neighborhood not

containing the other. This condition is one of the separation axioms in topology

and its intuitive meaning is that the points of X are topologically distinguishable.

More recently, it has been shown ([SY09]) that weighted quasi-metric spaces

are essential for sequence comparison in molecular biology and bioinformatics.

The comparison of biological sequences (especially proteins) is the fundamental

method for the investigations of the origin and function of peptide fragments with

evolutionary conserved sequence. The primary method used here is the similarity

search: find similar fragments to a given query amino acids sequence and infer the

function refereeing to the known functions of search results. The representative

tool for similarity search is BLAST that can be accessed from NCBI, DDJ or

ENSEMBL web sites.

It is also known that similarity search of biological sequences can be geomet-

rically formalized by defining a sort of “distance” on the free monoid Σ∗ over a
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non-empty finite set Σ. Concretely, in the case of peptide fragments comparison,

Σ is the set of proteinogenic amino acids (arginine, histidine, lysine; aspartic acid,

glutamic acid; serine, threonine, asparagine, glutamine; cysteine, glycine, proline;

alanine, isoleucine, leucine, methionine, phenylalanine, tryptophan, tyrosine, va-

line), where each amino acid is denoted by a letter and Σ∗ contains all finite

sequences of zero or more elements from Σ.

Remarkably, the evolutionary distance induced by local or global alignments

of peptide fragments is actually a weighted quasi-metric on Σ∗. Therefore, the

study of sequence comparison reduces to the geometry of weighted quasi-metrics,

where minimizing similarities between peptide fragments is equivalent to minimi-

zing weighted quasi-distances between elements of the free monoid Σ∗ ([SY09]).

However, despite of extensive investigations of weighted quasi-metric spaces

from topological point of view and different applications, a study of these spaces

from differential geometry point of view cannot be found in literature.

In the present paper we will show that the metric structure induced by a

Finsler metric with reversible geodesics is actually a weighted quasi-metric. This

clarifies the geometrical meaning of weighted quasi-structures.

Moreover, we obtain several interesting geometrical properties of Finsler met-

rics with reversible geodesics and weighted quasi-metric spaces.

2. Finsler metrics and weighted quasi-metrics

Recall that a Finsler metric F on a n-dimensional differential manifold M is

called with reversible geodesics if and only if for any geodesic γ : [0, 1] → M of F ,

the reverse curve γ̄(t) := γ(1− t) is also a geodesic of F .

We point out that even a Finsler space is with reversible geodesics, the Fins-

lerian distance function dF is not symmetric, except for the absolute homogeneous

case.

We have (see [MSS10], [MSS13], [SS12] and references herein)

Proposition 2.1. Let (M,F = F0+β) be a Finsler space whose fundamental

function is obtained by a Randers change of an absolute homogeneous Finsler

metric F0 by a one-form β. Then (M,F ) is with reversible geodesics if and only

β is closed.

The intuitive meaning of the Randers change

F = F0 + β, dβ = 0 (2.1)
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is that the F -geodesics coincide with the F0-geodesics as set of points, i.e. F

and F0 are projectively equivalent. Remark that this Randers change is a special

Randers change with β closed. Hereafter, Randers change means always a formula

similar to (2.1).

Remark 2.2.
1. A special case is the case of Randers metrics F = α+ β, where α = (aij(x))

is a Riemannian metric and β closed one-form. It is known that a Randers

metric is positive definite if and only if the Riemannian length of the vector

bi(x) is less than one, i.e. b(x) :=
√
aij(x)bi(x)bj(x) < 1, for ∀x ∈ M . This

property also holds in the more general case of an arbitrary Randers change.

Theorem 2.3. Let M be an n-dimensional simply connected smooth mani-

fold.

A Finsler metric F induces a generalized weighted quasi-distance dF on M

if and only if it is the Randers change of an absolute homogeneous Finsler space

F0 by an exact one-form β. In this case (M,F ) is with reversible geodesics.

Proof. We assume that F = F0 + β, where F0 is an absolute homogeneous

Finsler metric on M and β an exact one-form.

Let γxy ∈ Γxy be an F -geodesic, which is in the same time an F0-geodesic,

then from (1.2) we have

dF (x, y) =

∫ b

a

F0(γxy(t), γ̇xy(t))dt+

∫ b

a

bi(γxy(t))γ̇
i
xy(t)dt

= dF0(x, y) +

∫

γxy

β. (2.2)

Let us consider a fixed point a ∈ M and define the function wa : M → R,
wa(x) := dF (a, x)− dF (x, a). From (2.2) it follows

wa(x) =

∫

γax

β −
∫

γxa

β = 2

∫

γax

β = −2

∫

γxa

β, (2.3)

where we have used Stokes’ theorem for the one-form β on the closed domain D

with boundary ∂D := γax ∪ γxa.

One can see that wa is an anti-derivative of β. This is well defined if and

only if the path integral in right hand side of (2.3) is path independent, that is β

must be exact.

Then dF is a weighted quasi-metric with generalized weight wa. Indeed, we

have

dF (x, y) + wa(x) = dF0(x, y) +

∫

γxy

β +

∫

γax

β −
∫

γxa

β

= dF0(x, y)−
∫

γxa

β −
∫

γya

β, (2.4)
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where we have used again Stokes’ theorem for the one-form β on the closed domain

with boundary γax ∪ γxy ∪ γya.

Similarly,

dF (y, x) + wa(y) = dF0
(y, x)−

∫

γya

β −
∫

γxa

β, (2.5)

and hence dF is weighted quasi-metric with generalized weight wa.

Conversely, we assume that (M,F ) is a Finsler metric whose induced distance

function dF is a weighted quasi-metric on M with weight w : M → [0,∞). For

simplicity we assume that w is a smooth function.

Let γ : [0, ε) → M be a short C1 curve that emanates from the point p :=

γ(0) ∈ M with initial velocity v := vi ∂
∂xi ∈ TpM . Then by Busemann–Mayer

Theorem (see for example [BCS00]) we have

F (p, v) = lim
t→0+

dF (p, γ(t))

t
. (2.6)

In a local chart U around the point p ∈ M the manifold M looks locally as

the Euclidean space, therefore we can write

F (p,−v) = lim
t→0+

dF (γ(t), p)

t
, (2.7)

and hence, from (2.6), (2.7) and condition of weightability it results

F (p, v)− F (p,−v) = lim
t→0+

dF (p, γ(t))− dF (γ(t), p)

t
= lim

t→0+

w(γ(t))− w(p)

t

=
1

2

∂w

∂xi
(p)vi = dwp(v). (2.8)

Then, we have

F (p, v) =
1

2
[F (p, v)−F (p,−v)]+

1

2
[F (p, v)+F (p,−v)] = F0(p, v)+β(p, v), (2.9)

where F0 = 1
2 [F (p, v) + F (p,−v)], and β(p, v) = 1

2dwp(v).

The geodesic reversibility is now obvious from Proposition 2.1. ¤

Remark 2.4. Moreover, if for the arbitrary chosen point a ∈ M , there exists

a constant la such that la ≤ dF (a, x) − dF (x, a), ∀x ∈ M , then by putting

w̃a(x) := wa(x)− la it follows that (M,dF , w̃a) is a weighted quasi-metric space.

Obviously, when for example M is compact, such an la always exists (compare

with the reversibility function used in [R04]).
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For later use we recall ([V95]) the following lemma.

Lemma 2.5. Let (M,d) be any quasi-metric space. Then d is weightable if

and only if there exists w : M → [0,∞) such that

d(x, y) = ρ(x, y) +
1

2
[w(y)− w(x)], ∀x, y ∈ M, (2.10)

where ρ is the symmetrized distance of d. Moreover, we have

1

2
|w(x)− w(y)| ≤ ρ(x, y), ∀x, y ∈ M. (2.11)

The proof is trivial from the definition of a weighted quasi-metric.

Remark 2.6. If (M,F ) is a Finsler space given by the Randers change (2.1),

then the induced quasi-metric dF and the symmetrized metric ρ induce the same

topology on M . This follows immediately from [KV94], Lemma 4.

Remark 2.7. From Lemma 2.5 it can be seen that the assumption of w to be

smooth is not essential. Indeed, from Lemma 2.5 it can be seen that if dF is a

weighted quasi-metric, the function w is 1-locally Lipschitz, that is differentiable

almost everywhere on M . Therefore, the one-form β exists almost everywhere

on M .

Remark 2.8. See [M12] for a very interesting discussion on the completeness

of a Randers change by means of an exact one-form β.

We discuss an interesting geometric property concerning the geodesic triangles.

Proposition 2.9. Let (M,F ) be a Finsler metric given by the Randers

change (2.1). Then the perimeter length of any geodesic triangle on M does not

depend on the orientation, that is

dF (x, y) + dF (y, z) + dF (z, x) = dF (x, z) + dF (z, y) + dF (y, x),

∀x, y, z ∈ M. (2.12)
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Figure 1. The perimeter of the triangle ∆xyz is independent of the orientation.
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In other words, even though the distance between two points x and y de-

pends on the orientation of a minimizing geodesic joining points x and y, i.e.

dF (x, y) 6= dF (y, x), the sum of distances between three points x, y, z on M do

not depend on the direction we trace out the perimeter of the geodesic triangle

∆xyz. We point out that weighted quasi-metric spaces can be characterized by

this property without the explicit use of the weight function. Indeed, a quasi-

metric d is weightable if and only if relation (2.12) holds.

Proof. The proof is almost trivial. Since F it is the Randers change (2.1),

then from Theorem 2.3 it follows that the quasi-metric is weightable and there-

fore (2.10) holds good. By using this formula an elementary computation pro-

ves (2.12). ¤

Moreover, we have

Proposition 2.10. Let (M,F ) be a Finsler space that satisfies (2.12). Then F

can be written as the Randers change of an absolute homogeneous Finsler metric

F0 by an exact one-form β.

Proof. It is easy to see that if a quasi-metric satisfies (2.12) then it is

weightable (see [V99]). Then conclusion follows from Theorem 2.3. ¤

Remark 2.11. It should be clear that not any quasi-metric space is weightable.

In fact, it can be shown that the class of weightable quasi-metric spaces are exactly

those quasi-metric spaces that satisfy relation (2.12) (see [V99]).

3. Isometric embeddings of Finsler spaces

If (X, q, w) and (Y, p, u) are two weighted quasi-metric spaces, the mapping

ϕ : X → Y with the properties

p(ϕ(x), ϕ(y)) ≤ q(x, y), ∀x, y ∈ X (3.1)

u(ϕ(x)) ≤ w(x), ∀x ∈ X (3.2)

is called a morphism of weighted quasi-metric spaces.

In the case we have equality in relation (3.1), then the morphism ϕ is called

an isometric morphism. In this case w and u ◦ ϕ differ by a constant only.

Moreover, an isomorphism of the weighted quasi-metric spaces (X, q, w) and

(Y, p, u) is a bijective function ϕ : X → Y that preserves both the quasi-metric

and the weight function.
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Finally, an embedding of (X, q, w) into (G,Q,W ) is an isomorphism of (X, q, w)

onto a subspace of (G,Q,W ). Here, a subspace (Y, p, u) of a weighted quasi-metric

space (G,Q,W ) is a subset Y ⊂ G, the functions p and u are the restriction of Q

and W to Y × Y and Y , respectively.

Example 3.1 (The product of a metric space with a half ray). Consider a

metric space (S, d) and the half ray I := [0,∞). Then the product space G :=

S × I inherits a natural structure of (generalized) weighted quasi-metric space

(G,Q,W ), where

Q : G×G → [0,∞), Q(u, v) := d(x, y) + η − ξ,

W : G → [0,∞), W (u) := 2ξ, ∀u = (x, ξ), v = (y, η) ∈ S × I. (3.3)

Remark 3.2. The generalized weighted quasi-metric space (S× I,Q,W ) con-

structed in Example 3.1 is sometimes called the bundle over (S, d) (see [V99]).

Example 3.3 (The Graph of a function). We consider the case of the graph

of a non-negative valued function f : S → [0,∞) defined on a metric space (S, d).

Indeed, if we denote the graph of f by Gf := {(x, f(x)) : x ∈ S} then

(Gf , Q,W ) is a naturally induced weighted quasi-metric space structure defi-

ned by

Q : Gf ×Gf → [0,∞), Q(u, v) := d(x, y) + f(y)− f(x),

W : Gf → [0,∞), W (u) := 2f(x), ∀u = (x, f(x)), v = (y, f(y)) ∈ Gf . (3.4)

Based on these, one has

Theorem 3.4 ([V99]). Every weighted quasi-metric space (X, q, w) is em-

beddable in a bundle over a suitable metric space (S, d).

The idea of the proof is simple. Following Example 3.1, given the weighted

quasi-metric space (X, q, w) one constructs a naturally associated product of a

metric space (S, d) and a half line.

The obvious choice for (S, d) is the symmetrization of the quasi-metric space

(X, q). Therefore one has the natural weighted quasi-metric space (G,Q,W ),

where G := X × [0,∞), Q and W are defined in (3.3).

One defines now the function ϕ : X → G, ϕ(x) := (x, 1
2w(x)), and show that

this is indeed an embedding.

A fundamental result is that any weighted quasi-metric space can be con-

structed starting from a metric space (S, d) and a 1-Lipschitz function f : S →
[0,∞) defined on it, i.e.

|f(x)− f(y)| ≤ d(x, y), ∀x, y ∈ S. (3.5)
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Theorem 3.5 ([V99]).

1. Let (S, d) be a metric space and f : S → [0,∞) a 1-Lipschitz function. Then

the graph of f is a weighted quasi-metric space (Gf , Q,W ).

2. Conversely, every weighted quasi-metric space (X, q, w) can be constructed

in this way.

The proof is also quite obvious. Statement 1 is straightforward from Exam-

ple 3.3. We point out that Lipschitz condition (3.5) guaranties that Q(u, v) ≥ 0,

i.e. (Gf , Q,W ) is actually a weighted quasi-metric space.

Statement 2 follows from proof of Theorem 3.4. Indeed, given a weighted

quasi-metric space (X, q, w) one can construct

• a metric space (S, d) := (X, ρ), where ρ is the symmetrization of q,

• a Lipschitz function f : S → [0,∞), f(x) := 1
2w(x).

One can see that this f always satisfies the Lipschitz condition (3.5) on

(S, d) because of (2.11). Moreover, due to Theorem 3.4 there is an embedding

of (X, q, w) onto (Gf , Q,W ). That is recover the original weighted quasi-metric

space (X, q, w) from (Gf , Q,W ) by identifying X with a subspace of G obtained

by the obvious projection and restricting Q and W to this X.

Next, we recall the differential manifold structure of the graph of a smooth

function.

Let us consider a C∞ function f : M → [0,∞), x 7→ f(x) and the graph of f

denoted by Gf = {(x, f(x)) : x ∈ M} ⊂ M × R. Then it is known that Gf is a

C∞ submanifold of the product manifold M × R that is actually diffeomorphic

to M . Indeed, the mapping

ϕ : M → Gf , x 7→ ϕ(x) = (x, f(x)) (3.6)

with the inverse

ψ : Gf → M, u = (x, f(x)) 7→ ψ(x, f(x)) = x (3.7)

is a diffeomorphism. Remark that ψ is nothing else than the projection onto the

first factor.

Any given weighted quasi-metric space (M, q,w) that satisfies some supple-

mentary metrizability condition induced a Finsler structure (M,F = F0 + df)

on M and conversely, every given weighted quasi-metric space (M, q,w) can be

constructed in this way.

We recall the smooth approximation of Lipschitz functions on a Finsler ma-

nifold:
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Lemma 3.6 ([M12]). Let (M,F ) be a Finsler manifold and f : M → R a

1-Lipschitz function, i.e.

|f(x)− f(y)| ≤ dF (x, y), ∀x, y ∈ M, (3.8)

where dF is the Finslerian induced quasi-distance on M . Then, for any small

positive ε1, ε2 there exists a smooth function f̃ : M → R such that

1. |f̃(x)− f(x)| < ε1, ∀x ∈ M ,

2. f̃ is (1 + ε2)-Lipschitz, i.e. |f̃(x)− f̃(y)| ≤ (1 + ε2)dF (x, y), ∀x, y ∈ M .

The Riemannian version of this lemma can be found in [A07].

Then, we have

Theorem 3.7.

1. Let (M,F = F0 + df) be a Finsler space, where f is a C∞ non-negative

function f on M . Then the graph manifold Gf inherits a natural structure

of weighted quasi-metric space (Gf , Q,W ) that coincides with the weighted

quasi-metric space (M,dF , 2f) induced by F , up to an isomorphism.

2. For any given weighted quasi-metric space (M, q,w), whose symmetrized

metric is C∞-Riemannian (or absolutely homogeneous Finsler) metrizable,

there exist

(a) a smooth approximation function f̃ : M → [0,∞) of w,

(b) a weighted quasi-metric space (Gf̃ , Q̃, W̃ ), called the smooth approxi-

mation of (Gf , Q,W ), that coincides with the weighted quasi-metric

space (M,dF , 2f̃) induced by a (not necessarily positive definite) Ran-

ders metric F = α̃ + df̃ (or Randers change F = F0 + df̃), up to an

isomorphism.

Proof. 1. If we start with the Finsler structure (M,F = F0+df), then this

is with reversible geodesics, and therefore from Theorem 2.3 it follows that M

becomes a weighted quasi-metric space (M,dF , 2f), where dF (x, y) = dF0(x, y)+

f(y) − f(x), ∀x, y ∈ M . The symmetrized metric ρ of dF coincides with dF0

and therefore the graph manifold Gf becomes a weighted quasi-metric space

(Gf , Q,W ), where

Q(u, v) = ρ(x, y) + f(y)− f(x), W (u) = 2f(x),

∀u = (x, f(x)), v = (y, f(y)) ∈ Gf . (3.9)

It can be easily seen that this (Gf , Q,W ) is indeed a weighted quasi-metric

space and that ψ : (Gf , Q,W ) → (M,dF , 2f) defined in (3.7) is an isometric

embedding.
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2. Starting with an arbitrary weighted quasi-metric space (M, q,w) remark

that the weight w : M → [0,∞) is a 1-Lipschitz function (see (2.11)) with respect

to the symmetrized metric ρ. This is not good enough to define a C∞-Finsler

metric because w has a measure zero set of points where it fails to be differentiable.

We are going to use the smooth approximation of Lipschitz functions on

Riemannian manifolds ([A07]) or Finsler manifolds (see Lemma 3.6). For the

sake of simplicity we present only the Riemannian case here. We put f := 1
2w

and denote the smooth approximation of f by f̃ . It follows that Gf̃ is a smooth

manifold that inherits a natural structure of weighted quasi-metric space from

(Gf , Q,W ) constructed in Theorem 3.5, 1. Namely, we put

Q̃(u, v := (1 + ε2)ρ(x, y) + f̃(y)− f̃(x),

W̃ (u) := 2f̃(x), ∀u = (x, f̃(x), v = (y, f̃(y)) ∈ Gf̃ . (3.10)

Since f̃ is (1 + ε2)-Lipschitz with respect to ρ it follows that Q̃(u, v) ≥ 0 for any

u, v ∈ Gf̃ . Elementary computations shows that indeed (Gf̃ , Q̃, W̃ ) is a weighted

quasi-metric space that smoothly approximates (Gf , Q,W ) in the sense that

|Q̃(u, v)−Q(u, v)| ≤ 2ε1, |W̃ (u)−W (u)| ≤ 2ε1, ∀u, v ∈ Gf̃ . (3.11)

We define now ãij(x) := (1 + ε2)
2aij(x), where (M,a) is the Riemannian

metric corresponding to the metric space (M,ρ), for ∀ i, j ∈ {1, 2, . . . , n}, and
∀x ∈ M .

The Randers space (M,F = α̃ + df̃) induces a structure of weighted quasi-

metric space (M,dF , 2f̃) on M which is isometrically embeddable into (Gf̃ , Q̃, W̃ )

as shown above. Obviously, this Randers space is positive definite if and only if

the Riemannian length of the gradient vector grad f̃ is less than one.

The proof is identical if (M,ρ) is absolutely homogeneous Finsler metrizable.

¤

Corollary 3.8. For any given weighted quasi-metric space (M, q,w), whose

symmetrized metric is C∞-Riemannian (or absolutely homogeneous Finsler) metri-

zable, and whose weight w is a smooth function, the weighted quasi-metric space

(M,dF , 2f) induced by the Randers metric F = α + df (or Randers change

F = F0 + df) coincides with (M, q,w).

Remark 3.9. Obviously not any metric space (M,d) is Riemannian metri-

zable. Here Riemannian metrizable means that M is a differentiable manifold

and that there exists a C∞-Riemannian metric a = aij(x) on M whose associa-

ted distance function dα coincides with d.
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General conditions for a metric space to be Riemannian metrizable can be

found in [N99]. Similar conditions can be easily established for metric spaces to

be absolute homogeneous Finsler metrizable.

More generally one can study conditions for quasi-metric space to be Finsler

metrizable. Metrizability of metric or quasi-metric spaces is a complex subject

that we intend to discuss in a forthcoming paper.

We discuss now another representation of Finsler spaces.

We recall that for a metric space the Hausdorff distance is a distance function

between subsets of M . Indeed, if (M,d) is a metric space, then the mapping

dH : 2M × 2M → [0,∞), dH(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(b, A)} (3.12)

is called the Hausdorff metric, where 2M is the set of all subsets of M .

In the case of 2M the function dH is only a semi-metric. However, the pair

(P0(M,d), dH) is a metric space, where P0(M,d) is the set of non-empty closed

subsets of M ([BBI01]).

This notion can be easily extended to the more general case of quasi-metric

spaces as follows. Let (M, q) be a quasi-metric space. We define the mappings:

dfH(A,B) := sup
a∈A

q(a,B), dbH(A,B) := sup
b∈B

q(A, b),

dH(A,B) := max{dfH(A,B), dbH(A,B)}, ∀A,B ∈ P0(M,d). (3.13)

It can be seen that dfH , dbH , dH are extended quasi-metrics on P0(M, q) and

that they become quasi-metrics when restricted to K0(M, q), that is the set of all

non-empty compact subsets of (M, q).

The pair (K0(M, q), dH) is called the associated quasi-Hausdorff metric of

(M, q) (compare with [S01]).

Many of the geometrical properties of Hausdorff distance extend to the case

of quasi-Hausdorff distances (a detailed study of these together with the Gromov–

Hausdorff distance will be given elsewhere).

Let (M, q) be a quasi-metric space, and construct the metric space (X, δ),

where X:=M×[0,∞), and δ((x, ξ), (y, η))=d∗(x, y)+ |ξ−η|, for ∀ (x, ξ),(y, η)∈X.

Here d∗ is the max-metric (1.4).

It can be easily seen that indeed (X, δ) is a metric space and that for ∀ z ∈ M ,

the set E(z) := {(y, η) ∈ X : d(y, z) ≤ η} is a non-empty closed subset in (X, δ),

i.e. E(z) ∈ P0(X, δ). We write here δ in order to make explicit the topology

where the set are closed.
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We recall ([V95]) that if (M,d) is a quasi-metric space, then the mapping E :

(M,d) → (P0(X, δ), dfH), z 7→ E(z) is an isometry of M onto a subspace E(M) of

P0(X, δ). Indeed, it can be seen that E is injective, and d(x, y) = dfH(E(x), E(y)),

for ∀x, y ∈ M .

We obtain

Proposition 3.10. Let (M,F ) be a Finsler space with associated quasi-

metric dF . Then the quasi-metric space (M,dF ) is isometric to a subspace E(M)

of (P0(M), dfH).

Let us assume now that dF is a weighted quasi-metric. In this case we have

dfH(A,B) = dρH(A,B) + 1
2

(
infb∈B w − supa∈A w

)
, where we have used d(a,B) =

infb∈B d(a, b) = ρ(a,B)+ 1
2

(
infb∈B w−w(a)

)
. Here dρH(A, b) is the usual Hausdorff

distance of the symmetrized metric ρ.

It can be seen that the forward Hausdorff distance can not exceed the ρ-

Hausdorff distance.
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