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On contact CR-warped product submanifolds
of a quasi-Sasakian manifold
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Dedicated to Professor Lajos Tamdssy on his 90th birthday

Abstract. In the present paper we study contact CR-warped product submani-
folds of a quasi-Sasakian manifold. We obtain a necessary and sufficient condition for a
contact CR-submanifold of a quasi-Sasakian manifold to be a contact CR-product or a
contact CR~-warped product submanifold. We estimate the squared norm of the second
fundamental form in terms of the warping function. Equality cases are also investigated.
As a particular case, we obtain some further results for Sasakian manifolds.

1. Introduction

The notion of warped product manifold was introduced by BisHOP and
O’NEILL in 1969 [5] for studying manifolds of negative curvature. Given two
Riemannian manifolds (M7, ¢1) and (Ma, g2) and a positive function f on Mj, on
the product manifold M; x My the metric tensor g := g1 + f2g> is said to be a
warped metric, and we call (M7 x My, g) a warped product Riemannian manifold
with warping function f. We also denote (M x Mo, g) by My x ¢ Ms.

Bejancu introduced the notion of CR-submanifolds of a Kaehler manifold
[3]. Let M be a submanifold of a complex manifold M, and suppose TM denotes
the tangent bundle, and T+ M denotes the normal bundle of M. M is said to be
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a CR-submanifold of M if and only if there exist two distributions D and D+
such that TM = D @ D+, JD C TM and JD+ C T+ M, where J is the comp-
lex structure of M. Chen defined and studied the geometry of warped product
CR-submanifolds in Kaehler manifolds ([14], [15], [16] [17]). Gaining inspiration
from his results, many mathematicians extended their studies to different special
cases of almost complex manifolds, as to nearly Kaehler manifolds ([25]), locally
conformal Kaehler manifolds ([10], [26]), etc. We also mention here that the para-
Kaehler version of CR-warped products in para-Kaehler manifolds (PR-warped
products) was introduced and studied very recently by CHEN and MUNTEANU
in [19].

In contact geometry the concept of a contact CR-submanifold was introdu-
ced by BEJANCU and PAPAGHIUC [4]. A submanifold M of a contact manifold
(M, ¢,&,n) is said to be a contact CR-submanifold of type (D @ (£), D1) if there
exist distributions D, D+ and (¢), such that TM = DD+ & (€), 9D C TM and
¢D+ c T+M. Later the studies of warped product CR-submanifolds in Kaehler
manifolds were also extended to the case of contact geometry. Contact CR-
warped product submanifolds of Sasakian manifolds were studied by HASEGAWA
and MIHAT [22], MIHAI [27] and MUNTEANU [28], etc. Contact CR-warped pro-
duct submanifolds of Kenmotsu space forms were studied by ARSLAN, EZENTAS,
MiHAI and MURATHAN [2], and recently OZGUR and SULAR [29] studied con-
tact CR-warped product submanifolds of a generalized Sasakian space form, and
obtained many good results.

On the other hand, the notion of quasi-Sasakian structure was introduced by
D. E. BLAIR [7] to unify Sasakian and cosymplectic structures. Also TANNO [30]
obtained some results on quasi-Sasakian structures. A necessary and sufficient
condition for an almost contact metric manifold to be quasi-Sasakian was given
by KANEMAKI [24]. Contact CR-submanifolds of quasi-Sasakian manifolds were
studied intensively and successfully by Calin ([11], [12], [13]). Recently quasi-
Sasakian manifolds became the subject of growing interest, and gained significant
applications to physics, in particular, to super gravity and magnetic theory [1].
Quasi-Sasakian structures have a wide range of applications in the mathematical
analysis of string theory [21]. Motivated by these applications, in the present
paper we study contact CR-warped product submanifolds of quasi-Sasakian ma-
nifolds.

The paper is organized as follows:

After Preliminaries, in Section 3 we study warped product submanifolds of a
quasi-Sasakian manifold. Among other results, we prove that under certain condi-
tions a contact CR-submanifold of a quasi-Sasakian manifold reduces to a contact
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CR-~warped product. Finally, in Section 4, we establish an inequality between the
squared norm of the second fundamental form and the warping function. As a
corollary, we obtain some results for the Sasakian case.

2. Preliminaries

An n-dimensional manifold M™ is said to admit an almost contact structure
([6], [8], [31]) if it admits a tensor field ¢ of type (1,1), a vector field £ and a
1-form 7 satisfying

P*X = —X +n(X)E, 06 =1, (2.1)

¢§ =0, n(¢X)=0. (2.2)

An almost contact structure is said to be normal if the induced almost complex
structure J on the product manifold M™ x R defined by

J (X, fjt) - (</>X - ff,n(X)jt)

is integrable, where X is tangent to M", t is the coordinate of R, and f is a
smooth function on M™ x R. Let g be the compatible Riemannian metric with
almost contact structure (¢, &, n), that is,

9(6X, 9Y) = g(X,Y) = n(X)n(Y). (2.3)

Then M™ becomes an almost contact metric manifold equipped with an almost
contact metric structure (¢, &, 7, g). From (2.3) it can be easily seen that

g(X,¢Y):—g(¢X7Y), Q(X,g):ﬁ(X)» (24)

for any vector fields X,Y on the manifold. In an almost contact metric structure
we define the fundamental 2-form by ®(X,Y) := g(X,¢Y). An almost contact
metric structure becomes a contact metric structure if ®(X,Y) = dn(X,Y), for
all vector fields X, Y.

An almost contact metric structure is said to be quasi-Sasakian if the almost
contact structure (¢,£,n) is normal, and the fundamental 2-form & is closed,
that is d® = 0. This was first introduced by BLAIR [7]. Kanemaki proved ([24])
that a necessary and sufficient condition for an almost contact metric manifold
(M, 9,&,1m,9) to be quasi-Sasakian is that there exists a symmetric linear trans-
formation field F', such that

(Vx@)Y =n(Y)FX —g(FX,Y)§, F¢X =¢FX,
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for any vector fields X and Y of M with respect to the Riemannian connection
V of the metric g. It can be easily checked that for all vector fields X in a quasi-

Vx€=0¢FX, F¢&=n(FE.

Sasakian manifold M

Let i : (M,g) — (M, g) be an isometric immersion. We denote by V and V
the Levi-Civita connections of M and M respectively, and by T+ M the normal
bundle of M. Then for any vector fields X,Y € TM and normal vector field
N € T+M the second fundamental form h and the Weingarten map Ay are
given by the Gauss and Weingarten formulas:

h(X,Y)=VxY - VyY, (2.5)
ANX = V%N — VxN, (2.6)

where V+ denotes the normal connection of M. The second fundamental form
h and Ay are related by g(h(X,Y), N) = g(AnyX,Y). We say that M is totally
umbilical if h(X,Y) = ¢(X,Y)H, where H is the mean curvature defined by
H =3%""_ h(ei,e;) for some basis {e1,e,...,e,} of TM. M is said to be totally
geodesic if A(X,Y) = 0, and minimal if H = 0.

Now let M = M, x; M> be a submanifold of M. We say that M is a CR-
warped product submanifold of M if and only if either M, is invariant and My is
anti-invariant, or Ms is invariant and M is anti-invariant.

3. Warped product submanifolds

In this section we investigate warped products M = M; x s M, which are
contact CR-submanifolds of a quasi-Sasakian manifold M. By definition such
submanifolds are always tangent to £. Similarly to Hasegawa and Mihai, here we
also distinguish only two cases:

(a) & is tangent to My;
(b) & is tangent to Mo.

For a warped product Riemannian manifold M; x f My = (M1 x Ma, g = g1+ f%go)
we recall the following well-known identity [5]:

VXZ = VzX = (X lnf)Z, (31)

for any X € TM,, Z € TM,.
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Lemma 3.1. If M = M; x ¢ M is a warped product submanifold of a quasi-
Sasakian manifold M such that ¢ is tangent to My, then it becomes a Riemannian
product submanifold.

PROOF. Supppose £ € T'M,. In (3.1), putting Z = &, we obtain

V€ = (XIn f)e. (3.2)
Now,
OFX = Vx& = Vx&+h(X,6) = (X In )€ + h(X,£). (3.3)

Since, g(¢F X, &) = —g(FX, ¢€) =0, and g(h(X,£),€) =0, from (3.3) we obtain
XInf=0,VX e TM,.

Hence, f is constant, and the warped product is nothing, but simply a Rie-
mannian product. O

So, for studying a proper contact CR-warped product submanifold we only
need to consider the case a) where £ is tangent to M;. We have two subcases:

(i) M is invariant, £ is tangent to M;, and Ms is anti-invariant,
(ii) M is anti-invariant, £ is tangent to M;, and Ms is invariant.

For the case (ii) we have the following theorem in a more general setting:

Theorem 3.1. If M = M; x¢ M is a warped product contact CR-subma-
nifold of a quasi-Sasakian manifold M, such that & € TM, and M, is invariant,
then f is constant, that is, M is a CR-product.

Proor. For X € TM,, Z € TM; we have,
VxZ=VzX=(Zhhf)X. (3.4)
Putting Z = £ in (3.4), we obtain
Vx§=({Inf)X. (3.5)
Since M is quasi-Sasakian, we have
PFX =Vx&E=VxE+ X, €)= (EmfX +h(X,€), [from (3.5)], (3.6)

which implies
g(pF X, X) = ((ln f)g(X,X), forall X € TM,. (3.7)
But g(¢FX,X) = 0, since F is symmetric and F'¢p = ¢F, which, together with
(3.7), gives
Elnf=0. (3.8)
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Let AT be the second fundamental form of My in M. Then for X,Y € TM,
and Z € TM;, we have

g(hW"(X,Y), Z2) = g(VxY,Z) = —g(Y,VxZ)
=—g(Y,(ZIn f)X) = —(Z1In f)g(X,Y). (3.9)

Let h be the second fundamental form of the immersion of M, in M, and let VT
be the Levi-Civita connection in My induced from V. Then,

hMX,Y) =h(X,Y)+hT(X,Y). (3.10)
So,
g(h(X,Y), 2) = g(h"(X,Y), Z) = =(ZIn f)g(X,Y). (3.11)

Since My is an invariant submanifold of M, we have

VxoY = VoY + h(X,¢Y). (3.12)
Hence,

VLY + h(X,0Y) = (Vxd)Y + ¢VxY
=n(Y)FX = g(FX,Y)é+ ¢(VXY) + oh(X,Y)
= —g(FX.Y)é + ¢(VEY) + oh(X,Y). (3.13)
Since M, is invariant, from (3.13) we obtain,
h(X,pY) = ¢h(X,Y) — g(FX,Y)E. (3.14)
Now, for Z L () we have from (3.11)

—(ZIn f)g(¢X, ¢ X)

= g(h(éX,0X), Z) = g(oh(6X, X) — g(F$X, X)E, Z)
:g(¢i7'(¢X7X)7Z) g(¢ (biL(XaX)_g(FXvX)f)’Z)
= g(0*h(X,X), Z) = g(—h(X,X),Z) = (ZIn f)g(X, X),

which implies
(ZInf)g(X,X) =0, forall X € TMs. (3.15)

Hence,
Zlnf =0, forany vector field Z L (¢) in TM;. (3.16)

This, together with (3.8), gives us
Vinf=0, forallVeTM. (3.17)

Hence f is constant. (|
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If TM is invariant under F', then from the above theorem we obtain

OFX =FopX €¢ TM (3.18)
for all X € TM>. Now,

GFX = Vxé = Vxf+h(X,6) = (€l f)X + h(X,€) = h(X,€),  (3.19)

which implies
dFX =0=h(X,E), forall X € TM>. (3.20)

So, for all X € T M, we get

0=¢*FX = —FX + g(FX,6)¢ = —FX + g(X, FE)¢
=-—FX +g(X,n(F§&E=—-FX. (3.21)

So, if F|rar, is injective, then we obtain:

Corollary 3.1. There does not exist any warped product submanifold M =
My x5 My of a quasi-Sasakian manifold M, such that € € TM;, and M, is an
invariant submanifold, provided, T M is invariant under F, and F|ryy, is injective.

In the Sasakian case F' = Id, and then from Corollary 3.1 we obtain the
theorem of HASEGAWA and MIHAT [22]:

Theorem 3.2. Let M be a 2m + 1-dimensional Sasakian manifold. Then
there do not exist warped product submanifolds M; Xy My such that M; is an
anti-invariant submanifold tangent to &, and My is an invariant submanifold of M.

The warped product submanifolds Mj x ¢ My are called of type (DL @ (€), D)
if M; is an anti-invariant submanifold tangent to £, and M; is an invariant sub-
manifold of M. From Theorem 3.1 we also have that a contact (D @ (£), D) CR-
warped product must be a CR-product. But, when is a contact CR-submanifold,
even locally, a contact CR-product of type (D@ (¢), D)? From the Theorems 1.1
and 1.4 in [13] of CALIN, and from the well-known de Rham’s decomposition the-
orem we obtain the following theorem:

Theorem 3.3. A contact CR-submanifold M of a quasi-Sasakian manifold
M is Iocally a contact CR-product of type (D+ @ (¢), D) if and only if

AyzX =0,
for all X € D, Z € D+, and
FD1D.

PROOF. If a contact CR-submanifold M of a quasi-Sasakian manifold M is
locally a contact (D* @ (¢), D) CR-product, then the distributions D+ @ (£) and
D are integrable, and their leaves are totally geodesic in M. From Theorems 1.1
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and 1.4 of [13] we have h(X,U) € v, and FDLD for all X € D, U € T M, where
v is the orthogonal complementer of ¢(D) in T-M. From this it follows that
A¢ZX =0 and FD1D.

Conversely, if M is a contact CR-submanifold of a quasi-Sasakian manifold
M, and AyzX =0, for all X € D, Z € D+, and FDLD, then from AgzX =0
we have g(h(X,Y),$Z) = 0 for any X,Y € D, Z € D*. Therefore h(X,Y) € v
for all X,Y € D. From Theorem 1.1 in [13] it follows that the distribution D is
integrable, and its leaves are totally geodesic. On the other hand, from A4z X =0
we also have h(X,V) € v for all X € D,V € D+ @ (¢). From Theorem 1.4 in
[13] we have that the distribution D+ @ (¢) is integrable, and its leaves are totally
geodesic. Thus, M is locally a contact (D @ (¢), D) CR-product according to the
de Rham’s decomposition theorem. O

In the case of a Sasakian manifold F = Id. Then the condition FDLD is
never satisfied. From the above theorem we have the weaker form of Theorem 3.2.

Theorem 3.4. In a Sasakian manifold, there exists no contact CR-product
submanifold of type (D+ @ (£), D)

Now we consider the case of a contact CR-submanifold of type (D& (), Dt)
in a quasi-Sasakian manifold.

Theorem 3.5. Let M be a contact CR-submanifold of type (D& (¢), D+) in
a quasi-Sasakian manifold M. Then M is locally a contact CR-warped product
of type (D @ (£), DY) if and only if

FD+ 1 ¢D+
and
AgzX = (pXp)Z, for X € D,Z € D+,

for some C> function p on M satisfying Wy = 0, for all W € D+ @& (¢).

PROOF. Suppose M is a contact (D @ (£), D+) CR-warped product of the
form M = Nt xy Ni. Then D @ (£) is integrable, and its leaves are totally
geodesic in M. Thus we have from Theorem 1.2 of [13] that

g(MX,Y),$Z) =0, forall X eD, Y cD®(£), ZecDt,

hich impli
WWHICH TIPS 9(ApzX,Y) = 0. (3.22)

Let X = ¢Y, X,Y € D. Then for all V € D+ we have,

9(Apz X, V) = g(h(X,V),0Z) = g(W(¢Y,V),0Z) = g(Vv oY, $Z)
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=9(Vvo)Y + ¢(VvY),0Z) = g(¢(VvY),¢Z) = g(VvY, Z)
=9(WY,Z) =g(YIn )V, Z) = =(¢X In f)g(Z,V). (3.23)

Here we have used g((Vyo)Y,0Z) = g(n(Y)FX — g(FX,Y)¢,¢Z) = 0 and
g(h(V,Y),2) =0.
From (3.22) and (3.23) we get

AyzX = —(¢XInf)Z, forall X €D, Z € D*.
On the other hand D+ is also integrable, so from Theorem 1.1 of [12] we obtain
FD+ 1 ¢D+.

Let 4 = —Inf. Then, Wy = —WTf =0, for all W € D+ @ (¢) since f
is a function on N, and from the proof of Theorem 3.1 it is easy to see that
£(n f) = 0.

Conversely, let M be a contact (D @ (¢), D) CR-submanifold of a quasi-
Sasakian manifold M, such that

FD* 1 ¢D+
and
AyzX = (pXp)Z, for X € D, Z € D+,

for some C* function pu on M satisfying Wy = 0 for all W € D+ @ (€).
We have to prove that

M = N+ XfNJ_, gEX(NT).

From AyzX = ¢X(u)Z, for X € D, Z € D+ we have g(AyzX,Y) = 0 for all
Y € D & (£), which implies

9(MX,Z),0Z) = 0. (3.24)
Hence
hX,Y) €. (3.25)

Thus from Theorem 2.2 of [12] we have that D & (£) is integrable, and its leaf are
totally geodesic in M. From FD+ | ¢D+ and from Theorem 1.1 of [12] we have
that D+ is integrable. Now, let N1 be a leaf of D @ (£), and N, be a leave of
DL. Then N+ is a totally geodesic submanifold of M.

We now prove that V| is an extrinsic sphere in M, that is, N is a totally
umbilical submanifold of M, and its mean curvature is parallel according to the
normal connection of N, . Let At and AL be the second fundamental form and
the shape operator of the submanifold V; in M. First we prove the following:
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Lemma 3.2.
9(pAs7U, X) = g(VuZ,X), forall X €D, Z €D U cTM.
PRrROOF. For any Y € D and U € TM we have,
9(VuZ,¢Y) = g(VuZ,¢Y) = —g(Z,Vy oY) = —g(Z,(Vu )Y + ¢(VyY))

=—9(Z,¢(VuY)) = g(¢Z,VyY)
=—g(Y,VyoZz) =g(Y, AyzU). (3.26)

Putting X = ¢Y in the above equation we get
—9(VuZ,X) = g(AszU, 6 X) = —g(0AszU, X).
This yields the lemma. O

Using this lemma for any V,Z € TN, where X is a normal vector field
on N, we obtain:

9(VzX,V) = =g(X,VzV) = —g(¢Asv Z, X) = g(Asv Z, ¢ X)
= 9(AsvoX, Z) = —g(Xp)V, Z) — (Xp)g(V; Z). (3.27)

But
g(VzX,V)=g(AxZ,V) = g(h*(Z,V), X). (3.28)

W () =0 for all W € D+ @ (£) implies that Vu € D. From this and from (3.28)
it follows that

g(hH(Z,V),X) = =(Xu)g(Z,V) = —g(X,V)g(Z,V). (329)
On the other hand, from ¢F = F¢ and from ¢FZ = V z£ it follows that

g(h(2,V),€) = g(VzV,&) = —g(V,V &) = —g(V, Vz§)
= —g(V,¢FZ) = —g(V,F¢Z) = —g(FV, V). (3.30)

From the conditions FD+ 1 ¢D+ and g(¢, V) = &(u) = 0, we have
g(h(2,V),6) = 0= —g(£, Vi)g(Z, V).
From this and from (3.30) we have
hH(Z,V) = —g(Z,V)Vp. (3.31)

This means that N is totally umbilical with mean curvature vector V.
Now we prove that Vu is parallel according to the normal connection of
N, in M. Since the leaves of D @ (£) are totally geodesic, and D+ is integrable,
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from Theorem A of BLUMENTHAL and HEBDA [9] we know that M is locally
diffeomorphic to a product Nt x N, where Nt is a leaf of D @ (¢), and N, is
a leaf of D. So we can introduce a local coordinate system {z?, 2%} on M, such
that {52 } and {32 } are bases of D & (¢) and D+ respectively.

Thus, for any X € D ® (¢) and Z € D+, we have, [X, Z] = 0, which implies

VxZ =VzX. (3.32)

Let V- be the normal connection of N in M. Then, for Y € D& () and Z € N

we obtain,

9(VzVu,Y) = g(VzVnY) = Zg(Vu,Y) = g(Vu, VzY)
=2Y (W) —9(Vn,VyZ)
=Y(Z(n) —{Y9(Vi, Z) — g(VyVu,2)} =0, (3.33)

since Z(u) = 0 for all Z € D+ and VyVu € D @ (£). This means that the mean
curvature of N is parallel. So, we have proved that the leaves of D @ (£) are
totally geodesic, implying that D @ (¢) is autoparallel. Also the leaves of D+ are
totally umbilical, and their mean curvatures are parallel, consequently they are
extrinsic spheres. Therefore, by using the result of [23] (see also [20], Remark 2.1
and [14], [25]), M is a warped product of type M = Nt x; N, £ is tangent
to N, for some function f on Nv.
From the first part of the proof we can easily see that,

Vin f=-Vp,

from which we obtain f = ce™ for some constant c. (I

In the Sasakian case we have F' = Id. Thus the condition FD+ = D1¢D+
is always satisfied. From Theorem 3.4 we have:

Corollary 3.2. A contact (D @ (£), D) CR-submanifold M of a Sasakian
manifold M is locally a contact CR-warped product if and only if

AgzX = (pXp)Z, for X € D,Z € D+,

for some C™ function u on M satisfying W = 0 for all W € D+ @ (€).
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4. Inequality between the warping function and the squared norm
of the second fundamental form

Theorem 4.1. Let M = Nt x N, be a contact CR-warped product subma-
nifold of a quasi-Sasakian manifold M, such that Nt is an invariant submanifold
tangent to £, and N is an anti-invariant submanifold of M. Suppose that dimen-
sion N1 = 2n + 1, dimension N, = 3. Then,

(i) [|h)? > 2B8||VIn f||? + 2Tr, F?, where Tr; F? = " g(Feq,eqs), which is
independent of the choice of the orthonormal basis e, (« = 2n + 2,...,
2n+1+ ) on N, .

(ii) Ifthe equality holds, then N is totally geodesic in M, N is totally umbilical
in M, and M is a minimal submanifold of M.

PROOF. Let X € TNt, Z € TN, be two unit vector fields. We have

=9(X)FZ — g(FZ,X)§ + ¢VzX,02)
= 9g(X)FZ + ¢V 2 X, 6Z) + g(FZ, X)g(¢¢, Z). (4.1)

Since g(FZ,¢Z) = —g(¢FZ,Z) = —g(F¢Z,Z) = —g(¢Z, F Z) implies
9(FZ,¢Z) =0, from (4.1) we obtain:

9(h(9X, 2),0Z) = g(¢V 2 X,0Z) = g(Vz X, Z)
=g(VzX,Z2)=XInfg(Z,Z)=Xn f. (4.2)

Since T'N | is anti-invariant

9(h(Z,8),0Z) = (V26 =V z,0Z) = g(V 2£,02)
=g9(pFZ,9Z) = g(FZ,Z). (4.3)

Suppose that h* is the second fundamental form from N, to M. Then we have

g(h*(Z, W), X) = g(VzW,X) = —g(W,VzX)

4.4

Hence,
W (Z,W)=g(Z,W)VIn f. (4.5)
Let e1,e9,...,€2,, 2,41 = £ be an orthonormal basis of Tn, while {e,, a =

2n+42,...,2n+ 14 B} is a basis of TN, . Then {¢e1, dea, ..., dean, €ant1 = £}
is also an orthonormal basis of TN+. Let E,,a =1,...,2n + 1 4+ Bbe a basis of
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TM such that E; = ¢e;, i =1,...,2n, Fapt1—¢ and E, = e,. Then we obtain

1RNP =D Ih(Ea B)IP = 2llh(des ea) | +2]h(E ca) )
>2) {lg(h(des, ea), dea)|® + lg(h(E, ea), dea)|*})
>28|VInf|* +2)  g(Fea,ea) > 28|V In f|* + 2T F?, (4.6)

where we have used £In f = 0.
If the equality holds, then

WTN+,TN7) =0, (4.7)

h(I'N,,TN,) =0,
and WTN+,TN.) C ¢TN,. (4.9)
Since N is always totally geodesic in M, from (4.7) we can conclude that N is
also totally geodesic in M. From (4.5) we have that N, is totally umbilical in M.

Combining this with (4.8), we conclude that N, is totally umbilical in M. From
(4.6) and (4.7) we also obtain that M is a minimal submanifold of M. O

In the case of Sasakian manifolds F' = Id. Then Tr, F? = 3, and we obtain
the result of HASEGAWA and MIHAT [22].

Corollary 4.1. Let M = Nt x¢ N, be a contact CR-warped product sub-
manifold of a Sasakian manifold M, such that Nt is an invariant submanifold
tangent to £, and N is an anti-invariant submanifold of M. Suppose that dimen-
sion N1 = 2n + 1, dimension N, = 3. Then

@) [[R2(= 28[VIn f||* + 1),
(ii) If the equality holds, then N is totally geodesic in M, N, is totally umbilical

in M, and M is a minimal submanifold of M.
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