Publ. Math. Debrecen 84/1-2 (2014), 123–137 DOI: 10.5486/PMD.2014.5844

On contact CR-warped product submanifolds of a quasi-Sasakian manifold

By TRAN QUOC BINH (Debrecen) and AVIK DE (Kolkata)

Dedicated to Professor Lajos Tamássy on his 90th birthday

Abstract. In the present paper we study contact CR-warped product submanifolds of a quasi-Sasakian manifold. We obtain a necessary and sufficient condition for a contact CR-submanifold of a quasi-Sasakian manifold to be a contact CR-product or a contact CR-warped product submanifold. We estimate the squared norm of the second fundamental form in terms of the warping function. Equality cases are also investigated. As a particular case, we obtain some further results for Sasakian manifolds.

1. Introduction

The notion of warped product manifold was introduced by BISHOP and O'NEILL in 1969 [5] for studying manifolds of negative curvature. Given two Riemannian manifolds (M_1, g_1) and (M_2, g_2) and a positive function f on M_1 , on the product manifold $M_1 \times M_2$ the metric tensor $g := g_1 + f^2 g_2$ is said to be a warped metric, and we call $(M_1 \times M_2, g)$ a warped product Riemannian manifold with warping function f. We also denote $(M_1 \times M_2, g)$ by $M_1 \times_f M_2$.

Bejancu introduced the notion of CR-submanifolds of a Kaehler manifold [3]. Let M be a submanifold of a complex manifold \overline{M} , and suppose TM denotes the tangent bundle, and $T^{\perp}M$ denotes the normal bundle of M. M is said to be

Mathematics Subject Classification: 53C40, 53C42, 53C15.

Key words and phrases: warped product, submanifold, quasi-Sasakian manifold, inequality, totally geodesic.

The work was supported by the Japanese-Hungarian Bilateral Project No. TÉT_10-1-2011-0062.

a CR-submanifold of \overline{M} if and only if there exist two distributions \mathcal{D} and \mathcal{D}^{\perp} such that $TM = \mathcal{D} \oplus \mathcal{D}^{\perp}$, $J\mathcal{D} \subset TM$ and $J\mathcal{D}^{\perp} \subset T^{\perp}M$, where J is the complex structure of \overline{M} . Chen defined and studied the geometry of warped product CR-submanifolds in Kaehler manifolds ([14], [15], [16] [17]). Gaining inspiration from his results, many mathematicians extended their studies to different special cases of almost complex manifolds, as to nearly Kaehler manifolds ([25]), locally conformal Kaehler manifolds ([10], [26]), etc. We also mention here that the para-Kaehler version of CR-warped products in para-Kaehler manifolds (PR-warped products) was introduced and studied very recently by CHEN and MUNTEANU in [19].

In contact geometry the concept of a contact CR-submanifold was introduced by BEJANCU and PAPAGHIUC [4]. A submanifold M of a contact manifold $(\overline{M}, \phi, \xi, \eta)$ is said to be a contact CR-submanifold of type $(\mathcal{D} \oplus \langle \xi \rangle, \mathcal{D}^{\perp})$ if there exist distributions $\mathcal{D}, \mathcal{D}^{\perp}$ and $\langle \xi \rangle$, such that $TM = \mathcal{D} \oplus \mathcal{D}^{\perp} \oplus \langle \xi \rangle, \phi D \subset TM$ and $\phi \mathcal{D}^{\perp} \subset T^{\perp}M$. Later the studies of warped product CR-submanifolds in Kaehler manifolds were also extended to the case of contact geometry. Contact CRwarped product submanifolds of Sasakian manifolds were studied by HASEGAWA and MIHAI [22], MIHAI [27] and MUNTEANU [28], etc. Contact CR-warped product submanifolds of Kenmotsu space forms were studied by ARSLAN, EZENTAS, MIHAI and MURATHAN [2], and recently OZGUR and SULAR [29] studied contact CR-warped product submanifolds of a generalized Sasakian space form, and obtained many good results.

On the other hand, the notion of quasi-Sasakian structure was introduced by D. E. BLAIR [7] to unify Sasakian and cosymplectic structures. Also TANNO [30] obtained some results on quasi-Sasakian structures. A necessary and sufficient condition for an almost contact metric manifold to be quasi-Sasakian was given by KANEMAKI [24]. Contact CR-submanifolds of quasi-Sasakian manifolds were studied intensively and successfully by Calin ([11], [12], [13]). Recently quasi-Sasakian manifolds became the subject of growing interest, and gained significant applications to physics, in particular, to super gravity and magnetic theory [1]. Quasi-Sasakian structures have a wide range of applications in the mathematical analysis of string theory [21]. Motivated by these applications, in the present paper we study contact CR-warped product submanifolds of quasi-Sasakian manifolds.

The paper is organized as follows:

After Preliminaries, in Section 3 we study warped product submanifolds of a quasi-Sasakian manifold. Among other results, we prove that under certain conditions a contact CR-submanifold of a quasi-Sasakian manifold reduces to a contact

CR-warped product. Finally, in Section 4, we establish an inequality between the squared norm of the second fundamental form and the warping function. As a corollary, we obtain some results for the Sasakian case.

2. Preliminaries

An *n*-dimensional manifold M^n is said to admit an almost contact structure ([6], [8], [31]) if it admits a tensor field ϕ of type (1,1), a vector field ξ and a 1-form η satisfying

$$\phi^2 X = -X + \eta(X)\xi, \quad \eta(\xi) = 1,$$
(2.1)

$$\phi \xi = 0, \quad \eta(\phi X) = 0.$$
 (2.2)

An almost contact structure is said to be normal if the induced almost complex structure J on the product manifold $M^n \times \mathbb{R}$ defined by

$$J\left(X, f\frac{d}{dt}\right) = \left(\phi X - f\xi, \eta(X)\frac{d}{dt}\right)$$

is integrable, where X is tangent to M^n , t is the coordinate of \mathbb{R} , and f is a smooth function on $M^n \times \mathbb{R}$. Let g be the compatible Riemannian metric with almost contact structure (ϕ, ξ, η) , that is,

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y).$$
(2.3)

Then M^n becomes an almost contact metric manifold equipped with an almost contact metric structure (ϕ, ξ, η, g) . From (2.3) it can be easily seen that

$$g(X, \phi Y) = -g(\phi X, Y), \quad g(X, \xi) = \eta(X),$$
 (2.4)

for any vector fields X, Y on the manifold. In an almost contact metric structure we define the fundamental 2-form by $\Phi(X, Y) := g(X, \phi Y)$. An almost contact metric structure becomes a contact metric structure if $\Phi(X, Y) = d\eta(X, Y)$, for all vector fields X, Y.

An almost contact metric structure is said to be quasi-Sasakian if the almost contact structure (ϕ, ξ, η) is normal, and the fundamental 2-form Φ is closed, that is $d\Phi = 0$. This was first introduced by BLAIR [7]. Kanemaki proved ([24]) that a necessary and sufficient condition for an almost contact metric manifold (M, ϕ, ξ, η, g) to be quasi-Sasakian is that there exists a symmetric linear transformation field F, such that

$$(\nabla_X \phi)Y = \eta(Y)FX - g(FX, Y)\xi, \quad F\phi X = \phi FX,$$

for any vector fields X and Y of M with respect to the Riemannian connection ∇ of the metric g. It can be easily checked that for all vector fields X in a quasi-Sasakian manifold M $\nabla f = f = \frac{1}{2} \frac{F}{2} \frac{F$

$$\nabla_X \xi = \phi F X, \quad F \xi = \eta (F \xi) \xi$$

Let $i: (M,g) \longrightarrow (\overline{M},g)$ be an isometric immersion. We denote by ∇ and $\overline{\nabla}$ the Levi-Civita connections of M and \overline{M} respectively, and by $T^{\perp}M$ the normal bundle of M. Then for any vector fields $X, Y \in TM$ and normal vector field $N \in T^{\perp}M$ the second fundamental form h and the Weingarten map A_N are given by the Gauss and Weingarten formulas:

$$h(X,Y) = \bar{\nabla}_X Y - \nabla_X Y, \qquad (2.5)$$

$$A_N X = \nabla_X^\perp N - \bar{\nabla}_X N, \qquad (2.6)$$

where ∇^{\perp} denotes the normal connection of M. The second fundamental form h and A_N are related by $g(h(X,Y),N) = g(A_NX,Y)$. We say that M is totally umbilical if h(X,Y) = g(X,Y)H, where H is the mean curvature defined by $H = \sum_{i=1}^{n} h(e_i, e_i)$ for some basis $\{e_1, e_2, \ldots, e_n\}$ of TM. M is said to be totally geodesic if h(X,Y) = 0, and minimal if H = 0.

Now let $M = M_1 \times_f M_2$ be a submanifold of M. We say that M is a CRwarped product submanifold of \overline{M} if and only if either M_1 is invariant and M_2 is anti-invariant, or M_2 is invariant and M_1 is anti-invariant.

3. Warped product submanifolds

In this section we investigate warped products $M = M_1 \times_f M_2$, which are contact CR-submanifolds of a quasi-Sasakian manifold \overline{M} . By definition such submanifolds are always tangent to ξ . Similarly to Hasegawa and Mihai, here we also distinguish only two cases:

- (a) ξ is tangent to M_1 ;
- (b) ξ is tangent to M_2 .

For a warped product Riemannian manifold $M_1 \times_f M_2 = (M_1 \times M_2, g = g_1 + f^2 g_2)$ we recall the following well-known identity [5]:

$$\nabla_X Z = \nabla_Z X = (X \ln f) Z, \tag{3.1}$$

for any $X \in TM_1, Z \in TM_2$.

Lemma 3.1. If $M = M_1 \times_f M_2$ is a warped product submanifold of a quasi-Sasakian manifold \overline{M} such that ξ is tangent to M_2 , then it becomes a Riemannian product submanifold.

PROOF. Suppose $\xi \in TM_2$. In (3.1), putting $Z = \xi$, we obtain

$$\nabla_X \xi = (X \ln f)\xi. \tag{3.2}$$

Now,

$$\phi FX = \bar{\nabla}_X \xi = \nabla_X \xi + h(X,\xi) = (X \ln f)\xi + h(X,\xi).$$
(3.3)

Since, $g(\phi FX, \xi) = -g(FX, \phi\xi) = 0$, and $g(h(X, \xi), \xi) = 0$, from (3.3) we obtain $X \ln f = 0, \forall X \in TM_1$.

Hence, f is constant, and the warped product is nothing, but simply a Riemannian product. $\hfill \Box$

So, for studying a proper contact CR-warped product submanifold we only need to consider the case a) where ξ is tangent to M_1 . We have two subcases:

- (i) M_1 is invariant, ξ is tangent to M_1 , and M_2 is anti-invariant,
- (ii) M_1 is anti-invariant, ξ is tangent to M_1 , and M_2 is invariant.

For the case (ii) we have the following theorem in a more general setting:

Theorem 3.1. If $M = M_1 \times_f M_2$ is a warped product contact CR-submanifold of a quasi-Sasakian manifold \overline{M} , such that $\xi \in TM_1$, and M_2 is invariant, then f is constant, that is, M is a CR-product.

PROOF. For $X \in TM_2$, $Z \in TM_1$ we have,

$$\nabla_X Z = \nabla_Z X = (Z \ln f) X. \tag{3.4}$$

Putting $Z = \xi$ in (3.4), we obtain

$$\nabla_X \xi = (\xi \ln f) X. \tag{3.5}$$

Since \overline{M} is quasi-Sasakian, we have

$$\phi FX = \nabla_X \xi = \nabla_X \xi + h(X,\xi) = (\xi \ln f)X + h(X,\xi), \quad \text{[from (3.5)]}, \quad (3.6)$$

which implies

$$g(\phi FX, X) = (\xi \ln f)g(X, X), \quad \text{for all } X \in TM_2.$$
(3.7)

But $g(\phi FX, X) = 0$, since F is symmetric and $F\phi = \phi F$, which, together with (3.7), gives

$$\xi \ln f = 0. \tag{3.8}$$

Let h^T be the second fundamental form of M_2 in M. Then for $X, Y \in TM_2$ and $Z \in TM_1$, we have

$$g(h^{T}(X,Y),Z) = g(\nabla_{X}Y,Z) = -g(Y,\nabla_{X}Z)$$

= -g(Y,(Z ln f)X) = -(Z ln f)g(X,Y). (3.9)

Let \hat{h} be the second fundamental form of the immersion of M_2 in \overline{M} , and let ∇^T be the Levi–Civita connection in M_2 induced from $\overline{\nabla}$. Then,

$$\hat{h}(X,Y) = h(X,Y) + h^T(X,Y).$$
 (3.10)

So,

$$g(\hat{h}(X,Y),Z) = g(h^T(X,Y),Z) = -(Z\ln f)g(X,Y).$$
(3.11)

Since M_2 is an invariant submanifold of \overline{M} , we have

$$\bar{\nabla}_X \phi Y = \nabla_X^T \phi Y + \hat{h}(X, \phi Y). \tag{3.12}$$

Hence,

$$\nabla_X^T \phi Y + \hat{h}(X, \phi Y) = (\bar{\nabla}_X \phi) Y + \phi \bar{\nabla}_X Y$$

= $\eta(Y) F X - g(FX, Y) \xi + \phi(\nabla_X^T Y) + \phi \hat{h}(X, Y)$
= $-g(FX, Y) \xi + \phi(\nabla_X^T Y) + \phi \hat{h}(X, Y).$ (3.13)

Since M_2 is invariant, from (3.13) we obtain,

$$\hat{h}(X,\phi Y) = \phi \hat{h}(X,Y) - g(FX,Y)\xi.$$
 (3.14)

Now, for $Z \perp \langle \xi \rangle$ we have from (3.11)

$$-(Z \ln f)g(\phi X, \phi X) = g(h(\phi X, \phi X), Z) = g(\phi h(\phi X, X) - g(F\phi X, X)\xi, Z)$$

= $g(\phi \hat{h}(\phi X, X), Z) = g(\phi(\phi \hat{h}(X, X) - g(FX, X)\xi), Z)$
= $g(\phi^2 \hat{h}(X, X), Z) = g(-\hat{h}(X, X), Z) = (Z \ln f)g(X, X),$

which implies

$$(Z\ln f)g(X,X) = 0, \quad \text{for all } X \in TM_2.$$
(3.15)

Hence,

$$Z \ln f = 0$$
, for any vector field $Z \perp \langle \xi \rangle$ in TM_1 . (3.16)

This, together with (3.8), gives us

$$V\ln f = 0, \quad \text{for all } V \in TM_1. \tag{3.17}$$

Hence f is constant.

If TM is invariant under F, then from the above theorem we obtain

$$\phi FX = F\phi X \in TM \tag{3.18}$$

for all $X \in TM_2$. Now,

$$\phi FX = \bar{\nabla}_X \xi = \nabla_X \xi + h(X,\xi) = (\xi \ln f)X + h(X,\xi) = h(X,\xi), \quad (3.19)$$

which implies

$$\phi FX = 0 = h(X,\xi), \quad \text{for all } X \in TM_2. \tag{3.20}$$

So, for all $X \in TM_2$ we get

$$0 = \phi^2 F X = -F X + g(F X, \xi)\xi = -F X + g(X, F\xi)\xi$$

= -F X + g(X, \eta(F\xi)\xi)\xi = -F X. (3.21)

So, if $F|_{TM_2}$ is injective, then we obtain:

Corollary 3.1. There does not exist any warped product submanifold $M = M_1 \times_f M_2$ of a quasi-Sasakian manifold \overline{M} , such that $\xi \in TM_1$, and M_2 is an invariant submanifold, provided, TM is invariant under F, and $F|_{TM_2}$ is injective.

In the Sasakian case F = Id, and then from Corollary 3.1 we obtain the theorem of HASEGAWA and MIHAI [22]:

Theorem 3.2. Let \overline{M} be a 2m + 1-dimensional Sasakian manifold. Then there do not exist warped product submanifolds $M_1 \times_f M_2$ such that M_1 is an anti-invariant submanifold tangent to ξ , and M_2 is an invariant submanifold of \overline{M} .

The warped product submanifolds $M_1 \times_f M_2$ are called of type $(\mathcal{D}^{\perp} \oplus \langle \xi \rangle, \mathcal{D})$ if M_1 is an anti-invariant submanifold tangent to ξ , and M_2 is an invariant submanifold of \overline{M} . From Theorem 3.1 we also have that a contact $(\mathcal{D}^{\perp} \oplus \langle \xi \rangle, \mathcal{D})$ CRwarped product must be a CR-product. But, when is a contact CR-submanifold, even locally, a contact CR-product of type $(\mathcal{D}^{\perp} \oplus \langle \xi \rangle, \mathcal{D})$? From the Theorems 1.1 and 1.4 in [13] of CALIN, and from the well-known de Rham's decomposition theorem we obtain the following theorem:

Theorem 3.3. A contact CR-submanifold M of a quasi-Sasakian manifold \overline{M} is locally a contact CR-product of type $(\mathcal{D}^{\perp} \oplus \langle \xi \rangle, \mathcal{D})$ if and only if

$$A_{\phi Z}X = 0,$$

for all $X \in \mathcal{D}, Z \in \mathcal{D}^{\perp}$, and

 $F\mathcal{D} \perp \mathcal{D}.$

PROOF. If a contact CR-submanifold M of a quasi-Sasakian manifold \overline{M} is locally a contact $(\mathcal{D}^{\perp} \oplus \langle \xi \rangle, \mathcal{D})$ CR-product, then the distributions $\mathcal{D}^{\perp} \oplus \langle \xi \rangle$ and \mathcal{D} are integrable, and their leaves are totally geodesic in M. From Theorems 1.1

and 1.4 of [13] we have $h(X, U) \in \nu$, and $F\mathcal{D}\perp\mathcal{D}$ for all $X \in \mathcal{D}, U \in TM$, where ν is the orthogonal complementer of $\phi(\mathcal{D})$ in $T^{\perp}M$. From this it follows that $A_{\phi Z}X = 0$ and $F\mathcal{D}\perp\mathcal{D}$.

Conversely, if M is a contact CR-submanifold of a quasi-Sasakian manifold \overline{M} , and $A_{\phi Z}X = 0$, for all $X \in \mathcal{D}, Z \in \mathcal{D}^{\perp}$, and $F\mathcal{D}\perp\mathcal{D}$, then from $A_{\phi Z}X = 0$ we have $g(h(X,Y),\phi Z) = 0$ for any $X,Y \in \mathcal{D}, Z \in \mathcal{D}^{\perp}$. Therefore $h(X,Y) \in \nu$ for all $X,Y \in \mathcal{D}$. From Theorem 1.1 in [13] it follows that the distribution \mathcal{D} is integrable, and its leaves are totally geodesic. On the other hand, from $A_{\phi Z}X = 0$ we also have $h(X,V) \in \nu$ for all $X \in \mathcal{D}, V \in \mathcal{D}^{\perp} \oplus \langle \xi \rangle$. From Theorem 1.4 in [13] we have that the distribution $\mathcal{D}^{\perp} \oplus \langle \xi \rangle$ is integrable, and its leaves are totally geodesic. Thus, M is locally a contact $(\mathcal{D}^{\perp} \oplus \langle \xi \rangle, \mathcal{D})$ CR-product according to the de Rham's decomposition theorem.

In the case of a Sasakian manifold F = Id. Then the condition $F\mathcal{D}\perp\mathcal{D}$ is never satisfied. From the above theorem we have the weaker form of Theorem 3.2.

Theorem 3.4. In a Sasakian manifold, there exists no contact CR-product submanifold of type $(\mathcal{D}^{\perp} \oplus \langle \xi \rangle, \mathcal{D})$

Now we consider the case of a contact CR-submanifold of type $(\mathcal{D} \oplus \langle \xi \rangle, \mathcal{D}^{\perp})$ in a quasi-Sasakian manifold.

Theorem 3.5. Let M be a contact CR-submanifold of type $(\mathcal{D} \oplus \langle \xi \rangle, \mathcal{D}^{\perp})$ in a quasi-Sasakian manifold \overline{M} . Then M is locally a contact CR-warped product of type $(\mathcal{D} \oplus \langle \xi \rangle, \mathcal{D}^{\perp})$ if and only if

$$F\mathcal{D}^{\perp} \perp \phi \mathcal{D}^{\perp}$$

$$A_{\phi Z}X = (\phi X\mu)Z, \quad \text{for } X \in \mathcal{D}, Z \in \mathcal{D}^{\perp}.$$

for some C^{∞} function μ on M satisfying $W\mu = 0$, for all $W \in \mathcal{D}^{\perp} \oplus \langle \xi \rangle$.

PROOF. Suppose M is a contact $(\mathcal{D} \oplus \langle \xi \rangle, \mathcal{D}^{\perp})$ CR-warped product of the form $M = N_{\top} \times_f N_{\perp}$. Then $\mathcal{D} \oplus \langle \xi \rangle$ is integrable, and its leaves are totally geodesic in M. Thus we have from Theorem 1.2 of [13] that

$$g(h(X,Y),\phi Z) = 0$$
, for all $X \in \mathcal{D}, Y \in \mathcal{D} \oplus \langle \xi \rangle, Z \in \mathcal{D}^{\perp}$,

which implies

$$g(A_{\phi Z}X,Y) = 0. (3.22)$$

Let
$$X = \phi Y, X, Y \in \mathcal{D}$$
. Then for all $V \in \mathcal{D}^{\perp}$ we have,

$$g(A_{\phi Z}X,V) = g(h(X,V),\phi Z) = g(h(\phi Y,V),\phi Z) = g(\nabla_V \phi Y,\phi Z)$$

$$= g((\bar{\nabla}_V \phi)Y + \phi(\bar{\nabla}_V Y), \phi Z) = g(\phi(\bar{\nabla}_V Y), \phi Z) = g(\bar{\nabla}_V Y, Z)$$
$$= g(\nabla_V Y, Z) = g((Y \ln f)V, Z) = -(\phi X \ln f)g(Z, V).$$
(3.23)

Here we have used $g((\bar{\nabla}_V \phi)Y, \phi Z) = g(\eta(Y)FX - g(FX, Y)\xi, \phi Z) = 0$ and g(h(V,Y),Z) = 0.

From (3.22) and (3.23) we get

$$A_{\phi Z}X = -(\phi X \ln f)Z, \text{ for all } X \in \mathcal{D}, \ Z \in \mathcal{D}^{\perp}.$$

On the other hand \mathcal{D}^{\perp} is also integrable, so from Theorem 1.1 of [12] we obtain

$$F\mathcal{D}^{\perp} \perp \phi \mathcal{D}^{\perp}.$$

Let $\mu = -\ln f$. Then, $W\mu = -\frac{Wf}{f} = 0$, for all $W \in \mathcal{D}^{\perp} \oplus \langle \xi \rangle$ since f is a function on N_{\top} , and from the proof of Theorem 3.1 it is easy to see that $\xi(\ln f) = 0.$

Conversely, let M be a contact $(\mathcal{D} \oplus \langle \xi \rangle, \mathcal{D}^{\perp})$ CR-submanifold of a quasi-Sasakian manifold \overline{M} , such that

$$F\mathcal{D}^{\perp} \perp \phi \mathcal{D}^{\perp}$$

and

$$A_{\phi Z}X = (\phi X\mu)Z, \quad \text{for } X \in \mathcal{D}, \ Z \in \mathcal{D}^{\perp},$$

for some C^{∞} function μ on M satisfying $W\mu = 0$ for all $W \in \mathcal{D}^{\perp} \oplus \langle \xi \rangle$.

We have to prove that

$$M = N_{\top} \times_f N_{\perp}, \ \xi \in \mathcal{X}(N_{\top}).$$

From $A_{\phi Z}X = \phi X(\mu)Z$, for $X \in \mathcal{D}, Z \in \mathcal{D}^{\perp}$ we have $g(A_{\phi Z}X, Y) = 0$ for all $Y \in D \oplus \langle \xi \rangle$, which implies

$$g(h(X,Z),\phi Z) = 0.$$
 (3.24)

Hence

$$h(X,Y) \in \nu. \tag{3.25}$$

Thus from Theorem 2.2 of [12] we have that $\mathcal{D} \oplus \langle \xi \rangle$ is integrable, and its leaf are totally geodesic in M. From $F\mathcal{D}^{\perp} \perp \phi \mathcal{D}^{\perp}$ and from Theorem 1.1 of [12] we have that \mathcal{D}^{\perp} is integrable. Now, let N_{\top} be a leaf of $\mathcal{D} \oplus \langle \xi \rangle$, and N_{\perp} be a leave of \mathcal{D}^{\perp} . Then N_{\top} is a totally geodesic submanifold of M.

We now prove that N_{\perp} is an extrinsic sphere in M, that is, N_{\perp} is a totally umbilical submanifold of M, and its mean curvature is parallel according to the normal connection of N_{\perp} . Let h^{\perp} and A^{\perp} be the second fundamental form and the shape operator of the submanifold N_{\perp} in M. First we prove the following:

Lemma 3.2.

$$g(\phi A_{\phi Z}U, X) = g(\nabla_U Z, X), \text{ for all } X \in \mathcal{D}, \ Z \in \mathcal{D}^{\perp}, U \in TM.$$

PROOF. For any $Y \in \mathcal{D}$ and $U \in TM$ we have,

$$g(\nabla_U Z, \phi Y) = g(\bar{\nabla}_U Z, \phi Y) = -g(Z, \bar{\nabla}_U \phi Y) = -g(Z, (\bar{\nabla}_U \phi)Y + \phi(\bar{\nabla}_U Y))$$
$$= -g(Z, \phi(\bar{\nabla}_U Y)) = g(\phi Z, \bar{\nabla}_U Y)$$
$$= -g(Y, \bar{\nabla}_U \phi Z) = g(Y, A_{\phi Z} U).$$
(3.26)

Putting $X = \phi Y$ in the above equation we get

$$-g(\nabla_U Z, X) = g(A_{\phi Z} U, \phi X) = -g(\phi A_{\phi Z} U, X).$$

This yields the lemma.

Using this lemma for any $V, Z \in TN_{\perp}$ where X is a normal vector field on N_{\perp} , we obtain:

$$g(\nabla_Z X, V) = -g(X, \nabla_Z V) = -g(\phi A_{\phi V} Z, X) = g(A_{\phi V} Z, \phi X)$$

= $g(A_{\phi V} \phi X, Z) = -g((X\mu)V, Z) - (X\mu)g(V, Z).$ (3.27)

But

$$g(\nabla_Z X, V) = g(A_X^{\perp} Z, V) = g(h^{\perp}(Z, V), X).$$
 (3.28)

 $W(\mu) = 0$ for all $W \in \mathcal{D}^{\perp} \oplus \langle \xi \rangle$ implies that $\nabla \mu \in \mathcal{D}$. From this and from (3.28) it follows that

$$g(h^{\perp}(Z,V),X) = -(X\mu)g(Z,V) = -g(X,\nabla\mu)g(Z,V).$$
(3.29)

On the other hand, from $\phi F = F \phi$ and from $\phi F Z = \nabla_Z \xi$ it follows that

$$g(h^{\perp}(Z,V),\xi) = g(\nabla_Z V,\xi) = -g(V,\nabla_Z \xi) = -g(V,\bar{\nabla}_Z \xi) = -g(V,\phi FZ) = -g(V,F\phi Z) = -g(FV,\phi V).$$
(3.30)

From the conditions $F\mathcal{D}^{\perp} \perp \phi \mathcal{D}^{\perp}$ and $g(\xi, \nabla \mu) = \xi(\mu) = 0$, we have

$$g(h^{\perp}(Z,V),\xi) = 0 = -g(\xi,\nabla\mu)g(Z,V).$$

From this and from (3.30) we have

$$h^{\perp}(Z,V) = -g(Z,V)\nabla\mu.$$
(3.31)

This means that N_{\perp} is totally umbilical with mean curvature vector $\nabla \mu$.

Now we prove that $\nabla \mu$ is parallel according to the normal connection of N_{\perp} in M. Since the leaves of $\mathcal{D} \oplus \langle \xi \rangle$ are totally geodesic, and \mathcal{D}^{\perp} is integrable,

from Theorem A of BLUMENTHAL and HEBDA [9] we know that M is locally diffeomorphic to a product $N_{\top} \times N_{\perp}$, where N_{\top} is a leaf of $\mathcal{D} \oplus \langle \xi \rangle$, and N_{\perp} is a leaf of \mathcal{D}^{\perp} . So we can introduce a local coordinate system $\{x^i, z^{\alpha}\}$ on M, such that $\left\{\frac{\partial}{\partial x^i}\right\}$ and $\left\{\frac{\partial}{\partial z^{\alpha}}\right\}$ are bases of $\mathcal{D} \oplus \langle \xi \rangle$ and \mathcal{D}^{\perp} respectively. Thus, for any $X \in \mathcal{D} \oplus \langle \xi \rangle$ and $Z \in \mathcal{D}^{\perp}$, we have, [X, Z] = 0, which implies

$$\nabla_X Z = \nabla_Z X. \tag{3.32}$$

Let ∇^{\perp} be the normal connection of N_{\perp} in M. Then, for $Y \in \mathcal{D} \oplus \langle \xi \rangle$ and $Z \in N_{\perp}$ we obtain,

$$g(\nabla_{Z}^{\perp}\nabla\mu, Y) = g(\nabla_{Z}\nabla\mu, Y) = Zg(\nabla\mu, Y) - g(\nabla\mu, \nabla_{Z}Y)$$
$$= Z(Y(\mu)) - g(\nabla\mu, \nabla_{Y}Z)$$
$$= Y(Z(\mu)) - \{Yg(\nabla\mu, Z) - g(\nabla_{Y}\nabla\mu, Z)\} = 0,$$
(3.33)

since $Z(\mu) = 0$ for all $Z \in \mathcal{D}^{\perp}$ and $\nabla_Y \nabla \mu \in \mathcal{D} \oplus \langle \xi \rangle$. This means that the mean curvature of N_{\perp} is parallel. So, we have proved that the leaves of $\mathcal{D} \oplus \langle \xi \rangle$ are totally geodesic, implying that $\mathcal{D} \oplus \langle \xi \rangle$ is autoparallel. Also the leaves of \mathcal{D}^{\perp} are totally umbilical, and their mean curvatures are parallel, consequently they are extrinsic spheres. Therefore, by using the result of [23] (see also [20], Remark 2.1 and [14], [25]), M is a warped product of type $M = N_{\top} \times_f N_{\perp}$, ξ is tangent to N_{\perp} , for some function f on N_{\perp} .

From the first part of the proof we can easily see that,

$$\nabla \ln f = -\nabla \mu,$$

from which we obtain $f = ce^{-\mu}$ for some constant c.

In the Sasakian case we have F = Id. Thus the condition $F\mathcal{D}^{\perp} = \mathcal{D}_{\perp}\phi\mathcal{D}^{\perp}$ is always satisfied. From Theorem 3.4 we have:

Corollary 3.2. A contact $(\mathcal{D} \oplus \langle \xi \rangle, \mathcal{D}^{\perp})$ CR-submanifold M of a Sasakian manifold \overline{M} is locally a contact CR-warped product if and only if

$$A_{\phi Z}X = (\phi X\mu)Z, \quad \text{for } X \in \mathcal{D}, Z \in \mathcal{D}^{\perp},$$

for some C^{∞} function μ on M satisfying $W\mu = 0$ for all $W \in \mathcal{D}^{\perp} \oplus \langle \xi \rangle$.

4. Inequality between the warping function and the squared norm of the second fundamental form

Theorem 4.1. Let $M = N_{\top} \times_f N_{\perp}$ be a contact CR-warped product submanifold of a quasi-Sasakian manifold \overline{M} , such that N_{\top} is an invariant submanifold tangent to ξ , and N_{\perp} is an anti-invariant submanifold of \overline{M} . Suppose that dimension $N_{\top} = 2n + 1$, dimension $N_{\perp} = \beta$. Then,

- (i) $||h||^2 \ge 2\beta ||\nabla \ln f||^2 + 2Tr_{\perp}F^2$, where $Tr_{\perp}F^2 := \sum g(Fe_{\alpha}, e_{\alpha})$, which is independent of the choice of the orthonormal basis e_{α} ($\alpha = 2n + 2, \ldots, 2n + 1 + \beta$) on N_{\perp} .
- (ii) If the equality holds, then N_⊤ is totally geodesic in M
 , N_⊥ is totally umbilical in M
 , and M is a minimal submanifold of M.

PROOF. Let $X \in TN_{\top}, Z \in TN_{\perp}$ be two unit vector fields. We have

$$g(h(\phi X, Z), \phi Z) = g(\nabla_Z \phi X, \phi Z)$$

= $g(\eta(X)FZ - g(FZ, X)\xi + \phi \bar{\nabla}_Z X, \phi Z)$
= $g(\eta(X)FZ + \phi \bar{\nabla}_Z X, \phi Z) + g(FZ, X)g(\phi \xi, Z).$ (4.1)

Since $g(FZ, \phi Z) = -g(\phi FZ, Z) = -g(F\phi Z, Z) = -g(\phi Z, FZ)$ implies $g(FZ, \phi Z) = 0$, from (4.1) we obtain:

$$g(h(\phi X, Z), \phi Z) = g(\phi \overline{\nabla}_Z X, \phi Z) = g(\overline{\nabla}_Z X, Z)$$
$$= g(\nabla_Z X, Z) = X \ln f g(Z, Z) = X \ln f.$$
(4.2)

Since TN_{\perp} is anti-invariant

$$g(h(Z,\xi),\phi Z) = g(\bar{\nabla}_Z \xi - \nabla_Z \xi,\phi Z) = g(\bar{\nabla}_Z \xi,\phi Z)$$
$$= g(\phi FZ,\phi Z) = g(FZ,Z).$$
(4.3)

Suppose that h^* is the second fundamental form from N_{\perp} to M. Then we have

$$g(h^*(Z, W), X) = g(\nabla_Z W, X) = -g(W, \nabla_Z X) = -X \ln fg(Z, W) = -g(g(Z, W)\nabla \ln f, X).$$
(4.4)

Hence,

$$h^*(Z, W) = g(Z, W) \nabla \ln f.$$
(4.5)

Let $e_1, e_2, \ldots, e_{2n}, e_{2n+1} = \xi$ be an orthonormal basis of Tn_{\top} , while $\{e_{\alpha}, \alpha = 2n+2, \ldots, 2n+1+\beta\}$ is a basis of TN_{\perp} . Then $\{\phi e_1, \phi e_2, \ldots, \phi e_{2n}, e_{2n+1} = \xi\}$ is also an orthonormal basis of TN_{\top} . Let $E_a, a = 1, \ldots, 2n+1+\beta$ be a basis of

TM such that $E_i = \phi e_i, i = 1, \ldots, 2n, E_{2n+1=\xi}$ and $E_{\alpha} = e_{\alpha}$. Then we obtain

$$\|h\|^{2} = \sum \|h(E_{a}, E_{b})\|^{2} \ge \sum 2\|h(\phi e_{i}, e_{\alpha})\|^{2} + 2\|h(\xi, e_{\alpha})\|^{2})$$

$$\ge 2\sum \{\|g(h(\phi e_{i}, e_{\alpha}), \phi e_{\alpha})\|^{2} + \|g(h(\xi, e_{\alpha}), \phi e_{\alpha})\|^{2}\})$$

$$\ge 2\beta \|\nabla \ln f\|^{2} + 2\sum g(Fe_{\alpha}, e_{\alpha}) \ge 2\beta \|\nabla \ln f\|^{2} + 2Tr_{\perp}F^{2}, \qquad (4.6)$$

where we have used $\xi \ln f = 0$.

If the equality holds, then

$$h(TN_{\top}, TN_{\top}) = 0, \qquad (4.7)$$

$$h(TN_{\perp}, TN_{\perp}) = 0, \tag{4.8}$$

and

$$h(TN_{\top}, TN_{\perp}) \subset \phi TN_{\perp}. \tag{4.9}$$

Since N_{\top} is always totally geodesic in M, from (4.7) we can conclude that N_{\top} is also totally geodesic in \overline{M} . From (4.5) we have that N_{\perp} is totally umbilical in M. Combining this with (4.8), we conclude that N_{\perp} is totally umbilical in \overline{M} . From (4.6) and (4.7) we also obtain that M is a minimal submanifold of \overline{M} .

In the case of Sasakian manifolds F = Id. Then $Tr_{\perp}F^2 = \beta$, and we obtain the result of HASEGAWA and MIHAI [22].

Corollary 4.1. Let $M = N_{\top} \times_f N_{\perp}$ be a contact CR-warped product submanifold of a Sasakian manifold \overline{M} , such that N_{\top} is an invariant submanifold tangent to ξ , and N_{\perp} is an anti-invariant submanifold of \overline{M} . Suppose that dimension $N_{\top} = 2n + 1$, dimension $N_{\perp} = \beta$. Then

- (i) $||h||^2 (\geq 2\beta ||\nabla \ln f||^2 + 1),$
- (ii) If the equality holds, then N_{\top} is totally geodesic in \overline{M} , N_{\perp} is totally umbilical in \overline{M} , and M is a minimal submanifold of \overline{M} .

References

- B. S. ACHARYA, J. M. FIGUEROA-O'FARRILL, C. M. HULL and B. SPENCE, Branes at conical singularities and holography, *Adv. Theor. Math. Phys.* 2 (1998), 1249–1286.
- [2] K. ARSLAN, R. EZENTAS, I. MIHAI and C. MURATHAN, Contact CR-warped product submanifolds in Kenmotsu space forms, J. Korean Math. Soc. 42 (2005), 1101–1110.
- [3] A. BEJANCU, CR submanifolds of a Kaehler manifold, Proc. Amer. Math. Soc. 69 (1978), 135–142.
- [4] A. BEJANCU and N. PAPAGHIUC, Semi-invariant submanifolds of a Sasakian manifold, Ann. St. Univ. "Al. I. Cuza" Iasi 27 (1981), 163–170.

- [5] R. L. BISHOP and B. O'NEILL, Manifolds of negative curvature, Trans. Amer. Math. Soc. (1969), 1–49.
- [6] D. E. BLAIR, Riemannian geometry of contact and symplectic manifolds, Progress in Math., Vol. 203, Berlin.
- [7] D. E. BLAIR, The theory of quasi-Sasakian structure, J. Differential Geom. 1 (1967), 331–345.
- [8] D. E. BLAIR, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, 509, Springer-Verlag, Berlin, 2003.
- [9] R. A. BLUMENTHAL and J. J. HEBDA, De Rham decomposition theorems for foliated manifolds, Annales de l'institut Fourier 33 (1983), 183–198.
- [10] V. BONANZINGA and K. MATSUMOTO, Warped product CR-submanifolds in locally conformal Kaehler manifolds, *Period. Math. Hungar.* 48 (2004), 207–221.
- [11] C. CALIN, Contact CR-submanifolds of quasi-Sasakian manifolds, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 36 (1992), 217–226.
- [12] C. CALIN, Geometry of leaves on a CR-submanifold of a quasi-Sasakian manifold, Bul. Inst. Politeh. Iasi. Sec. I. Mat. Mec. Teor. Fiz. 39 (1993), 37–43.
- [13] C. CALIN, CR-product of quasi-Sasakian manifold, Bul. Inst. Politeh. Iasi. Sec. I. Mat. Mec. Teor. Fiz. 40 (1994), 37–44.
- [14] B. Y. CHEN, Geometry of Submanifolds, Pure and Applied Mathematics, No. 22, Marcel Dekker, Inc. New York, 1973.
- [15] B. Y. CHEN, Geometry of warped product CR-submanifolds in Kaehler manifolds, Monatsh. Math. 133 (2001), 177–195.
- [16] B. Y. CHEN, Geometry of warped product CR-submanifolds in Kaehler manifolds. II, Monatsh. Math. 134 (2001), 103–119.
- [17] B. Y. CHEN, On warped product immersions, J. Geom. 82 (2005), 36-49.
- [18] B. Y. CHEN, Pseudo-Riemannian Geometry, δ -Invariants and Applications, World Scientific, 2011.
- [19] B. Y. CHEN and M. I. MUNTEANU, Geometry of PR-Warped products in Para-Kahler manifolds, *Taiwanese J. Math.* 16 (2012), 1293–1327.
- [20] F. DILLEN and S. NÖLKER, Semi-parallelity, muti-rotation surfaces and the helix-property, J. Reine Angew. Math. 435 (1993), 33–63.
- [21] T. FRIEDRICH and S. IVANOV, Almost contact manifolds, connections with torsion and parallel spinors, J. Reine Angew. Math. 559 (2003), 217–236.
- [22] I. HASEGAWA and I. MIHAI, Contact CR-warped product submanifolds in Sasakian manifolds, *Geom. Dedicata* **102** (2003), 143–150.
- [23] S. HIEPKO, Eine inner Kennzeichung der verzerrten Produkte, Math. Ann. 241 (1979), 209–215.
- [24] S. KANEMAKI, Quasi-Sasakian manifolds, Tohoku Math. J. 29 (1977), 227-233.
- [25] V. A. KHAN, K. A. KHAN and SIRAJ UDDIN, CR-warped product submanifolds in a Kaehler manifold, South. Asian Bull. Math. 33 (2009), 865–874.
- [26] V. A. KHAN and N. JAMAL, CR-warped product submanifolds of locally conformal Kaehler manifolds, *Toyama Math. J.* 33 (2010), 1–19.
- [27] I. MIHAI, Contact CR-warped product submanifolds in Sasakian space forms, Geom. Dedicata 109 (2004), 165–173.
- [28] M. I. MUNTEANU, Warped product contact CR-submanifolds of Sasakian space forms, Publi. Math. Debrecen 66 (2005), 75–120.

- [29] S. SULAR and C. OZGUR, Contact CR-warped product submanifolds in generalized Sasakian space forms, Turk. J. Math. 36 (2012), 485–497.
- [30] S. TANNO, Quasi-Sasakian structure of rank 2p+1, J. Differential Geom. 5 (1971), 317-324.
- [31] K. YANO and M. KON, Structures on manifolds, series in Pure Mathematics (*World scientific, Singapore*, 1984).

TRAN QUOC BINH INSTITUTE OF MATHEMATICS UNIVERSITY OF DEBRECEN H-4010 DEBRECEN, P.O. BOX 12 HUNGARY

E-mail: binh@science.unideb.hu

AVIK DE DEPARTMENT OF PURE MATHEMATICS UNIVERSITY OF CALCUTTA 35, B.C.ROAD, KOLKATA-700019 WEST BENGAL INDIA *E-mail:* de.math@gmail.com

(Received April 5, 2013)