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1. Introduction

This paper contains the lecture, presented by the author at the IRSES Mee-

ting on Differential Geometry and Mechanics 14–16, January 2013, Ghent Univer-

sity, Belgium. It is devoted to variational structures that could be called Kawa-

guchi structures (Kawaguchi [3], [4]). Many references to the concepts, such

as Kawaguchi space and Kawaguchi fundamental function, can be found in the

literature; some of them are not always clearly established. We consider in this

paper the Kawaguchi structure as a special case of a higher-order, simple integ-

ral variational structure whose Lagrangian satisfies certain additional conditions

(higher-order Zermelo conditions).

Underlying structures for this class of variational problems are higher-order

velocity spaces, the manifolds of r-jets of curves in a given smooth manifold (see

Urban and Krupka [14]). The special case r = 1 corresponds with tangent

bundles, the underlying spaces for Finsler structures (see e.g. Tamássy [11]).

Main objective of the research in this field is to extend the notions and

results of Finsler geometry to higher order Kawaguchi variational structures. It is

well known, in particular, that one can naturally assign to a Finsler fundamental

function the so called Hilbert form (Crampin and Saunders [1], [2], Tanaka

and Krupka [10]); it turns out that the Hilbert form is a special case of the

Lepage forms, and as such, it can be used to characterize in a geometric way all

fundamental properties of the underlying variational functional, such as extremals

and symmetries (see e.g. Krupka [5], Krupka, Krupkova and Saunders [6],

Krupka and Saunders [7]). The aim of this paper is to find an analogue of the

Hilbert form for Kawaguchi structures.

A basic general concept of the geometric variational theory is the Lepage

form. In higher order fibred mechanics, to each Lagrangian λ one can assign

in a unique way its Lepage equivalent Θλ. Our main idea in this paper is to

determine Θλ for Lagrangians, satisfying the Zermelo condition, describing in-

dependence of variational functionals on parametrizations (see Zermelo [15]).

For more discussion of homogeneity problems and Zermelo conditions we refer to

Matsyuk [8], Saunders [9], and Urban and Krupka [12], [13]). We call the

Lagrangians satisfying the Zermelo condition, the Kawaguchi Lagrangians.

Our result consists in explicit expression for the Lepage form Θλ in terms of

the Kawaguchi Lagrangian λ. We know that the Lepage form Θλ describes all

basic general properties of variational functional, defined by λ (see Section 2); in

this way we get an immediate descriptions of extremals and symmetries of the

Kawaguchi variational functionals. It should also be pointed out that the Zermelo
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condition, leading to singularity of λ, has a specific influence on local Hamiltoni-

ans, related with Θλ; namely, these local Hamiltonians vanish identically.

Note that for the 1st order Lagrangians λ, the form Θλ reduces to the well-

known Hilbert form.

2. Lepage forms in higher-order fibred mechanics

In this section we summarize basic concepts and theorems of the global va-

riational theory in fibred manifolds over 1-dimensional bases (fibred mechanics);

complete references can be found in Krupka and Saunders [7].

Throughout, standard symbols of the differential calculus on smooth mani-

folds are used: d (exterior derivative), T (tangent functor), ∂ξ (Lie derivative by

a vector field ξ), iξ (contraction by ξ), and ∗ stands for the pull-back operation.

Y is a fibred manifold with 1-dimensional base X and projection π, and we de-

note dimY = m + 1. JrY , where r ≥ 0, is the r-jet prolongation of Y , and

πr,s : JrY → JsY , πr : JrY → X are the canonical jet projections. The points

of JrY are r-jets Jr
xγ of sections γ of Y at x ∈ X; the r-jet prolongation of γ

is the mapping x → Jrγ(x) = Jr
xγ. Any fibred chart (V, ψ), ψ = (t, yσ), on Y

induces the associated charts (V r, ψr), ψr = (t, yσ(0), y
σ
(1), y

σ
(2), . . . , y

σ
(r)), on JrY ,

and (U,ϕ), ϕ = (t), on X; here V r = (πr,0)−1(V ), U = π(V ), and 1 ≤ σ ≤ m.

For lower dimensions we usually use a modified notation; if e.g. r = 3 we write

ψ3 = (t, yσ, ẏσ, ÿσ,
...
y σ). A vector Ξ at a point y ∈ Y is said to be π-vertical, if

Tyπ · Ξ = 0; a differential form ρ on Y is π-horizontal, if it vanishes whenever

one of its arguments is a π-vertical vector. Clearly, these concepts apply to the

canonical jet projections.

For any open set W ⊂ Y , we denote by Ωr
0W (resp. Ωr

kW ) the ring of smooth

functions (resp. the Ωr
0W -module of smooth k-forms) on W r = (πr,0)−1(W ). We

also use some submodules of these modules; Ωr
k,XW ⊂ Ωr

kW (resp. Ωr
k,Y W ⊂

Ωr
kW ) are submodules of πr-horizontal (resp. πr,0-horizontal) forms. We have a

morphism of exterior algebras h : Ωr
kW → Ωr+1

k,XW defined by

hf = fπr+1,r, hdt = dt, hdyσ(l) = yσ(l+1)dt,

where f : V r → R is a function; obviously, Jrγ∗ρ = Jr+1γ∗hρ for every section γ

of Y . We call h the π-horizontalization. We say that a form ρ ∈ Ωr
kW is contact,

if hρ = 0. For any fibered chart (V, ψ), ψ = (t, yσ), the 1-forms

ωσ
(l) = dyσ(l) − yσ(l+1)dt, 0 ≤ l ≤ r − 1,
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are examples of contact forms. The system of forms dt, ωσ
(l), dy

σ
(r) is a basis of

linear forms on V r. A form ρ ∈ Ωr
kW has a unique decomposition

(πr+1,r)∗ρ = hρ+ p1ρ+ p2ρ+ . . .+ pkρ,

in which pkρ contains, in any fibred chart, exactly k exterior factors ωσ
(l); transfor-

mation properties of these forms ensure invariance of the decomposition. If k = 1,

this formula reads (πr+1,r)∗ρ = hρ+p1ρ; if k ≥ 2, then (πr+1,r)∗ρ = pk−1ρ+pkρ.

pkρ is the k-contact component of ρ. We say ρ is of order of contactness k, if

(πr+1,r)∗ρ = pkρ.

By a Lagrangian (of order r) for Y we mean a 1-form λ ∈ Ωr
1,XW . In a fibred

chart,

λ = L ω0,

where

ω0 = dt.

The component L : V r → R of the form λ is the Lagrange function. For any

piece Ω of X with boundary ∂Ω, λ gives rise to the variational functional

ΓΩY 3 γ → λΩ(γ) =

∫

Ω

Jrγ∗λ ∈ R, (1)

where ΓΩY is the set of sections of Y , defined on Ω.

Let V ⊂ Y be an open set, α : V → Y a diffeomorphism, commuting with π,

U = π(V ), and let α0 : U → X be the π-projection of α. Setting

Jrα(Jr
xγ) = Jr

α0(x)
αγα−1

0

for every Jr
xγ ∈ V r, we obtain the r-jet prolongation Jrα : V r → JrY . Applying

this concept to the flow of a π-projectable vector field Ξ on Y , and differentiating,

we obtain the r-jet prolongation of Ξ, denoted by JrΞ.

Let U ⊂ X be an open set, let γ : U → Y be a section. Let Ξ be a π-

projectable vector field on an open set W ⊂ Y such that γ(U) ⊂ W . If αt is the

flow of Ξ, and α(0)t is its π-projection, then since παt = α(0)tπ for all t, Ξ defines

a 1-parameter family of sections of Y , γt = αtγα
−1
(0)t, depending smoothly on the

parameter t; γt is the variation of γ, induced by Ξ.

Choose an element γ ∈ ΓΩY and a π-projectable vector field Ξ on Y , and

consider the variation γt of γ, induced by Ξ. Since the domain of γt contains Ω

for all sufficiently small t, we get a function on a neighbourhood (−ε, ε) of the

origin 0 ∈ R,

(−ε, ε) 3 t → λα(0)t(Ω)(αtγα
−1
(0)t) =

∫

α(0)t(Ω)

Jr(αtγα
−1
(0)t)

∗λ =

∫

Ω

Jrγ∗Jrα∗
tλ ∈ R,
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where we used the identity Jr(αtγα
−1
(0)t)

∗λ = (α−1
(0)t)

∗Jrγ∗Jrα∗
tλ. Differentiating

this real-valued function at t = 0 we obtain

(∂JrΞλ)Ω(γ) =

∫

Ω

Jrγ∗∂JrΞλ. (2)

The number (2) is the variation of the variational functional λΩ at γ, induced by

the vector field Ξ. The function γ → (∂JrΞλ)Ω(γ) is the variational derivative, or

the first variation of λΩ by Ξ.

Extremals of λΩ are defined in a standard way. To describe them formally

by means of invariant differential-geometric operations, we proceed as follows.

We say that a form Θ ∈ Ωs
1W is a Lepage equivalent of λ, if (a) hΘ = λ (up

to a canonical jet projection), and (b) hiζdΘ = 0 for every πs,0-vertical vector

field ζ on W s; condition (b) is equivalent to saying that p1dΘ is πs+1,0-horizontal.

We now state existence and describe basic properties of Lepage equivalents,

namely their meaning for extremals and invariance properties of the variational

functional (1).

Let Θ ∈ Ωs
1W be a Lepage equivalent of λ ∈ Ωr

1,XW . Condition (a) implies

that for every section γ defined on Ω
∫

Ω

Jsγ∗Θ =

∫

Ω

Js+1γ∗hΘ =

∫

Ω

Jrγ∗λ,

which means that the variational functional on the left-hand side, associated

with Θ, coincides with λΩ. For any π-projectable vector field Ξ on W , we have

Jsγ∗∂JsΞΘ = Jsγ∗iJsΞdΘ+ dJsγ∗iJsΞΘ. (3)

Since by (b) the term Jsγ∗iJsΞdΘ in (3) depends linearly on JsΞ via the vector

field Ξ only, and is independent of derivatives of the components of Ξ. Moreover,

since Jsγ∗∂JsΞΘ = Js+1γ∗h∂JsΞΘ = Js+1γ∗∂Js+1ΞhΘ = Jrγ∗∂JrΞλ, (3) can

also be written as ∂JrΞλ = hiJsΞdΘ + hdiJsΞΘ. Therefore, it is a priori clear

that for a Lepage form Θ, the decomposition (3) has the properties which are

required in the integrand expressions of the classical first variation formula: If

Ω ⊂ π(W ) is a piece, then integrating (3) one gets
∫

Ω

Jrγ∗∂JrΞλ =

∫

Ω

Jsγ∗iJsΞdΘ+

∫

∂Ω

Jsγ∗iJsΞΘ.

The expression on the right-hand side of (3) can be further simplified using

the 1-contact component of dΘ. Since Jsγ∗iJsΞdΘ = Js+1γ∗iJs+1Ξp1dΘ, we have

the following result (the infinitesimal first variation formula). For the proofs of

Theorems 1–3 we refer to [5], [7].
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Theorem 1. For any Lepage equivalent Θ ∈ Ωs
1W of a Lagrangian λ ∈

Ωr
1,XW ,

Jrγ∗∂JrΞλ = Jsγ∗iJsΞdΘ+ dJsγ∗iJsΞΘ.

The following theorem ensures existence of (global) Lepage equivalents.

Theorem 2. Every Lagrangian λ ∈ Ωr
1,XW has a unique Lepage equivalent

Θλ. If in a fibred chart (V, ψ), ψ = (t, yσ), λ is expressed as λ = L ω0, then Θλ

has an expression

Θλ = L ω0 +

r−1∑

k=0

(
r−1−k∑

l=0

(−1)l
dl

dtl
∂L

∂yσ(k+l+1)

)
ωσ
(k). (4)

Theorem 3. Let W ⊂ Y be an open set, let λ ∈ Ωr
1,XW be a Lagrangian.

Then the form dΘλ has an expression

(πs+1,s)∗dΘλ = Eλ + Fλ,

where Eλ is a 2-form

Eλ = Eσ(L )ωσ ∧ ω0,

with components

Eσ(L ) =

r∑

l=0

(−1)l
dl

dtl
∂L

∂yσ(l)
, (5)

and Fλ is of order of contactness 2.

The form Eλ is called the Euler–Lagrange form associated with λ. The com-

ponents Eσ(L ) (5) are the Euler–Lagrange expressions. Obviously, Eλ belongs

to Ω2r
2,Y W . The mapping Ωr

1,XW 3 λ → Eλ ∈ Ω2r
2,Y W , assigning to a Lagrangian

its Euler–Lagrange form, is called the Euler–Lagrange mapping.

A section γ ∈ ΓΩY is an extremal of λ if and only if Eλ ◦J2rγ = 0, or, which

is the same, it is a solution of the Euler–Lagrange equations Eσ(L ) = 0. The

following standard theorem is mentioned for the record.

Theorem 4. Let λ ∈ Ωr
1,XW be a Lagrangian, Θλ ∈ Ωs

1W the Lepage

equivalent of λ, and γ a section of Y . The following conditions are equivalent:

(a) γ is an extremal of λ.

(b) For every π-vertical vector field Ξ,

J2rγ∗iJ2rΞdΘλ = 0.



Lepage forms in Kawaguchi spaces and the Hilbert form 153

(c) For any fibred chart (V, ψ), ψ = (t, yσ), γ satisfies the system of partial

differential equations

Eσ(λ) ◦ Js+1γ = 0, 1 ≤ σ ≤ m. (6)

Equations (6) are the Euler–Lagrange equations.

Theorem 4 explains the meaning of the Lepage equivalent Θλ for a chart-

independent description of extremals. Θλ is also a basic quantity for the study

of invariance properties of the Lagrangian (Noether’s theory). We say that λ is

invariant with respect to a π-projectable vector field Ξ, if

∂JrΞλ = 0.

The following theorem, establishing a relation between extremals and con-

servation law equations, follows from the first variation formula.

Theorem 5. Let λ ∈ Ωr
1,XW be a Lagrangian, Θλ ∈ Ωs

1W its Lepage

equivalent. The following two conditions are equivalent:

(a) λ is invariant with respect to Ξ.

(b) For every section γ of Y ,

Jsγ∗iJsΞdΘλ + dJsγ∗iJsΞΘλ = 0.

Clearly, also other kinds of invariance can be considered (e.g. invariance of

the Euler–Lagrange form).

3. Higher-order positive homogeneous functions

In this section we recall basic definitions and notations on the theory of

higher-order velocity spaces and present a theorem on homogeneous functions.

Let Q be a smooth manifold of dimension m. We denote by T rQ the set of

r-jets Jr
0 ζ with source 0 ∈ R and target ζ(0), an arbitrary point in Q. Elements

of the set T rQ are called r-velocities. We consider the set T rQ with its canonical

smooth structure: if (W,χ), χ = (yσ), is a chart on Q then the associated chart

on T rQ is denoted by (W r, χr), χr = (yσ(0), y
σ
(1), y

σ
(2), . . . , y

σ
(r)). For lower orders

r we also use a more convenient notation; if for instance r = 3, then we write

χ3 = (yσ, ẏσ, ÿσ,
...
y σ). T rQ is referred to as the manifold of r-velocities.
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We denote by ImmT rQ the open subset of the manifold of r-velocities, con-

sisting of r-jets whose representatives are immersions at the origin 0 ∈ R. Ele-

ments of the set ImmT rQ are called regular r-velocities. Note that for r = 1,

ImmT rQ coincides with the slit tangent bundle of Q.

Suppose we have a function F : ImmT rQ → R. Let S ⊂ R be a compact

interval, and γ : S → Q an immersion. These data define the integral

FS(γ) =

∫

S

(F ◦ T rγ)(t)dt, (7)

where T rγ(t) = Jr
0 (γ ◦ tr−t) is the canonical lift of the curve γ to ImmT rQ, and

tr−t is the translation s → s + t of R sending the origin 0 into the point t. We

shall say that the integral (7) is parameter-invariant, if for any curve γ : S → Q,

any open interval I ⊂ S and any diffeomorphism µ : J → I, such that µ(J) = I

and Dµ > 0,

FI(γ) = FJ(γ ◦ µ).
The following is a criterion of parameter-invariance.

Theorem 6. Suppose that the function F : ImmT rQ → R is differentiable.

Then the following two conditions are equivalent:

(a) Integral (7) is parameter-invariant.

(b) For any chart (W,χ), χ = (yσ), on Q

∂F

∂yσ(1)
yσ(1) + 2

∂F

∂yσ(2)
yσ(2) + 3

∂F

∂yσ(3)
yσ(3) + . . .+ r

∂F

∂yσ(r)
yσ(r) = F,

∂F

∂yσ(r−k+1)

yσ(1) +

(
r − k + 2

1

)
∂F

∂yσ(r−k+2)

yσ(2) +

(
r − k + 3

2

)
∂F

∂yσ(r−k+3)

yσ(3)

+ . . .+

(
r

k − 1

)
∂F

∂yσ(r)
yσ(k) = 0, k = 1, 2, . . . , r − 1. (8)

Condition (8) is called the Zermelo condition.

Remark 1. The Zermelo condition is equivalent with positive homogeneity

condition, which can be formulated as equivariance of F with respect to the

canonical right action of the differential group Lr
(+) on ImmT rQ, and the canonical

multiplicative action of L1
(+) on R. The group Lr

(+) consists of r-jets Jr
0α of

diffeomorphisms of R with source and target at the origin 0 ∈ R, such that

Dα > 0, and the group action is the mapping

ImmT rQ× Lr
(+) 3 (Jr

0 ζ, J
r
0α) → Jr

0 (ζ ◦ α) ∈ ImmT rQ.
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This action represents parameter changes in the manifold ImmT rQ induced by

parameter changes on R.

One can consider variational problems on the manifolds of regular velocities

ImmT rQ as a special case of variational problems on fibred manifolds. We set

Y = R×Q.

Then Y becomes a fibration over R with type fibre Q. The Cartesian product Y

has an atlas, consisting of fibred charts (V, ψ), ψ = (t, yσ), where V = R ×
W , t is the canonical coordinate on R, and (W,χ), χ = (yσ), is a chart on Q.

Sections t → γ(t) of Y are canonically identified with curves t → ζ(t) in Q, where

γ(t) = (t, ζ(t)). Then the r-jets Jr
t γ are canonically identified with the pairs

(t, Jr
t ζ) = (t, Jr

0 (ζ ◦ tr−t)) ∈ R × T rQ. Thus, using this identification, we can

write

JrY = R× T rQ.

Then the variational theory as expressed in Section 2 can also be applied to

Lagrangians, defined on the open set R× ImmT rQ ⊂ JrY .

4. Lepage forms and homogeneous Lagrangians

Our objective in this section is to find Θλ for Lagrangians λ, satisfying the

Zermelo homogeneity conditions. Once Θλ is found we can say, in view of Sec-

tion 2, that the basic (global) variational theory for higher-order homogeneous

Lagrangians on smooth manifolds (the Kawaguchi Lagrangians) is established.

To this purpose we set

P (k+1)
σ =

r−1−k∑

l=0

(−1)l
dl

dtl
∂L

∂yσ(k+l+1)

,

and write the Lepage form Θλ as

Θλ = L dt+

r−1∑

k=0

P (k+1)
σ ωσ

(k) = −H dt+

r−1∑

k=0

P (k+1)
σ dyσ(k),

where

−H = L − P (1)
σ yσ(1) − P (2)

σ yσ(2) − . . .− P (r)
σ yσ(r).
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The functions P
(k+1)
σ and H can be called, on analogy with the first order me-

chanics, the momenta and the Hamiltonian, associated with L .

To study homogeneous Lagrangians, we need an explicit expression for the

Hamiltonian H . Our idea is to collect together all terms containing total deri-

vatives of a given order. The following theorem on the structure of H is new.

Theorem 7. For any Lagrangian λ on JrY , the function H reads

−H = L −
∑

1≤i≤r

(
i

i− 1

)
∂L

∂yσ(i)
yσ(i)

+
∑

1≤l≤r−1

(−1)l−1 dl

dtl

∑

1≤i≤r−l

(
i+ l

i− 1

)
∂L

∂yσ(i+l)

yσ(i). (9)

Proof. 1. Consider the sum
∑

1≤i≤r

P (i)
σ yσ(i) = P (1)

σ yσ(1) + P (2)
σ yσ(2) + . . .+ P (r)

σ yσ(r).

Substituting for 1 ≤ k ≤ r

P (i)
σ =

∂L

∂yσ(i)
− dP

(i+1)
σ

dt
,

and P
(r+1)
σ = 0, we have

P (i)
σ yσ(i) =

∂L

∂yσ(i)
yσ(i) −

d

dt
(P (i+1)

σ yσ(i)) + P (i+1)
σ yσ(i+1).

Note that

P (r)
σ yσ(r) =

∂L

∂yσ(r)
yσ(r).

Consequently, after some calculation,

∑

1≤i≤r

P (i)
σ yσ(i) =

∂L

∂yσ(1)
yσ(1) +

∂L

∂yσ(2)
yσ(2) + . . .+

∂L

∂yσ(r)
yσ(r) + P (2)

σ yσ(2) + P (3)
σ yσ(3)

+ . . .+ P (r)
σ yσ(r) −

d

dt
(P (2)

σ yσ(1) + P (3)
σ yσ(2) + . . .+ P (r)

σ yσ(r−1))

= . . . =
∑

1≤i≤r

(
i

i− 1

)
∂L

∂yσ(i)
yσ(i) −

d

dt

∑

1≤i≤r−1

(
i

i− 1

)
P (i+1)
σ yσ(i).

2. Now consider the sum

∑

1≤i≤r−1

(
i

i− 1

)
P (i+1)
σ yσ(i) = P (2)

σ yσ(1) + 2P (3)
σ yσ(2) + . . .+ (r − 1)P (r)

σ yσ(r−1). (10)
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We have for 1 ≤ i ≤ r − 1

P (i+1)
σ yσ(i) =

∂L

∂yσ(i+1)

yσ(i) −
d

dt
(P (i+2)

σ yσ(i)) + P (i+2)
σ yσ(i+1)

=
∂L

∂yσ(i+1)

yσ(i) −
d

dt
(P (i+2)

σ yσ(i)) +
∂L

∂yσ(i+2)

yσ(i+1) −
dP

(i+3)
σ

dt
yσ(i+1)

= . . . =
∂L

∂yσ(i+1)

yσ(i) +
∂L

∂yσ(i+2)

yσ(i+1) + . . .+
∂L

∂yσ(r)
yσ(r−1)

− d

dt
(P (i+2)

σ yσ(i) + P (i+3)
σ yσ(i+1) + . . .+ P (r)

σ yσ(r−2)). (11)

The term in (10) (after the substitution from (11)) not containing formal deriva-

tives is

∂L

∂yσ(2)
yσ(1) +

∂L

∂yσ(3)
yσ(2) + . . .+

∂L

∂yσ(r)
yσ(r−1) + 2

∂L

∂yσ(3)
yσ(2)

+ 2
∂L

∂yσ(4)
yσ(3) + . . .+ 2

∂L

∂yσ(r)
yσ(r−1) + . . .+ (r − 2)

∂L

∂yσ(r−1)

yσ(r−2)

+ (r − 2)
∂L

∂yσ(r)
yσ(r−1) + (r − 1)

∂L

∂yσ(r)
yσ(r−1) =

∑

1≤i≤r−1

(
i+ 1

i− 1

)
∂L

∂yσ(i+1)

yσ(i).

The remaining summands in the formal derivative term are, analogously,

P (3)
σ yσ(1) + P (4)

σ yσ(2) + . . .+ P (r)
σ yσ(r−2) + 2(P (4)

σ yσ(2) + P (5)
σ yσ(3) + . . .+ P (r)

σ yσ(r−2))

+ . . .+ (r − 3)(P (r−1)
σ yσ(r−3) + P (r)

σ yσ(r−2)) + (r − 2)P (r)
σ yσ(r−2)

=
∑

1≤i≤r−2

(
i+ 1

i− 1

)
P (i+2)
σ yσ(i).

Summarizing,

∑

1≤i≤r−1

(
i

i− 1

)
P (i+1)
σ yσ(i) =

∑

1≤i≤r−1

(
i+ 1

i− 1

)
∂L

∂yσ(i+1)

yσ(i)

− d

dt

∑

1≤i≤r−2

(
i+ 1

i− 1

)
P (i+2)
σ yσ(i).

3. For induction, note that the sums we already obtained

∑

1≤i≤r−1

(
i

i− 1

)
P (i+1)
σ yσ(i),

∑

1≤i≤r−2

(
i+ 1

i− 1

)
P (i+2)
σ yσ(i),
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can be expressed as ∑

1≤i≤r−j

(
i+ j − 1

i− 1

)
P (i+j)
σ yσ(i),

where j = 1, 2. Now consider for some integer j the expression

∑

1≤i≤r−j

(
i+ j − 1

i− 1

)
P (i+j)
σ yσ(i) =

(
j

0

)
P (j+1)
σ yσ(1)

+

(
j + 1

1

)
P (j+2)
σ yσ(2) + . . .+

(
r − 1

r − j − 1

)
P (r)
σ yσ(r−j). (12)

In this formula

P (i+j)
σ yσ(i) =

∂L

∂yσ(i+j)

yσ(i) −
dP

(i+j+1)
σ

dt
yσ(i)

= . . . =
∂L

∂yσ(i+j)

yσ(i) +
∂L

∂yσ(i+1+j)

yσ(i+1) +
∂L

∂yσ(i+2+j)

yσ(i+2)

− d

dt
(P (i+j+1)

σ yσ(i)+P (i+j+2)
σ yσ(i+1)+P (i+j+3)

σ yσ(i+2))+P (i+j+3)
σ yσ(i+3).

We can proceed this way further on. After l steps

P (i+j)
σ yσ(i) =

∂L

∂yσ(i+j)

yσ(i) +
∂L

∂yσ(i+1+j)

yσ(i+1) + . . .+
∂L

∂yσ(i+l+j)

yσ(i+l)

− d

dt
(P (i+j+1)

σ yσ(i) + P (i+j+2)
σ yσ(i+1) + . . .+ P (i+j+l+1)

σ yσ(i+l))

+ P (i+j+l+1)
σ yσ(i+l+1).

However, if l is such that i+ j+ l+1 = r+1, then P
(i+j+l+1)
σ = 0. Thus, setting

l = r − i− j we get

P (i+j)
σ yσ(i) =

∂L

∂yσ(i+j)

yσ(i) +
∂L

∂yσ(i+1+j)

yσ(i+1) + . . .+
∂L

∂yσ(r)
yσ(r−j)

− d

dt
(P (i+j+1)

σ yσ(i) + P (i+j+2)
σ yσ(i+1) + . . .+ P (r)

σ yσ(r−j−1)).

Consequently

(
i+ j − 1

i− 1

)
P (i+j)
σ yσ(i)
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=

(
i+ j − 1

i− 1

)(
∂L

∂yσ(i+j)

yσ(i) +
∂L

∂yσ(i+1+j)

yσ(i+1) + . . .+
∂L

∂yσ(r)
yσ(r−j)

)

−
(
i+ j − 1

i− 1

)
d

dt
(P (i+j+1)

σ yσ(i) + P (i+j+2)
σ yσ(i+1) + . . .+ P (r)

σ yσ(r−j−1)),

and to obtain (12), we sum these expressions through i = 1, 2, . . . , r− j. We have

∑

1≤i≤r−j

(
i+ j − 1

i− 1

)
P (i+j)
σ yσ(i)

=

(
j

0

)(
∂L

∂yσ(j+1)

yσ(1) +
∂L

∂yσ(j+2)

yσ(2) + . . .+
∂L

∂yσ(r)
yσ(r−j)

)

−
(
j

0

)
d

dt
(P (j+2)

σ yσ(1) + P (j+3)
σ yσ(2) + . . .+ P (r)

σ yσ(r−j−1))

+

(
j + 1

1

)(
∂L

∂yσ(j+2)

yσ(2) +
∂L

∂yσ(j+3)

yσ(3) + . . .+
∂L

∂yσ(r)
yσ(r−j)

)

−
(
j + 1

1

)
d

dt
(P (j+3)

σ yσ(2) + P (j+4)
σ yσ(3) + . . .+ P (r)

σ yσ(r−j−1))

+ . . .+

(
r − 2

r − j − 2

)(
∂L

∂yσ(r−1)

yσ(r−j−1) +
∂L

∂yσ(r)
yσ(r−j)

)

−
(

r − 2

r − j − 2

)
d

dt
P (r)
σ yσ(r−j−1) +

(
r − 1

r − j − 1

)
∂L

∂yσ(r)
yσ(r−j).

We can also write this expression as

∑

1≤i≤r−j

(
i+ j − 1

i− 1

)
P (i+j)
σ yσ(i)

=

(
j

0

)
∂L

∂yσ(j+1)

yσ(1) +

((
j

0

)
+

(
j + 1

1

))
∂L

∂yσ(j+2)

yσ(2)

+

((
j

0

)
+

(
j + 1

1

)
+

(
j + 2

2

))
∂L

∂yσ(j+3)

yσ(3)

+ . . .+

((
j

0

)
+

(
j + 1

1

)
+ . . .+

(
r − 1

r − j − 1

))
∂L

∂yσ(r)
yσ(r−j)

−
(
j

0

)
d

dt
P (j+2)
σ yσ(1) −

d

dt

((
j

0

)
+

(
j + 1

1

))
P (j+3)
σ yσ(2)

− d

dt

((
j

0

)
+

(
j + 1

1

)
+

(
j + 2

2

))
P (j+4)
σ yσ(3)
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− . . .− d

dt

((
j

0

)
+

(
j + 1

1

)
+ . . .+

(
r − 2

r − j − 2

))
P (r)
σ yσ(r−j−1).

Finally, the formula ∑

0≤i≤k

(
j + i

i

)
=

(
j + k + 1

k

)

yields

∑

1≤i≤r−j

(
i+ j − 1

i− 1

)
P (i+j)
σ yσ(i)

=

(
j + 1

0

)
∂L

∂yσ(j+1)

yσ(1) +

(
j + 2

1

)
∂L

∂yσ(j+2)

yσ(2)

+ . . .+

(
r

r − j − 1

)
∂L

∂yσ(r)
yσ(r−j) −

(
j + 1

0

)
d

dt
P (j+2)
σ yσ(1)

−
(
j + 2

1

)
d

dt
P (j+3)
σ yσ(2) − . . .−

(
r − 1

r − j − 2

)
d

dt
P (r)
σ yσ(r−j−1)

=
∑

1≤i≤r−j

(
j + i

i− 1

)
∂L

∂yσ(j+i)

yσ(i) −
d

dt

∑

1≤i≤r−j−1

(
j + i

i− 1

)
P (j+i+1)
σ yσ(i). (13)

4. Using the recurrence relation (13) we get

∑

1≤i≤r

P (i)
σ yσ(i) =

∑

1≤i≤r

(
i

i− 1

)
∂L

∂yσ(i)
yσ(i) −

d

dt

∑

1≤i≤r−1

(
i

i− 1

)
P (i+1)
σ yσ(i)

=
∑

1≤i≤r

(
i

i− 1

)
∂L

∂yσ(i)
yσ(i) −

d

dt

∑

1≤i≤r−1

(
i+ 1

i− 1

)
∂L

∂yσ(i+1)

yσ(i)

+
d2

dt2

∑

1≤i≤r−2

(
i+ 2

i− 1

)
∂L

∂yσ(i+2)

yσ(i) −
d3

dt3

∑

1≤i≤r−3

(
i+ 3

i− 1

)
∂L

∂yσ(i+3)

yσ(i)

+ . . .+ (−1)r−2 dr−2

dtr−2

((
r − 1

0

)
∂L

∂yσ(r−1)

yσ(1) +

(
r

1

)
∂L

∂yσ(r)
yσ(2)

)

+ (−1)r−1 dr−1

dtr−1

(
r

0

)
∂L

∂yσ(r)
yσ(1),

and

−H = L −
∑

1≤i≤r

(
i

i− 1

)
∂L

∂yσ(i)
yσ(i) +

d

dt

∑

1≤i≤r−1

(
i+ 1

i− 1

)
∂L

∂yσ(i+1)

yσ(i)

− d2

dt2

∑

1≤i≤r−2

(
i+ 2

i− 1

)
∂L

∂yσ(i+2)

yσ(i) +
d3

dt3

∑

1≤i≤r−3

(
i+ 3

i− 1

)
∂L

∂yσ(i+3)

yσ(i)
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− . . .− (−1)r−2 dr−2

dtr−2

((
r − 1

0

)
∂L

∂yσ(r−1)

yσ(1) +

(
r

1

)
∂L

∂yσ(r)
yσ(2)

)

− (−1)r−1 dr−1

dtr−1

(
r

0

)
∂L

∂yσ(r)
yσ(1),

which proves formula (9). ¤

Consider a smooth manifold Q, the Cartesian product Y = R×Q, manifolds

of r-velocities T rQ and the r-jet prolongation JrY = R × T rQ (cf. Section 3).

Recall that a Lagrangian (of order r) for Y is a 1-form λ ∈ Ωr
1,RW , where W is

an open set in Y ; we shall consider open sets of the form R × W0. Due to the

Cartesian product structure of Y and the existence of the (global) coordinate t

and (global) volume element dt on the base R, λ can be written as

λ = L dt,

where L : R × T rQ → R is a (globally defined) Lagrange function. Recall that

the variational integral, related with λ, satisfies

∫

Ω

Jrγ∗λ =

∫

Ω

Jsγ∗Θλ,

where Θλ is the Lepage equivalent of λ (Section 2, (4)).

In the following main theorem we consider Lagrangians λ on R× ImmT rQ,

satisfying the Zermelo condition

∂L

∂yσ(1)
yσ(1) + 2

∂L

∂yσ(2)
yσ(2) + 3

∂L

∂yσ(3)
yσ(3) + . . .+ r

∂L

∂yσ(r)
yσ(r) = L ,

∂L

∂yσ(r−k+1)

yσ(1) +

(
r − k + 2

1

)
∂L

∂yσ(r−k+2)

yσ(2) +

(
r − k + 3

2

)
∂L

∂yσ(r−k+3)

yσ(3)

+ . . .+

(
r

k − 1

)
∂L

∂yσ(r)
yσ(k) = 0, k = 1, 2, . . . , r − 1. (14)

We wish to determine the corresponding Lepage equivalent Θλ.

Theorem 8. Let λ be a Lagrangian of order r on Y = R×Q, expressed as

λ = L dt, with the Lagrange function L : R× ImmT rQ → R. If L satisfies the

Zermelo condition, then the fundamental Lepage equivalent Θλ is given by

Θλ =

r−1∑

k=0

P (k+1)
σ dyσ(k), (15)
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where

P (k+1)
σ =

r−1−k∑

l=0

(−1)l
dl

dtl
∂L

∂yσ(k+l+1)

.

Proof. 1. To understand our general method, we first prove formula (15)

independently for r ≤ 3. By definition, we have in this case

Θλ = L dt+

(
∂L

∂ẏσ
− d

dt

∂L

∂ÿσ
+

d2

dt2
∂L

∂
...
y σ

)
ωσ +

(
∂L

∂ÿσ
− d

dt

∂L

∂
...
y σ

)
ω̇σ +

∂L

∂
...
y σ ω̈

σ.

Θλ can also be written as

Θλ = −H dt+

(
∂L

∂ẏσ
− d

dt

∂L

∂ÿσ
+

d2

dt2
∂L

∂
...
y σ

)
dyσ

+

(
∂L

∂ÿσ
− d

dt

∂L

∂
...
y σ

)
dẏσ +

∂L

∂
...
y σ dÿ

σ,

where

−H = L −
(
∂L

∂ẏσ
− d

dt

∂L

∂ÿσ
+

d2

dt2
∂L

∂
...
y σ

)
ẏσ

−
(
∂L

∂ÿσ
− d

dt

∂L

∂
...
y σ

)
ÿσ − ∂L

∂
...
y σ

...
y σ. (16)

The Zermelo condition reduces in this case to the equations

∂L

∂ẏσ
ẏσ + 2

∂L

∂ÿσ
ÿσ + 3

∂L

∂
...
y σ

...
y σ = L ,

∂L

∂
...
y σ ẏ

σ = 0,
∂L

∂ÿσ
ẏσ + 3

∂L

∂
...
y σ ÿ

σ = 0. (17)

To substitute from (4) to (16) we express the function −H in terms of formal

derivatives:

−H = L − ∂L

∂ẏσ
ẏσ − 2

∂L

∂ÿσ
ÿσ − 3

∂L

∂
...
y σ

...
y σ

+
d

dt

(
∂L

∂ÿσ
ẏσ + 3

∂L

∂
...
y σ ÿ

σ

)
− d2

dt2

(
∂L

∂
...
y σ ẏ

σ

)
.

Now we see that (4) implies

H = 0

and

Θλ =

(
∂L

∂ẏσ
− d

dt

∂L

∂ÿσ
+

d2

dt2
∂L

∂
...
y σ

)
dyσ

+

(
∂L

∂ÿσ
− d

dt

∂L

∂
...
y σ

)
dẏσ +

∂L

∂
...
y σ dÿ

σ, (18)

as required.
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2. Now consider the general case. In view of Theorem 7, it is sufficient to

show that the Zermelo condition (14) implies H = 0. Thus, we want to show

that the function

L −
∑

1≤i≤r

(
i

i− 1

)
∂L

∂yσ(i)
yσ(i)+

∑

1≤l≤r−1

(−1)l−1 dl

dtl

∑

1≤i≤r−l

(
i+ l

i− 1

)
∂L

∂yσ(i+l)

yσ(i) (19)

vanishes. The first one of equations (14) can be written as

L −
∑

1≤i≤r

(
i

i− 1

)
∂L

∂yσ(i)
yσ(i) = 0.

Substituting l = r − k, where l = 1, 2, . . . , r − 2, r − 1, into the next equations

(14), we get the conditions

∂L

∂yσ(r−k+1)

yσ(1) +

(
r − k + 2

1

)
∂L

∂yσ(r−k+2)

yσ(2) + . . .+

(
r

k − 1

)
∂L

∂yσ(r)
yσ(k)

=
∂L

∂yσ(l+1)

yσ(1) +

(
l + 2

1

)
∂L

∂yσ(l+2)

yσ(2) + . . .+

(
r

r − l − 1

)
∂L

∂yσ(r)
yσ(r−l)

=
∑

1≤i≤r−l

(
i+ l

i− 1

)
∂L

∂yσ(i+l)

yσ(i) = 0.

This implies, however, that expression (19) vanishes. ¤

Remark 2. If L does not depend on ÿσ and
...
y σ, then Θλ (18) reduces to the

well-known Hilbert form

Θλ =
∂L

∂ẏσ
dyσ.

Formula (18) also describes the second- and third-order generalisations of the

Hilbert form; (15) can be considered as the higher-order generalisation. All these

forms inherit properties of a Lepage form, providing this way a geometric tool

for further analysis of local and global structure of variational theory (see e.g.

Krupka and Saunders [7]).
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