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Dedicated to Professor Lajos Tamássy on the occasion of his 90th birthday

Abstract. We study second order differential equations considering positive ho-

mogeneity of a general degree of the equations and of functions connected with them

(like, for example, metrics or Lagrangians). Special attention is payed to semi-variational

equations and to relationships between homogeneity properties and variationality (exis-

tence of local Lagrangians.

1. Introduction

In this paper we shall be concerned with systems of second order ordinary

differential equations

Bjk(x
i, ẋi)ẍk +Aj(x

i, ẋi) = 0, 1 ≤ j ≤ n, (1.1)

for curves γ : I → U , γ(t) = (xi(t)), 1 ≤ i ≤ n, where I is an open interval

in R and U is an open subset of an n-dimensional smooth manifold M (here

and in what follows summation over repeated indices applies). In a geometric

setting, equations of this kind can be modelled by a differential two-form, so-

called dynamical form, E, on the second jet bundle J2(R×M) → R of the fibered

manifold R × M → R. We remind the reader the identification of J1(R × M)
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with R × TM and of J2(R × M) with R × T 2M . We denote by T oM the TM

with the zero section excluded. Next we denote by t the global coordinate on R,
by (xi), 1 ≤ i ≤ n, local coordinates on M , and by (t, xi, ẋi) and (t, xi, ẋi, ẍi) the

associated coordinates on R×TM and R×T 2M , respectively. In such coordinates,

E = Ejdx
j ∧ dt, where Ej = Bjkẍ

k +Aj (1.2)

are functions on an open subset of R × T 2M . Then equations (1.1) can be exp-

ressed in an intrinsic form E ◦ J2γ̂ = 0, where γ̂ : I → R×M is a local section of

the bundle R ×M → R (the graph of γ) and J2γ̂ is its second jet prolongation.

We shall be interested in autonomous (time independent) equations, such that

the components B and A do not depend explicitly on t. On the other hand, we

put no a priori regularity assumption on the matrix B, so that our study concern

both regular equations (representable by a semispray) and equations in implicit

form.

Throughout the paper we assume that all mappings are locally defined (do-

mains are open sets), and smooth with a possible exception of points P where

ẋk(P ) = 0 for all k = 1, . . . , n.

In the theory of ordinary differential equations, in the calculus of variations,

in differential geometry and in mechanics an important role is played by equations

with certain (different) homogeneity properties. The most familiar examples of

such equations appear in Riemannian and Finsler geometry, where the corres-

ponding equations of interest are positively homogenous of degree 2, or 1. The

aim of this paper is to study second order differential equations from a more ge-

neral point of view, considering positive homogeneity of a general degree of equa-

tions and of functions connected with the equations (like, for example, metrics or

Lagrangians). Attention is payed to relationships between homogeneity proper-

ties and variationality (existence of local Lagrangians). In this sense our results

contribute to the recent investigations of geometric and variational properties of

differential equations on Finsler manifolds and on manifolds with variational met-

rics, and to studies of the structure of variational and semi-variational equations

(see eg. [1], [2], [3], [4], [7], [8], [9], [10], [11], [12], [14], [15], [16], [18], [19]).

As mentioned above, we shall deal with second order functions with homo-

geneity properties concerning the first and second derivatives. In the existing

literature one can find different concepts of positive homogeneity for higher order

functions, appearing as a generalization of the (common) first order case. For

second order functions one has to distinguish two levels of positive homogeneity.

To avoid confusion, we shall use the following terminology:
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Definition 1.1. Let F (t, xi, ẋi, ẍi) be a function such that ẋk 6= 0, for at least

one k = 1, . . . , n. F is called first level positively homogeneous of degree c in

velocities and accelerations if

F (t, xi, aẋi, a2ẍi) = ac F (t, xi, ẋi, ẍi) (1.3)

for all a > 0. F is called second level positively homogeneous of degree c in

velocities and accelerations if

F (t, xi, aẋi, a2ẍi + bẋi) = ac F (t, xi, ẋi, ẍi) (1.4)

for all a > 0 and all b ∈ R.
The first level positive homogeneity of F is equivalent with differential con-

ditions
∂F

∂ẋi
ẋi + 2

∂F

∂ẍi
ẍi = c F , (1.5)

while the second level positive homogeneity is equivalent with the conditions

∂F

∂ẋi
ẋi + 2

∂F

∂ẍi
ẍi = c F,

∂F

∂ẍi
ẋi = 0. (1.6)

In the case c = 1 the latter conditions are called Zermelo conditions. As it is

known, Zemelo conditions have a deep geometric meaning: solutions of differential

equations whose left-hand sides satisfy the Zermelo conditions are invariant under

orientation preserving reparametizations [18]. Remarkably, differential equations

of this kind appear for example in Riemannian and Finsler geometry as equations

for geodesics, or in physics as equations of motion for relativistic particles.

The plan of the paper is as follows: In Section 2 we introduce semi-variational

equations. In Section 3 we study properties of differential equations connected

with different homogeneity assumptions. Main results are as follows: We find

the structure of semi-variational equations which are positively homogeneous of

degree c 6= 0, 1 (Theorem 3.3). Next, we give a proof that positive homogeneity

of degree c 6= 0, 1 of the functions Ai partially substitutes variationality in the

sense that a part of the Helmholtz conditions [6] for such equations is redundant

(Theorem 3.4, Corollary 3.5). This is a generalization of a similar result known

for the case c = 2 ([1], [12], [14]). We also disprove the conjecture [14] that this

property holds for any c. Further we find an explicit structure of variational equa-

tions which are first level positively homogeneous of degree c for different values

of c (Theorems 3.6, 3.10 and 3.11). We also find all c-homogeneous first order

Lagrangians for c-homogeneous variational equations and show that for c 6= 0, 1
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such Lagrangian is unique. We stress that when speaking about Lagrangians we

have in mind local Lagrangians (unless otherwise stated). The last section is de-

voted to second level positively homogeneous of degree 1 second order differential

equations, which are a special case of positively homogeneous equations studied

in the previous section. As already mentioned, solutions of such equations are

invariant under orientation preserving reparametrizations. We show that for semi-

variational equations and variational equations the Zermelo conditions simplify

(Theorem 4.3). For the case of variational equations (Finsler geometry) we show

that the concepts of first-level and second-level positive 1-homogeneity coincide,

and that the class of the corresponding first order positively 1-homogeneous Lag-

rangians contains the Engels Lagrangian (Theorem 4.7). Finally we give necessary

and sufficient conditions for ODEs to be variational and positively 1-homogeneous

(Helmholtz conditions in the homogeneous background) and clarify the structure

of these equations (Theorems 4.9 and 4.10).

2. Semi-variational equations

Definition 2.1. Equations (1.1) are called semi-variational if their compo-

nents Bij at the second derivatives satisfy the following symmetry and integrabi-

lity conditions respectively:

Bik = Bki,
∂Bik

∂ẋj
=

∂Bij

∂ẋk
. (2.1)

We note that, as shown in [11], the property of being semi-variational intrin-

sically means that the Lepage equivalent of the corresponding dynamical form E

is projectable onto J1Y .

Theorem 2.2. Equations (1.1) are semi-variational if and only if there exist

functions L (Lagrangian) and Φ = (Φj) (force), depending on (xi, ẋi), such that

Ej =
∂L

∂xj
− d

dt

∂L

∂ẋj
− Φj . (2.2)

A solution (L,Φ) is non-unique; namely, L is determined up to a function affine

in velocities (ẋj), and Φ is determined up to a Lorentz-like force.

Proof. One way is obvious, because if the equations take the form

∂L

∂xj
− d

dt

∂L

∂ẋj
= Φj , (2.3)
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then B is the negative Hessian matrix of L.

Conversely, the integrability conditions of (2.1) guarantee the existence of

functions pi(x
j , ẋj) such that

Bij = − ∂pi
∂ẋj

(2.4)

(the negative sign is chosen to keep relationship with conventions in classical

mechanics). The symmetry conditions of (2.1) then give

∂pi
∂ẋk

=
∂pk
∂ẋi

, (2.5)

which again is an integrability condition, ensuring the existence of a function

L(xj , ẋj) such that

pi =
∂L

∂ẋi
, Bij = − ∂2L

∂ẋi∂ẋj
. (2.6)

Functions Φi, 1 ≤ i ≤ n, are then obtained by putting Φi = Ei(L) − Ei, where

Ei(L) are the Euler–Lagrange expressions of L.

The nonuniqueness of L follows immediately from (2.6). If L,L′ are two

Lagrangians giving the same matrix B then L′ = L+ Viẋ
i + U , where Vi and U

do not depend upon velocities. Since Φ′
i = Ei(L′)− Ei, we have

Φ′
i − Φi = Ei(L′)− Ei(L) = Ei(L′ − L) =

(
∂Vk

∂xi
− ∂Vi

∂xk

)
ẋk +

∂U

∂xi
, (2.7)

(i.e. the difference is a Lorentz-type force), proving our assertion. ¤

Remarkably, every system of semi-variational equations has a canonical Lag-

rangian: In the class of all admissible pairs (L,Φ) there is a distinguished one,

represented by a Lagrangian determined by the matrix B = (Bij) [10]. It is given

locally by the formula

L = −ẋiẋj

∫ 1

0

(∫ 1

0

(Bij ◦ χ̄)dv
)
◦ χ̄ v dv (2.8)

where (for a proper open set W ⊂ M),

χ̄ : [0, 1]× TW 3 (v, (xi, ẋi)) → (xi, vẋi) ∈ TW. (2.9)

The above coordinate formula takes a nice geometric form in terms of the Poincaré

homotopy operator P̄ associated with the map χ̄ as follows:

L = −P̄2(B). (2.10)
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The canonical Lagrangian is global if E is global (see [10]).

It is worth notice that if B is defined everywhere on TW with the exception

of the zero section, P̄2(B) still can be defined by extending B to the zero section

(the extension even need not be continuous), and the value of the integral does

not depend on the extension.

Apparently, if −B = g is a Riemannian metric on M then L (2.8) is the

kinetic energy, T = 1
2gij ẋ

iẋj , and the same assertion can be proved also for the

case when g is a Finsler metric [10].

Theorem 2.3. Given semi-variational equations as above, assume that the

coefficients Aj , Bjk satisfy the identities

∂Ai

∂ẋk
+

∂Ak

∂ẋi
= 2

∂Bik

∂xj
ẋj . (2.11)

Then the Hessian matrix of Aj is completely determined by the Bjk’s as follows:

∂2Ai

∂ẋj∂ẋk
= Gijk = 2Γijk +

∂2Bjk

∂xp∂ẋi
ẋp, (2.12)

where Γijk are the formal Christoffel symbols of B, i.e. functions defined by

Γijk = Γikj =
1

2

(
∂Bij

∂xk
+

∂Bik

∂xj
− ∂Bjk

∂xi

)
. (2.13)

Proof. The proof is obtained easily by differentiating relation (2.11) with

respect to ẋ, cycling the indices and summing up, accounting the properties of B.

¤

With help of the Poincaré homotopy operator P̄ defined above a solution of

equation (2.12) takes the form

Ai = P̄2(Gi) (2.14)

where Gi, 1 ≤ i ≤ n, are symmetric matrices with components Gijk defined by

the right-hand sides of (2.12). Again, the solution is determined up to a function

affine in velocities. Summarizing, we have:

Corollary 2.4. Semi-variational equations satisfying additional condition

(2.11) have the following form:

Bikẍ
k + P̄2(Gi) = Φi where Φi are affine in velocities. (2.15)
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Theorem 2.5. The left-hand sides Bikẍ
k + P̄2(Gi) of equations (2.15) are

Euler–Lagrange expressions of the Lagrangian L = −P̄2(B).

Proof. Computing the Euler–Lagrange expressions Ei(L) of L = −P̄2(B)

we obtain the corresponding functions Ai(L) = Ei(L) − Bikẍ
k in the following

form (see [10], Theorem 6.7 and Appendix therein)

Ai(L) =

[
1

2

∫ 1

0

(
∂Bij

∂xk
+

∂Bik

∂xj
− 2

∂Bjk

∂xi

)
◦ χ̄ dv +

∫ 1

0

(
∂Bjk

∂xi
◦ χ̄

)
v dv

]
ẋj ẋk

=

[∫ 1

0

(2Γijk ◦ χ̄) dv −
∫ 1

0

(
∂Bij

∂xk
◦ χ̄

)
dv +

∫ 1

0

(
∂Bjk

∂xi
◦ χ̄

)
v dv

]
ẋj ẋk

=

[∫ 1

0

(2Γijk ◦ χ̄) dv −
∫ 1

0

(2Γijk ◦ χ̄) v dv −
∫ 1

0

(
∂Bij

∂xk
◦ χ̄

)
dv

+

∫ 1

0

(
∂Bij

∂xk
+

∂Bik

∂xj

)
◦ χ̄ v dv

]
ẋj ẋk

=

[∫ 1

0

(∫ 1

0

(2Γijk ◦ χ̄)dv
)
◦ χ̄ v dv −

∫ 1

0

(∫ 1

0

(
∂Bij

∂xk
◦ χ̄

)
dv

)
◦ χ̄ v dv

+

∫ 1

0

(
∂Bij

∂xk
◦ χ̄

)
v dv

]
ẋj ẋk = ẋj ẋk

∫ 1

0

(∫ 1

0

(Gijk ◦ χ̄)dv
)
◦ χ̄ v dv

= P̄2(Gi), (2.16)

since with the use of the properties of B, and after some computations we get

ẋj ẋk

[∫ 1

0

(
∂Bij

∂xk
◦ χ̄

)
v dv

−
∫ 1

0

(∫ 1

0

((
∂Bij

∂xk
+

∂2Bjk

∂xp∂ẋi
ẋp

)
◦ χ̄

)
dv

)
◦ χ̄ v dv

]
= 0. (2.17)

¤

Remark 2.6. Recall that in case of regular equations, i.e. such that the matrix

B is regular, and, consequently, the equations are represented by a semispray Γ

on J1(R×M), the condition (2.11) has the intrinsic form

LΓB = 0, (2.18)

i.e. the Lie derivative along Γ of the morphism (generalized metric) B vanishes.

This condition is a generalization to semispray connections of the classical condi-

tion on metrizability of a linear connection (see [10]).
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Remark 2.7. Note that semi-variational equations are variational if and only

if they satisfy conditions (2.11) in the above theorem plus one additional set of

conditions as follows:

∂Ai

∂xk
− ∂Ak

∂xi
=

1

2

∂

∂xj

(
∂Ai

∂ẋk
− ∂Ak

∂ẋi

)
ẋj . (2.19)

However, then (2.19) reduce to conditions concerning only Φi (which, as we alre-

ady know, is affine in ẋ), and mean that Φ is a Lorenz-like force (see [7]).

We remind the reader that (2.1), (2.11) and (2.19) are called Hemlholtz con-

ditions.

3. Semi-variational equations with homogeneous coefficients

Starting from this section we shall consider all functions defined and smooth

on open subsets such that, at each point P , ẋk(P ) 6= 0, for at least one k =

1, . . . , n.

As above, we shall consider time-independent second-order ODE’s of the

form (1.1).

Recall that a first-order function F (xi, ẋi) is called positively homogeneous

of degree c in velocities if
∂F

∂ẋk
ẋk = cF. (3.1)

Differentiating this relation we can see that

∂2F

∂ẋj∂ẋk
ẋk = (c− 1)

∂F

∂ẋj
, and

∂2F

∂ẋj∂ẋk
ẋj ẋk = c(c− 1)F. (3.2)

For second order functions the concept of positive homogeneity is generalized

as follows (cf. Definition 1.1 and the comments around): F (xi, ẋi, ẍi) is called first

level positively homogeneous of degree c in the first and second derivatives if

∂F

∂ẋk
ẋk + 2

∂F

∂ẍk
ẍk = cF. (3.3)

Differential equations Ei(x
k, ẋk, ẍk) = 0 are called first level positively homoge-

neous of degree c if their left-hand sides Ei are first level positively homogeneous

functions of degree c in the variables ẋk and ẍk, 1 ≤ k ≤ n.

For brevity, having in mind the above definitions we shall speak simply about

“homogeneous functions of degree c”, or “c-homogeneous functions”.

First, let us prove the following important consequence of homogeneity of

the morphism B:
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Theorem 3.1. If B is homogeneous of degree c − 2 then the canonical

Lagrangian L = −P̄2(B) is homogeneous of degree c.

Proof. By a direct computation we have

∂L

∂ẋk
ẋk = −2ẋiẋk

∫ 1

0

(∫ 1

0

(Bik ◦ χ̄)dv
)
◦ χ̄ v dv

−ẋiẋj

∫ 1

0

(∫ 1

0

(∂Bij

∂ẋk
ẋk

)
◦ χ̄ dv

)
◦ χ̄ v dv = 2L+ (c− 2)L = cL (3.4)

¤

Now, let us discuss homogeneity in the context of differential equations. From

the definition we easily obtain:

Theorem 3.2. Equations (1.1) are homogeneous of degree c if and only if

Ai are homogeneous of degree c and Bij are homogeneous of degree c− 2.

Proof. Substituting Ei = Ai +Bij ẍ
j into (3.3) gives us

∂Ai

∂ẋk
ẋk +

∂Bij

∂ẋk
ẋkẍj = cAi + (c− 2)Bij ẍ

j . (3.5)

Since this is a polynomial in ẍ, we can see that Ai are homogeneous of degree c

and Bij are homogeneous of degree c− 2.

Conversely, if Ai are homogeneous of degree c and Bij are homogeneous of

degree c− 2 then

∂Ei

∂ẋk
ẋk + 2

∂Ei

∂ẍk
ẍk =

∂Ai

∂ẋk
ẋk +

∂Bij

∂ẋk
ẋkẍj + 2Bikẍ

k = cEi, (3.6)

as desired. ¤

The relationship between coefficients Ai and Bij of semi-variational equations

given by Theorem 2.3 becomes of a particular importance if the coefficients are

homogeneous functions:

Theorem 3.3. Let Ai + Bij ẍ
j = 0, 1 ≤ i ≤ n, be a system of semi-

variational equations satisfying condition (2.11). Assume that the functions Ai

are homogeneous of degree c 6= 0, 1. Then

Ai =
1

c(c− 1)
Gijkẋ

j ẋk =
1

c(c− 1)

(
∂Bij

∂xk
+

∂Bik

∂xj
− ∂Bjk

∂xi
+

∂2Bjk

∂xp∂ẋi
ẋp

)
ẋj ẋk.

(3.7)

Moreover, the functions Gijk (2.12) satisfy the following identity:

∂Gipr

∂ẋk
ẋpẋr = (c− 2)Gikrẋ

r. (3.8)
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Proof. Formula (3.2) and Theorem 2.3 immediately give us (3.7), so that

it remains to prove (3.8). Differentiating (3.7) we get

∂Ai

∂ẋk
=

1

c(c− 1)

∂Gipr

∂ẋk
ẋpẋr +

2

c(c− 1)
Gikrẋ

r. (3.9)

On the other hand, the first formula of (3.2), applied to Ai, and (2.12) yield

∂Ai

∂ẋk
=

1

c− 1

∂2Ai

∂ẋk∂ẋr
ẋr =

1

c− 1
Gikrẋ

r. (3.10)

Now, formula (3.8) easily follows. ¤

Surprisingly, semi-variational equations as above have the following much

stronger property, so far known only for the case c = 2 (see [1], [12], [14]); as we

shall see later, for c = 0 and c = 1 a similar result no longer holds true.

Theorem 3.4. Every system of semi-variational equations satisfying condi-

tion (2.11), and such that the functions Ai are homogeneous of degree c 6= 0, 1, is

variational (meaning that it satisfies all Helmholtz conditions).

Proof. One has to check that the last Helmholtz condition (2.19) is redun-

dant. It is worth note here that for regular equations (i.e. such that detB 6= 0)

this condition expresses properties of the Jacobi endomorphism introduced in [13].

This, of course, can be done by substituting the Ai in the form (3.7) into

(2.19); the result is then obtained after quite long and boring calculations. Here

we shall present another proof based on the structure of considered semi-varia-

tional equations (Corollary 2.4 and Theorem 2.5).

By the corollary,

Ai = P̄2(Gi)− Φi =
1

c(c− 1)
Gijkẋ

j ẋk, (3.11)

where Φi are affine in velocities. Differentiating the Ai, we get on one hand

using (2.12)

∂2Ai

∂ẋp∂ẋr
=

1

c(c− 1)

∂2Gijk

∂ẋp∂ẋr
ẋj ẋk +

2

c(c− 1)

(∂Girk

∂ẋp
+

∂Gipk

∂ẋr

)
ẋk +

2

c(c− 1)
Gipr

= Gipr (3.12)

so that

∂2Gijk

∂ẋp∂ẋr
ẋj ẋk + 2

(
∂Girk

∂ẋp
+

∂Gipk

∂ẋr

)
ẋk = (c(c− 1)− 2)Gipr, (3.13)
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and on the other hand, accounting the above identity for the G’s,

∂2Ai

∂ẋp∂ẋr
= 2

∫ 1

0

(∫ 1

0

(Gipr ◦ χ̄)dv
)
◦ χ̄ v dv

+ 2ẋk

∫ 1

0

(∫ 1

0

(∂Gipk

∂ẋr
◦ χ̄

)
v dv

)
◦ χ̄ v2 dv

+ 2ẋk

∫ 1

0

(∫ 1

0

(∂Girk

∂ẋp
◦ χ̄

)
v dv

)
◦ χ̄ v2 dv

+ ẋj ẋk

∫ 1

0

(∫ 1

0

( ∂2Gijk

∂ẋp∂ẋr
◦ χ̄

)
v2 dv

)
◦ χ̄ v3 dv

= c(c− 1)

∫ 1

0

(∫ 1

0

(Gipr ◦ χ̄)dv
)
◦ χ̄ v dv, (3.14)

since Φ is affine in velocities. So, we have obtained

Gipr = c(c− 1)

∫ 1

0

(∫ 1

0

(Gipr ◦ χ̄)dv
)
◦ χ̄ v dv, (3.15)

meaning that

Φi = P̄2(Gi)− 1

c(c− 1)
Gijkẋ

j ẋk

=

(∫ 1

0

(∫ 1

0

(Gijk ◦ χ̄)dv
)
◦ χ̄ v dv − 1

c(c− 1)
Gijk

)
ẋj ẋk = 0. (3.16)

Hence Ai are equal to P̄2(Gi), which by Theorem 2.5 means that Bij ẍ
j +Ai are

Euler–Lagrange expressions of the Lagrangian −P̄2(B); we are done. ¤

Summarizing (and reformulating), we have obtained

Corollary 3.5. Let E be a dynamical form with components affine in the

second derivatives, Ei = Ai+Bij ẍ
j , and with Ai homogeneous of degree c 6= 0, 1.

Ei are variational if and only if

Bij = Bji,
∂Bij

∂ẋk
=

∂Bik

∂ẋj
,

∂Ai

∂ẋj
+

∂Aj

∂ẋi
= 2

∂Bij

∂xk
ẋk (3.17)

(i.e. one of the Helmholtz conditions – that one for the Jacobi endomorphism –

is redundant).

A corresponding Lagrangian is L = −P̄2(B), and the structure of the equa-

tions is as follows:

Bij ẍ
j +

1

c(c− 1)
Gijkẋ

j ẋk = 0, (3.18)
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where

Gijk =
∂Bij

∂xk
+

∂Bik

∂xj
− ∂Bjk

∂xi
+

∂2Bjk

∂xp∂ẋi
ẋp. (3.19)

The Gijk satisfy the identity (3.8).

Combining Corollary 3.5, Theorem 3.2 and Theorem 3.1 we immediately get

the following strong result:

Theorem 3.6. Let E be a dynamical form with components affine in the

second derivatives, Ei = Ai +Bij ẍ
j , and homogeneous of degree c 6= 0, 1. Ei are

variational if and only if

Bij = Bji,
∂Bij

∂ẋk
=

∂Bik

∂ẋj
,

∂Ai

∂ẋj
+

∂Aj

∂ẋi
= 2

∂Bij

∂xk
ẋk. (3.20)

If the variationality conditions are satisfied then the structure of the equations is

as follows

Bij ẍ
j +

1

c− 1

(
1

2

(
∂Bij

∂xk
+

∂Bik

∂xj

)
− 1

c

∂Bjk

∂xi

)
ẋj ẋk = 0. (3.21)

A corresponding Lagrangian for E is the canonical Lagrangian L = −P̄2(B).

Moreover, the canonical Lagrangian is homogeneous of degree c, and it is a unique

first order Lagrangian for E possessing this homogeneity property.

Proof. It only remains to prove that the canonical Lagrangian is the unique

first-order Lagrangian for E which is homogeneous of degree c. Hence, let L′ be
a Lagrangian equivalent with the canonical Lagrangian L (i.e. giving the same

Euler–Lagrange expressions). Then L′ = L+df/dt for a function f(t, xi), so that

it holds
∂L′

∂ẋk
ẋk − cL′ = (1− c)

∂f

∂xk
ẋk − c

∂f

∂t
. (3.22)

The right-hand side is a function affine in ẋ. Since c 6= 0, 1 by assumption, the

homogeneity condition for L′ gives f = const. Hence df/dt = 0 and L′ = L,

proving the uniqueness. ¤

It is worth mention that identity (3.8) is of particular importance if equations

(3.21) are equations for geodesics of a semispray in Finsler geometry. In this case

c = 2, and B = −g is a Finsler metric. Then

Gijk = −1

2

(
∂gij
∂xk

+
∂gik
∂xj

− ∂gjk
∂xi

)
, (3.23)
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and (3.8) take the form
∂Gipr

∂ẋk
ẋpẋr = 0. (3.24)

An interesting situation arises when B does not depend upon velocities (as

e.g. in Riemannian geometry). Then the homogeneity condition

∂Bij

∂ẋk
ẋk = (c− 2)Bij (3.25)

gives us

(c− 2)B = 0, (3.26)

and we obtain:

Corollary 3.7. If Ei = Ai + Bij ẍ
j , 1 ≤ j ≤ n, are homogeneous of degree

c 6= 2, and
∂Bij

∂ẋk
= 0, (3.27)

then B = 0, meaning that the equations are implicit first order differential equa-

tions, Ai(x
k(t), ẋk(t)) = 0. In other words, (nontrivially) second order differen-

tial equations with B independent upon velocities admit the only homogeneity

property of being homogeneous of degree 2:

∂Ei

∂ẋk
ẋk + 2

∂Ei

∂ẍk
ẍk = 2Ei, i.e.

∂Ai

∂ẋk
ẋk = 2Ai. (3.28)

If, moreover, B is symmetric and condition (2.11) is satisfied, then the equations

are variational with the unique homogeneous of degree 2 first order Lagrangian

L = − 1
2Bij ẋ

iẋj , and take the form

Bij ẍ
j + Γijkẋ

j ẋk = 0 (3.29)

where Γijk are formal Christoffel symbols of the (not necessarily regular) morp-

hism B.

Remark 3.8. The above results can be applied to the case of equations in

normal form

ẍi + Γi = 0 (3.30)

describing integral sections of a second order vector field Γ on TM . Such equa-

tions are called variational if there exists a matrix (Bij) such that the “covariant

equations”

Bij(ẍ
j + Γj) = 0 (3.31)

satisfy the Helmholtz conditions. Usually in addition also detB 6= 0 is required

in order to guarantee that equations (3.30) and (3.31) are equivalent (having the

same set of solutions). If we set Ai = BijΓ
j , we immediately obtain:
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• If Γi are c-homogeneous, Ai are a-homogeneous and Bij are b-homogeneous

then
a = b+ c. (3.32)

• The degree of homogeneity of the contravariant force Γi and the covariant

force Ai is the same if and only if the multiplier (Bij) is 0-homogeneous.

• If the covariant equations (3.31) are required be homogeneous and of the

same homogeneity degree, c, as the contravariant forces Γi then a = c = 2

(since b = a− 2 by Theorem 3.2), and b = 0.

• If the contravariant forces Γi are homogeneous of degree c and we require the

multiplier (Bij) be b-homogeneous where b+ c 6= 0, 1, then by Corollary 3.5

equations (3.31) are variational if and only if conditions (3.17) hold (recall

that forB regular the (2.11) take the form (2.18)). That is, the last Helmholtz

condition (2.19) is redundant. This was proved in [12] for the case c = 2 and

b = 0 (the Finsler metric inverse problem).

In the sequel, let us discuss relationships between homogeneity of Lagran-

gians and homogeneity of equations in more detail. Recall that, as above, “c-

homogeneity” of equations here means first-level positive homogeneity of degree

c in ẋi and ẍi in the sense of Definition 1.1., of the functions on the left-hand

sides of the equations.

Theorem 3.9. Euler–Lagrange expressions of a time independent first order

Lagrangian which is homogenous of degree c are homogeneous of degree c.

Proof. We have

Ei =
∂L

∂xi
− d

dt

∂L

∂ẋi
(3.33)

so that with help of (3.1) and (3.2)

∂Ei

∂ẋk
ẋk + 2

∂Ei

∂ẍk
ẍk =

∂2L

∂xi∂ẋk
ẋk −

( d

dt

∂2L

∂ẋi∂ẋk

)
ẋk − ∂2L

∂xk∂ẋi
ẋk − 2

∂2L

∂ẋi∂ẋk
ẍk

= c
∂L

∂xi
− (c− 1)

d

dt

∂L

∂ẋi
− ∂2L

∂xk∂ẋi
ẋk − ∂2L

∂ẋi∂ẋk
ẍk = cEi. (3.34)

¤

Now, using Theorem 2.2 we can conclude:

Corollary 3.10. Consider semi-variational equations Bij ẍ
j+Ai = 0 written

in the form
Ei(L) = Φi, (3.35)
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where the left-hand sides Ei(L) are Euler–Lagrange expressions of the canonical

Lagrangian related with B. If B is homogeneous of degree c − 2 then equations

(3.35) are homogeneous of degree c if and only if Φi are homogeneous of degree c.

Using Theorem 2.5, Theorem 3.1 and Theorem 3.9 one can immediately see

that for semi-variational equations satisfying condition (2.11) and such that B is

homogeneous of degree c−2, the left-hand sides Bikẍ
k+P̄2(Gi) are homogeneous

of degree c. In this case, however, as we know, the force Φ is affine in velocities;

denote

Φi(x, ẋ) = αij(x)ẋ
j + βi(x). (3.36)

Then the “almost variational” equations (2.4) are homogeneous of degree c if and

only if

(c− 1)αikẋ
k + cβi = 0. (3.37)

If c 6= 0, 1, the above condition means that Φ = 0, that is, the equations

are variational, being the Euler–Lagrange equations of the canonical Lagrangian

L = −P̄2(B). In this way we arrive once again to the assertions of Theorem 3.6.

Moreover, joining the results, we can see that in this case

P̄2(Gi) =
1

c− 1

(
1

2

(∂Bij

∂xk
+

∂Bik

∂xj

)
− 1

c

∂Bjk

∂xi

)
ẋj ẋk, (3.38)

and due to Corollary 3.7 this form of the equations is fully relevant only for B

dependent upon velocities. If ∂Bij/∂ẋ
k = 0 then there is the only possibility

c = 2, which for regular B’s means that the equations are equations for geodesics

of a metrizable linear connection.

Now, with help of (3.37) we shall clarify the situation for the remaining cases

c = 1 and c = 0:

Theorem 3.11. Semi-variational equations satisfying condition (2.11), and

homogeneous of degree 1, take the form

Bikẍ
k + P̄2(Gi) = αikẋ

k, (3.39)

where B is homogeneous of degree −1, and the left-hand sides are the Euler–

Lagrange expressions of the canonical Lagrangian L = −P̄2(B) (we remind that

they take an explicit form as given in the proof of Theorem 2.3 or an equivalent

form as in the proof of Theorem 2.5). Equations (3.39) are variational if and

only if

αij = −αji and (∂αij/∂x
k)cycl(ijk) = 0. (3.40)
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If the equations are variational, they come from a first order Lagrangian

L = −P̄2(B) + Viẋ
i, where Vi(x) are defined by αij =

∂Vi

∂xj
− ∂Vj

∂xi
, (3.41)

which is homogeneous of degree 1, and non-unique, determined up to ∂f
∂xi ẋ

i, where

f(x) is an arbitrary function.

Proof. It remains only to prove (3.40) and the assertion concerning the

form of Lagrangians. The former is very easy: conditions (3.40) come from the

Helmholtz conditions for φi = αij ẋ
j . Notice that the differential conditions on

αij come from (2.19) which now cannot be omitted. Next, L (3.41) is obviously

a Lagrangian for (3.39), homogeneous of degree 1. Finally, if L is a first order

Lagrangian and L′ is an equivalent Lagrangian of the same order then L′ = L+

df/dt where f(t, x) is a function. Assuming homogeneity of both the Lagrangians,

we get

∂L′

∂ẋk
ẋk − L′ =

∂f

∂xk
ẋk − df

dt
= −∂f

∂t
= 0 iff f does not depend on t. (3.42)

¤

Theorem 3.12. Semi-variational equations satisfying condition (2.11), and

homogeneous of degree 0, take the form

Bikẍ
k + P̄2(Gi) = βi (3.43)

(the force independent on velocities), where B is homogeneous of degree −2, and

the left-hand sides are the Euler–Lagrange expressions of the canonical Lagran-

gian L = −P̄2(B). The equations are variational if and only if βi = ∂U/∂xi for

some function U(x).

If the equations are variational, they come from a first order Lagrangian

L = −P̄2(B)− U (3.44)

which is homogeneous of degree 0, and non-unique, determined up to an arbit-

rary function of t (respectively, up to a constant, if we restrict to autonomous

Lagrangians).

Proof. As above, potentiality of the force in (3.43) comes from the Helm-

holtz conditions, namely from the condition (2.19). Then any first order Lag-

rangian for the equations has the form L = −P̄2(B) − U + df/dt where f(t, x)

is an arbitrary function. Homogeneity now means that ∂L
∂ẋi ẋ

i = 0, and since

the canonical Lagrangian is homogeneous of degree zero by Theorem 3.1, we get

∂f/∂xi = 0, proving the assertion. ¤
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We have seen that homogeneous equations of degree c have a first order

Lagrangian which is homogeneous of degree c (unique for c 6= 0, 1). It is worth

note that one has also second order homogeneous Lagrangians:

Theorem 3.13. If Ei are variational and homogeneous of degree c then the

Tonti Lagrangian satisfies the same homogeneity condition.

Proof. The Tonti Lagrangian has the form LTon = P(E) where P is the

Poincaré homotopy operator associated with the map

χ : [0, 1]×(R×T 2W ) 3 (u, (t, xi, ẋi, ẍi)) → (t, uxi, uẋi, uẍi) ∈ R×T 2W, (3.45)

where W ⊂ M is a proper subset (see [17]). In coordinates,

LTon = xi

∫ 1

0

(Ei ◦ χ)du. (3.46)
Now,

∂LTon

∂ẋk
ẋk + 2

∂LTon

∂ẍk
ẍk − cLTon

= xi

∫ 1

0

(∂Ei

∂ẋk
ẋk + 2

∂Ei

∂ẍk
ẍk − cEi

)
◦ χdu = 0. (3.47)

We note that as in the case of the operator P̄2 (see Section 2), P(E) is obtained

similarly, by extending the Ei to the set (ẋ1, . . . , ẋn) = (0, . . . , 0). ¤

Finally, we notice that homogeneity of a Lagrangian implies interesting pro-

perties of its momenta pi and Hamiltonian H. Recall that

pi =
∂L

∂ẋi
, H = −L+

∂L

∂ẋi
ẋi = −L+ piẋ

i. (3.48)

Then assuming that L is c-homogeneous,

∂L

∂ẋi
ẋi = cL, (3.49)

immediately yields:

Theorem 3.14. Let L be a time independent first order Lagrangian, homo-

geneous of degree c. Then

H = (c− 1)L, (3.50)

∂H

∂ẋk
ẋk = cH, i.e. H is c-homogeneous, (3.51)

∂pi
∂ẋk

ẋk = (c− 1)pi, i.e. momenta are (c− 1)-homogeneous, (3.52)

∂pi
∂ẋk

ẋkẋi = c(c− 1)L = cH. (3.53)
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If c 6= 0 then

L =
1

c
pkẋ

k, (3.54)

and the Euler–Lagrange expressions of L are completely determined by momenta:

Ei =

(
1

c

∂pk
∂xi

− ∂pi
∂xk

)
ẋk − ∂pi

∂ẋk
ẍk. (3.55)

Note that if momenta are given, one can find the corresponding Lagrangian L

directly (without integration procedure) with help of formula (3.54).

4. Second-level positively homogeneous equations

In the sequel we shall discuss in more detail equations satisfying the second-

level positive homogeneity conditions in the sense of Definition 1.1. As above, we

assume that the domain of definition of the functions under consideration does

not contain points where (ẋ1, . . . , ẋn) = (0, . . . , 0). And, as above, we consider

ODEs of the form (1.1). Moreover, we assume that the equations are nontrivially

of second order (Bij 6= 0 for at least some i, j).

Remarkably, by the following theorem only the case c = 1 is of interest. We

recall that in this case solutions of the equations are invariant under orientation

preserving reparametrizations.

Theorem 4.1. Let (1.1) be second-level positively homogeneous of degree c.

If the equations are semi-variational then c = 1.

Proof. Applying homogeneity conditions (1.6) to functions Ei affine in the

second derivatives we obtain

∂Ai

∂ẋk
ẋk = cAi,

∂Bij

∂ẋk
ẋk = (c− 2)Bij , Bikẋ

k = 0. (4.1)

Differentiating the last condition and using semi-variationality yields

∂Bik

∂ẋj
ẋk +Bij =

∂Bij

∂ẋk
ẋk +Bij = 0. (4.2)

This means, however, that Bij + (c− 2)Bij = 0, hence c = 1. ¤

Since second-level positively 1-homogeneous equations are first-level positi-

vely 1-homogeneous, all results obtained in the previous section for the case c = 1

apply.
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We can see that for equations (1.1) Zermelo conditions take the form

∂Ai

∂ẋk
ẋk = Ai,

∂Bij

∂ẋk
ẋk = −Bij , Bikẋ

k = 0. (4.3)

Thus the assumption of second-level positive homogeneity adds to the homoge-

neity conditions studied in the previous section one additional condition, which

has an obvious, however very important consequence:

Theorem 4.2. If equations (1.1) are second-level positively homogeneous

then the matrix B = (Bij) is singular, i.e. detB = 0. This means that the

equations cannot be put into a normal form ẍi = f i(xk(t), ẋk(t)), or, otherwise

speaking, are not representable by means of a second-order vector field (semi-

spray) on T oM .

Proof. Understanding conditions Bikẋ
k = 0 as a system of homogeneous

linear algebraic equations for unknowns ẋk, 1 ≤ k ≤ n, we obtain the result. ¤

By Theorem 3.11, first-level positively 1-homogeneous variational equations

posses 1-homogeneous Lagrangians, and conversely, by Theorem 3.9, positively

1-homogeneous Lagrangians give first-level positively 1-homogeneous Euler–Lag-

range equations. However, differentiating the homogeneity condition for L and

using the formula for Bij yields

∂2L

∂ẋi∂ẋk
ẋk = −Bikẋ

k = 0. (4.4)

In other words, in Finsler geometry the concepts of first and second-level positive

1-homogeneity for differential equations coincide:

Theorem 4.3. First-level positively 1-homogeneous variational equations

satisfy Zermelo conditions (i.e. they are second-level positively 1-homogeneous).

In view of the above, when dealing with variational equations we shall just

speak about “positive 1-homogeneity”.1

Furthermore, for semi-variational and variational equations Zermelo condi-

tions take the following simple form:

Theorem 4.4. (1) Semi-variational equations are second-level positively 1-

homogeneous if and only if

∂Ai

∂ẋk
ẋk = Ai, Bikẋ

k = 0. (4.5)

1In particular, we can see that variational equations satisfying Zermelo conditions posses local

positively homogeneous Lagrangians of degree one, and conversely, such Lagrangians give rise

to equations satisfying Zermelo conditions, which is a result earlier proved in [18].
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(2) Semi-variational equations satisfying condition (2.11) are second-level posit-

ively 1-homogeneous if and only if

Akẋ
k = 0, Bikẋ

k = 0. (4.6)

(3) Variational equations (1.1) are positively 1-homogeneous if and only if (4.6)

hold true.

Proof. (1) Indeed, for semi-variational equations the second set of the Zer-

melo conditions (4.3) is superfluous, since it is obtained by differentiating the

condition Bikẋ
k = 0 and using (2.1).

(2) We have to prove that in this case the first set of the Zermelo conditions

can be replaced by Akẋ
k = 0. However, differentiating Akẋ

k and assuming (2.11)

and Bikẋ
k = 0, we obtain

0 = Ai +
∂Ak

∂ẋi
ẋk = Ai + 2

∂Bik

∂xj
ẋj ẋk − ∂Ai

∂ẋk
ẋk = Ai − ∂Ai

∂ẋk
ẋk. (4.7)

Conversely, if the first set of Zermelo conditions (4.3) is satisfied then due to

(2.11)

Akẋ
k =

∂Ak

∂ẋi
ẋiẋk =

1

2

(∂Ak

∂ẋi
+

∂Ai

∂ẋk

)
ẋiẋk =

∂Bik

∂xj
ẋj ẋiẋk = 0, (4.8)

since Bikẋ
k = 0.

Assertion (3) follows from (2). ¤

Corollary 4.5. Consider semi-variational equations satisfying condition

(2.11) and second-level positively 1-homogeneous. Then at least one of the equa-

tions is linearly dependent (a linear combination of the remaining ones) and can

be omitted.

Of course, the same assertion holds for positively 1-homogeneous variational

equations.

Proof. The number of independent equations equals to the rank of the

(n+ 1)× n matrix (Ai, Bik), with rows labelled by i and columns labelled by k.

Taking a vector (ẋ1, . . . ẋn) ∈ T o
xM , and using homogeneity conditions (4.6) we

get an equivalent matrix (
Aσ Bσk

0 0

)
, (4.9)

where 1 ≤ σ ≤ n− 1, proving our assertion. ¤
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Remark 4.6. The number of independent equations and their structure in a

neighborhood of a point in T oM depends on the ranks of the matrices (Ai, Bik)

and (Bik), hence, can be specified even more precisely. If both the ranks are

constant and rank(Ai, Bik) = rank(Bik) = N then we have N independent second

order ODEs. If rank(Ai, Bik) > rank(Bik) then we have a system of mixed second

order and first order ODEs. Recall that by Theorem 3.11

Bik = − ∂2L

∂ẋi∂ẋk
, Ai = P̄2(Gi)− αij ẋ

j (4.10)

where L = −P̄2(B) is the canonical Lagrangian; in Finsler geometry L = F , a

Finsler function.

Additionally we get that due to the homogeneity condition Bikẋ
k = 0, the

class of local positively 1-homogeneous first order Lagrangians contains a distin-

guished Lagrangian as follows:

Theorem 4.7. For positively 1-homogeneous variational equations, the En-

gels Lagrangian defined by the formula

LEng = LTon +
d

dt

(
xj

∫ 1

0

(pj ◦ χ)du
)

= xj

∫ 1

0

(Aj ◦ χ)du+ ẋj

∫ 1

0

(pj ◦ χ)du+ xj ẋk

∫ 1

0

(
∂pj
∂xk

◦ χ
)
u du, (4.11)

where LTon is the Tonti Lagrangian and (p1, . . . , pn) is any solution of the equa-

tions Bjk = −∂pj/∂ẋ
k, is positively homogeneous of degree 1.

The assertion immediately follows from Theorem 3.11, since the Engels Lag-

rangian is a time-independent Lagrangian equivalent with the Lagrangian (3.41);

alternatively the assertion is easily checked by a direct computation.

As expected, the Tonti Lagrangian for positively 1-homogeneous equations

(which is a first-level positively 1-homogeneous function, as we know from the pre-

vious section) is second-level positively 1-homogeneous, satisfying all the Zermelo

conditions.

Note that we have the following direct consequence of Theorem 4.4:

Corollary 4.8. For equations (1.1) the following are necessary conditions

to be variational and positively 1-homogeneous:

Bikẋ
k = 0, Bik = Bki,

∂Bik

∂ẋj
=

∂Bij

∂ẋk
, (4.12)

Aiẋ
i = 0. (4.13)
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Of course, necessary and sufficient conditions are obtained by adding the re-

maining two sets of Helmholtz conditions: (2.11) and (2.19). However, these con-

ditions can be “solved” to get an explicit form of the functions Ai. We shall finish

with two theorems describing the structure of variational positively 1-homogenous

equations. First, combining the homogeneity properties discussed above with

Theorem 3.11 we get:

Theorem 4.9. Equations (1.1) are variational and positively 1-homogeneous

if and only if (4.12) hold and

Ai = P̄2(Gi)− αij ẋ
j , (4.14)

where αij satisfy (3.40).

Finally, we obtain “positively homogeneous Helmholtz conditions”:

Theorem 4.10. Equations (1.1) are variational and positively 1-homoge-

neous if and only if (4.12) hold and

Ai = aikẋ
k, (4.15)

where

aik = −aki,

(
∂aij
∂xk

+
∂aki
∂xj

+
∂ajk
∂xi

)
ẋk = 0,

(
∂aik
∂ẋj

− ∂ajk
∂ẋi

)
ẋk = 0,

(
∂aik
∂ẋj

+
∂ajk
∂ẋi

− 2
∂Bij

∂xk

)
ẋk = 0. (4.16)

Proof. Assume (1.1) be variational and positively 1-homogeneous. Denote

aik =
1

2

(∂Ai

∂ẋk
− ∂Ak

∂ẋi

)
= −aki. (4.17)

Then

Ai =
∂Ai

∂ẋk
ẋk = aikẋ

k +
1

2

(∂Ai

∂ẋk
+

∂Ak

∂ẋj

)
ẋk = aikẋ

k, (4.18)

since differentiating Akẋ
k = 0 we arrive at

0 =
∂Ak

∂ẋi
ẋk +Ai =

(
∂Ak

∂ẋi
+

∂Ai

∂ẋk

)
ẋk. (4.19)

Now, using (2.19),

−
(
∂aij
∂xk

+
∂aki
∂xj

+
∂ajk
∂xi

)
ẋk=

1

2

∂

∂xk

(
∂Ai

∂ẋj
− ∂Aj

∂ẋi

)
ẋk− ∂Ai

∂xj
+

∂Aj

∂xi
=0, (4.20)
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and from

∂aik
∂ẋj

ẋk =
∂(aikẋ

k)

∂ẋj
− aij=

∂Ai

∂ẋj
− 1

2

(
∂Ai

∂ẋj
− ∂Aj

∂ẋi

)
=
1

2

(
∂Ai

∂ẋj
+

∂Aj

∂ẋi

)
, (4.21)

accounting (2.11), we get the remaining two identities.

Conversely, let (1.1) satisfy conditions of the theorem. Put Ai = aikẋ
k. We

have to check identities (4.13), (2.11) and (2.19). (4.13) is obvious due to the

skew symmetry of aik. Next,

∂Ai

∂ẋk
+

∂Ak

∂ẋi
= aik +

∂aij
∂ẋk

ẋj + aki +
∂akj
∂ẋi

ẋj = 2
∂Bik

∂xj
ẋj , (4.22)

and

∂Ai

∂xk
− ∂Ak

∂xi
− 1

2

∂

∂xj

(
∂Ai

∂ẋk
− ∂Ak

∂ẋi

)
ẋj

=
∂αij

∂xk
ẋj − ∂αkj

∂xi
ẋj − ∂αik

∂xj
ẋj − 1

2

∂

∂xj

(
∂αip

∂ẋk
− ∂αkp

∂ẋi

)
ẋj ẋp = 0, (4.23)

as desired. ¤

A different form of necessary and sufficient conditions of variationality and

positive 1-homogeneity can be found in [19].
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