Publ. Math. Debrecen
 84/1-2 (2014), 221-228
 DOI: 10.5486/PMD.2014.5897

On functional equations involving means

By ZOLTÁN DARÓCZY (Debrecen)
Dedicated to Professor Lajos Tamássy on his 90th birthday

Abstract

Let $I \subset \mathbb{R}$ be a non-void open interval and let $M, N: I^{2} \rightarrow I$ be two mean values on I. We consider functional equations of type $$
K(M(x, y))=K(N(x, y)) \quad(x, y \in I)
$$

where $K: I \rightarrow \mathbb{R}$ is an unknown function.

1. Introduction

In the sequel $I \subset \mathbb{R}$ will be a non-void open interval. The function $M: I^{2} \rightarrow I$ is said to be a mean value on I if

$$
\min \{x, y\} \leq M(x, y) \leq \max \{x, y\}
$$

holds for all $x, y \in I$. Obviously $M(x, x)=x$ for all $x \in I$.
Let $M, N: I^{2} \rightarrow I$ be two mean values and $K: I \rightarrow \mathbb{R}$ an unknown function for which the functional equation

$$
\begin{equation*}
K(M(x, y))=K(N(x, y)) \tag{1}
\end{equation*}
$$

[^0]holds for all $x, y \in I$. In this paper we study some particular cases of functional equations of type (1).

2. Elementary cases

(a) Let $I \subset \mathbb{R}_{+}:=\{x \mid x \in \mathbb{R}, x>0\}$ and

$$
M(x, y):=\frac{x+y}{2}, \quad N(x, y):=\sqrt{x y} \quad(x, y \in I)
$$

be the arithmetic and geometric mean value. In this case equation (1) is of the form

$$
\begin{equation*}
\left.K\left(\frac{x+y}{2}\right)=K(\sqrt{x y})\right) \quad(x, y \in I) \tag{2}
\end{equation*}
$$

where $K: I \rightarrow \mathbb{R}$ is an unknown function.
(b) Let $I \subset \mathbb{R}_{+}:=\{x: x \in \mathbb{R}, x>0\}$ and

$$
M(x, y):=p x+(1-p) y, \quad N(x, y):=q x+(1-q) y \quad(x, y \in I)
$$

where $0<p<1,0<q<1$ and $p \neq q$. Now (1) has the form

$$
\begin{equation*}
K(p x+(1-p) y)=K(q x+(1-q) y)) \quad(x, y \in I) \tag{3}
\end{equation*}
$$

where $K: I \rightarrow \mathbb{R}$ is an unknown function.
(c) Let $I \subset \mathbb{R}_{+}$and

$$
M(x, y):=\frac{x+y}{2}, \quad N(x, y):=\frac{-1+\sqrt{1+4\left(x+y^{2}\right)}}{2} \quad(x, y \in I)
$$

It is easy to see that $N: I^{2} \rightarrow I$ is a mean value and (1) is of the form

$$
\begin{equation*}
K\left(\frac{x+y}{2}\right)=K\left(\frac{-1+\sqrt{1+4\left(x+y^{2}\right)}}{2}\right) \quad(x, y \in I) \tag{4}
\end{equation*}
$$

where $K: I \rightarrow \mathbb{R}$ is an unknown function.
The means appearing in the cases (a), (b) and (c) all belong to the class of generalized weighted quasi arithmetic means introduced by Matkowski [5].

3. Generalized weighted quasi arithmetic means

Denote by $\mathcal{C M}(I)$ the class of continuous and strictly monotone increasing real functions defined on the interval I.

Definition 1 (Matkowski [5]). The function $M: I^{2} \rightarrow I$ is said to be a generalized weighted quasi arithmetic mean (briefly Matkowski mean) on I if there exist functions $f, g \in \mathcal{C \mathcal { M }}(I)$ such that

$$
\begin{equation*}
M(x, y)=(f+g)^{-1}(f(x)+g(y))=: M_{f, g}(x, y) \tag{5}
\end{equation*}
$$

for all $x, y \in I$.
For $x<y, x, y \in I$ we have

$$
f(x)+g(x)<f(x)+g(y)<f(y)+g(y)
$$

therefore $M_{f, g}$ is a mean indeed.
If $0<p<1$ and $\varphi: I \rightarrow \mathbb{R}$ is a continuous and strictly monotone function,

$$
f(x):=\varepsilon_{\varphi} p \varphi(x), \quad g(x):=\varepsilon_{\varphi}(1-p) \varphi(x) \quad(x \in I)
$$

with

$$
\varepsilon_{\varphi}:= \begin{cases}1 & \text { if } \varphi \text { is increasing } \\ -1 & \text { if } \varphi \text { is decreasing }\end{cases}
$$

then from (5)

$$
\begin{equation*}
M_{f, g}(x, y)=\varphi^{-1}(p \varphi(x)+(1-p) \varphi(y)):=A_{\varphi, p}(x, y) \quad(x, y \in I) \tag{6}
\end{equation*}
$$

The mean (6) is the well-known weighted quasi arithmetic mean on I which has a rich literature Hardy-Littlewood-Pólya [3], Aczél [1], Kuczma [4], Daróczy-PÁles [2], Matkowski [5].

In case (a) with $I \subset \mathbb{R}_{+}, \varphi(x):=x,(x \in I), p:=\frac{1}{2}$ we get that $A_{\varphi, p}(x, y)=$ $\frac{x+y}{2}$, and with $\varphi(x):=\log x,(x \in I), p:=\frac{1}{2}$ we get that $A_{\varphi, p}(x, y)=\sqrt{x y}$.

In the case (b) it is obvious that the means in the equation are weighted quasi arithmetic means.

In the case (c) $I \subset \mathbb{R}_{+}$and

$$
\begin{equation*}
N(x, y):=\frac{-1+\sqrt{1+4\left(x+y^{2}\right)}}{2}=M_{f, g}(x, y) \quad(x, y \in I) \tag{7}
\end{equation*}
$$

is a Matkowski mean with $f(x)=x, g(x)=x^{2}(x \in I)$.
The Matkowski mean (7) is however not a weighted quasi arithmetic mean.

4. The main result

Our main result concerns equation (1) in the case when the means M, N are Matkowski means.

Theorem 1. Let $f, g, F, G: I \rightarrow \mathbb{R}$ be continuous and strictly monotone increasing functions, for which

$$
\begin{equation*}
M_{f, g}(x, y) \neq M_{F, G}(x, y) \quad \text { if } x, y \in I, x \neq y \tag{8}
\end{equation*}
$$

If $K: I \rightarrow \mathbb{R}$ satisfies the functional equation

$$
\begin{equation*}
K\left(M_{f, g}(x, y)\right)=K\left(M_{F, G}(x, y)\right) \quad(x, y \in I) \tag{9}
\end{equation*}
$$

then there exists a constant $c \in \mathbb{R}$ such that

$$
\begin{equation*}
K(t)=c \quad(t \in I) \tag{10}
\end{equation*}
$$

Proof. For an arbitrary $\xi \in I$ choose $A, B \in I$ such that $A<\xi<B$. Let

$$
E_{1}:=\{(x, y) \in] A, B\left[^{2}: M_{f, g}(x, y)=\xi\right\} .
$$

If $x \in] A, B[$ then we search for those $y \in] A, B\left[\right.$ for which $(x, y) \in E_{1}$. Then by
we have

$$
y=g^{-1}((f+g)(\xi)-f(x))
$$

hence

$$
A<g^{-1}((f+g)(\xi)-f(x))<B
$$

$$
f^{-1}((f+g)(\xi)-g(B))<x<f^{-1}((f+g)(\xi)-g(A)
$$

therefore

$$
\begin{aligned}
\alpha:=\max \left\{A, f^{-1}((f+g)(\xi)-g(B))\right\} & <x \\
& <\min \left\{B, f^{-1}((f+g)(\xi)-g(A)\}:=\beta\right.
\end{aligned}
$$

This means that for all $\alpha<x<\beta$ we have

$$
\left(x, y=g^{-1}((f+g)(\xi)-f(x))\right) \in E_{1}
$$

This and equation (9) imply that

$$
\begin{align*}
c & :=K(\xi)=K\left(M_{f, g}(x, y)\right)=K\left(M_{F, G}(x, y)\right) \\
& =K\left(M_{F, G}\left(x, g^{-1}((f+g)(\xi)-f(x))\right)\right)=K\left(\tau_{1}(x)\right), \tag{11}
\end{align*}
$$

where

$$
\tau_{1}(x):=(F+G)^{-1}\left(F(x)+G\left(g^{-1}((f+g)(\xi)-f(x))\right)\right) \quad(\alpha<x<\beta)
$$

It is clear that $\alpha<\xi<\beta$ and $\tau_{1}(\xi)=\xi$.
We show that the function $\left.\tau_{1}:\right] \alpha, \beta[\rightarrow \mathbb{R}$ is not constant. Otherwise it were $\tau_{1}(x)=\xi$ for all $\left.x \in\right] \alpha, \beta$ [thus

$$
\left.(F+G)^{-1}\left(F(x)+G\left(g^{-1}((f+g)(\xi)-f(x))\right)\right)=\xi \quad \text { for all } x \in\right] \alpha, \beta[
$$

Hence

$$
\left.y:=g^{-1}((f+g)(\xi)-f(x))=G^{-1}((F+G)(\xi)-F(x)) \quad \text { for all } x \in\right] \alpha, \beta[
$$

or

$$
M_{f, g}(x, y)=\xi=M_{F, G}(x, y)
$$

and by the property (8)

$$
x=y=g^{-1}((f+g)(\xi)-f(x))
$$

Since $f+g$ is strictly increasing this implies that $x=\xi$ which is a contradiction. Concerning the function τ_{1} there are two possibilities.
(i) Either $\tau_{1}(] \alpha, \beta[)$ is an interval whose interior contains the point ξ,
(ii) or the function τ_{1} has an extremum in the point ξ.

In the case (i) by (11) there exists an open interval $I_{\xi} \subset I$ containing the point ξ such that the function K is constant $(=\mathrm{c})$ on I_{ξ}.

In the case (ii) we may assume, without restricting the generality, that $\tau_{1}(x) \geq \xi$ if $\left.x \in\right] \alpha, \beta[$. Let

$$
E_{2}:=\{(x, y) \in] A, B\left[^{2}: M_{F, G}(x, y)=\xi\right\}
$$

We easily get that $\left(x, y=G^{-1}((F+G)(\xi)-F(x))\right) \in E_{2}$ if and only if $x \in$] $\alpha^{\prime}, \beta^{\prime}$ [where

$$
\begin{aligned}
\alpha^{\prime} & :=\max \left\{A, F^{-1}((F+G)(\xi)-G(B))\right\} \\
\beta^{\prime} & :=\max \left\{B, F^{-1}((F+G)(\xi)-G(A))\right\} .
\end{aligned}
$$

From this by (9)

$$
\begin{align*}
c & :=K(\xi)=K\left(M_{F, G}(x, y)\right)=K\left(M_{f, g}(x, y)\right) \\
& =K\left(M_{f, g}\left(x, G^{-1}((F+G)(\xi)-F(x))\right)\right)=K\left(\tau_{2}(x)\right), \tag{12}
\end{align*}
$$

where

$$
\tau_{2}(x):=(f+g)^{-1}\left(f(x)+g\left(G^{-1}((F+G)(\xi)-F(x))\right)\right) \quad\left(\alpha^{\prime}<x<\beta^{\prime}\right)
$$

It is clear that $\alpha^{\prime}<\xi<\beta^{\prime}$ and $\tau_{2}(\xi)=\xi$. Again, similarly to previous discussions the function $\left.\tau_{2}:\right] \alpha^{\prime}, \beta^{\prime}[\rightarrow \mathbb{R}$ is not constant.

Let $\alpha^{*}:=\max \left\{\alpha, \alpha^{\prime}\right\}$ and $\beta^{*}:=\max \left\{\beta, \beta^{\prime}\right\}$ then $\alpha^{*}<\xi<\beta^{*}$ and $\tau_{i}:$ $] \alpha^{*}, \beta^{*}\left[\rightarrow \mathbb{R}(i=1,2)\right.$ are continuous functions with $\tau_{i}(x)=\xi(i=1,2)$. For $x \in] \alpha^{*}, \beta^{*}\left[\right.$ we have $\tau_{1}(x) \geq \xi$, or

$$
(F+G)^{-1}\left(F(x)+G\left(g^{-1}((f+g)(\xi)-f(x))\right)\right) \geq \xi
$$

From this we obtain after some calculations that

$$
\xi \geq(f+g)^{-1}\left(f(x)+g\left(G^{-1}((F+G)(\xi)-F(x))\right)\right)=\tau_{2}(x)
$$

for all $x \in] \alpha^{*}, \beta^{*}[$. Thus for the function

$$
\tau(x):= \begin{cases}\tau_{1}(x) & \text { if } \xi \leq x<\beta^{*} \\ \tau_{2}(x) & \text { if } \alpha^{*}<x \leq \xi\end{cases}
$$

by (11) and (12) we have $c=K(\tau(x))$ provided that $x \in] \alpha^{*}, \beta^{*}\left[\right.$ and $\tau(] \alpha^{*}, \beta^{*}[)$ is such a proper interval whose interior contains ξ.

With this we proved that for every $\xi \in I$ there is an open interval $I_{\xi} \subset I$ such that $\xi \in I_{\xi}$ and for all $t \in I_{\xi}$ we have $K(t)=K(\xi)=c$.

Let now $J \subset I$ be the maximal open interval on which the function K is constant i.e. $K(t)=c$ for all $t \in J$. If $J \neq I$ then J has and endpoint ξ for which $\xi \in I$. Then there exists a nonempty open interval $I_{\xi} \subset I$ such that $\xi \in I_{\xi}$ and K is constant on the interval I_{ξ}. As ξ is an.endpoint of J, the constant c_{ξ} can only be c which contradicts to the maximality of J. Therefore $J=I$ proving our theorem, i.e. proving (10).

5. Remarks and problems

From our theorem it follows that the functional equations in the elementary cases (a)-(c) have only constant solutions.

The following question arises: what (other than constant) solutions can equation (1) have?

It is clear, that if $M(x, y)=N(x, y)$ for all $x, y \in I$ than equation (1) gives no information on the unknown function $K: I \rightarrow \mathbb{R}$, i.e. K is arbitrary.

Remark 1. Let $M: I^{2} \rightarrow I$ be a mean on I and $c \in I$ be a fixed constant. Define the function $M^{[c]}: I^{2} \rightarrow I$ by

$$
M^{[c]}(x, y):= \begin{cases}c & \text { if } \min \{x, y\} \leq c \leq \max \{x, y\} \quad(x, y \in I .) \\ M(x, y) & \text { otherwise }\end{cases}
$$

It is easy to see that $M^{[c]}$ is a mean on I. Let $M, N: I^{2} \rightarrow I$ be two means on I, $c \in I$ and consider the functional equation

$$
K\left(M^{[c]}(x, y)\right)=K\left(N^{[c]}(x, y)\right) \quad(x, y \in I)
$$

of type (1). It is easy to check that the function

$$
K(t):=\left\{\begin{array}{ll}
c_{1} & \text { if } t \in I \text { and } t<c \\
c_{2} & \text { if } t \in I \text { and } t>c \\
c_{3} & \text { if } t=c
\end{array} \quad(t \in I)\right.
$$

where c_{1}, c_{2}, c_{3} are arbitrary constants is a solution of our equation.
Remark 2. Obviously, the means $M^{[c]}$ and $N^{[c]}$ do not have the property

$$
M^{[c]}(x, y) \neq N^{[c]}(x, y) \quad \text { if } x \neq y x, y \in I
$$

Thus, we have the following question. Are there means M and N with the property

$$
M(x, y) \neq N(x, y) \quad \text { if } x \neq y x, y \in I
$$

such that (1) has non-constant solution.
The answer is "yes", as the following example shows.
Let $C, D \subset \mathbb{R}$ be dense subsets of \mathbb{R} with $C \cap D=\emptyset$ such that the set $H:=\mathbb{R} \backslash C \cap D$ is also dense in \mathbb{R}. Such sets exist, for example, take $C=\mathbb{Q}, D=$ the set of transcendental numbers and $H=$ the set of non-rational algebraic numbers. Define the functions $M, N: I^{2} \rightarrow I$ as follows: If $\min \{x, y\}<\max \{x, y\}$ then choose an (arbitrary) element $c_{x, y} \in C$ such that $\min \{x, y\}<c_{x, y}<\max \{x, y\}$ and let $M(x, y)=c_{x, y}$ while for $x=y$ let $M(x, x)=x$.
Likewise, if $\min \{x, y\}<\max \{x, y\}$ then choose an (arbitrary) element $d_{x, y} \in D$ such that $\min \{x, y\}<d_{x, y}<\max \{x, y\}$ and let $N(x, y)=d_{x, y}$ while for $x=y$ let $N(x, x)=x$.

Obviously $M, N: I^{2} \rightarrow I$ are means on I and

$$
M(x, y) \neq N(x, y) \quad \text { if } x, y \in I, x \neq y
$$

It is easy to check that the function

$$
K(t):= \begin{cases}c & \text { if } t \in(C \cup D) \cap I \\ \text { arbitrary } & \text { if } t \in H \cap I,\end{cases}
$$

is a solution of the equation (1) thus in this case (1) has a non-constant solution K.
Problem 1. Find necessary and sufficient conditions for the functions $f, g, F, G \in \operatorname{CM}(I)$ such that the condition
is satisfied.

$$
M_{f, g}(x, y) \neq M_{F, G}(x, y), \quad \text { if } x, y \in I, x \neq y
$$

The means constructed in Remark 2 are not continuous.
Problem 2. Let $M, N: I^{2} \rightarrow I$ be continuous means on I^{2}, such that

$$
M(x, y) \neq N(x, y) \quad \text { if } x \neq y ; x, y \in I .
$$

Is it true that the the functional equation $K(M(x, y))=K(N(x, y))$ has only constant solution K ?

Problem 2 was mentioned in a talk at the 50th ISFE (International Symposium on Functional Equations, Hajdúszoboszló, Hungary, June 17-24, 2012). During the Symposium Antal Járai solved the problem affirmatively. His solution is to appear in the Report on the 50th ISFE, in Aequationes Math.

References

[1] J. Aczél, Lectures on Functional Equations and Their Applications, Academic Press, New York - London, 1966.
[2] Z. Daróczy and Zs. Páles, Gauss-composition of means and the solution of the Matkows-ki-Suto problem, Publ. Math. Debrecen 61 (2002), 157-218.
[3] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, (first edition), 1952 (second edition), Cambridge University Press, Cambridge, 1934.
[4] M. Kuczma, An introduction to the theory of functional equations and inequalities, Cauchy's equation and Jensen's inequality, Panstwowe Wydawnictwo Naukowe (PWN), Warsaw, Birkhäuser Verlag, Basel, 1985 (first edition), 2009 (second edition).
[5] J. Matkowski, Generalized weighted and quasi-arithmetic means, Aequationes Math. 79 (2010), 203-212.

ZOLTÁN DARÓCZY
INSTITUTE OF MATHEMATICS
UNIVERSITY OF DEBRECEN
H-4010 DEbrecen, PF. 12
HUNGARY
E-mail: daroczy@science.unideb.hu
(Received June 6, 2013; revised October 18, 2013)

[^0]: Mathematics Subject Classification: Primary: 39B22.
 Key words and phrases: functional equation, mean values, generalized weighted quasi arithmetic means.
 This research has been supported by the Hungarian Scientific Research Fund (OKTA) Grants NK68040.

