Publ. Math. Debrecen
 84/3-4 (2014), 351-356
 DOI: 10.5486/PMD. 2014.5610

On the m-ary expansion of a multiple of $\left(m^{k}-1\right) /(m-1)$

By HAO PAN (Nanjing)

Abstract

We prove an extremal result on the m-ary expansion of $n\left(m^{k}-1\right) /(m-1)$.

1. Introduction

Recently, Z.-W. Sun [3] proved that for any $n, k \geq 1$,
is divisible by

$$
\frac{1}{\left(2^{k}-2\right) n+1}\binom{\left(2^{k}-1\right) n}{n}\binom{\left(2^{k}-1\right) n}{\left(2^{k}-1\right) n}
$$

$$
2^{k-1}\binom{2 n}{n}
$$

One key of Sun's proof is the following curious lemma:
For positive integers n and k, the number of 1 's in the binary expansion of $n\left(2^{k}-1\right)$ is at least k.

In fact, he got a stronger result [3, Lemma 3.2]:
Theorem 1. For a prime p and positive integers n and k, the sum of all digits in the expansion of $n\left(p^{k}-1\right)$ in base p is at least $k(p-1)$.

Motivated by Theorem 1, Sun made the following conjecture.
Conjecture 1. Suppose that n, m, k are positive integers and $m \geq 2$.

[^0]Key words and phrases: m-ary expansion; sum of digits.
The author is supported by National Natural Science Foundation of China (Grant No. 11271185).
(i) There are at least k non-zero digits in the m-ary expansion of $n\left(m^{k}-1\right) /(m-1)$.
(ii) The sum of all digits in the m-ary expansion of $n\left(m^{k}-1\right)$ is at least $k(m-1)$.

In fact, Conjecture 1 is not new. A solution of Part (i) of Conjecture 1 for the base $m=10$ has been given in [1]. Furthermore, the second part of Conjecture 1 for $m=10$ is also proved in [2]. Of course, those two proofs can be extended to any base $m \geq 2$ without any difficulty.

However, in this short note, we shall prove the following stronger result.
Theorem 2. Suppose that $m \geq 2, k \geq 1$ and $a_{1}, a_{2}, \ldots, a_{k} \in \mathbb{N}=\{0,1,2, \ldots\}$ are not all zero.
(i) If $a_{k} m^{k-1}+a_{k-1} m^{k-2}+\cdots+a_{2} m+a_{1}$ is a multiple of $\left(m^{k}-1\right) /(m-1)$, then

$$
\sum_{j=1}^{k}\left\lceil\frac{a_{j}}{m}\right\rceil \geq k
$$

where $\lceil x\rceil=\min \{z \in \mathbb{Z}: z \geq x\}$.
(ii) Suppose that

$$
a_{k} m^{k-1}+a_{k-1} m^{k-2}+\cdots+a_{2} m+a_{1} \equiv 0 \quad\left(\bmod m^{k}-1\right)
$$

Then

$$
\sum_{j=1}^{k}\left\lfloor\frac{a_{j}}{m-1}\right\rfloor \geq k
$$

where $\lfloor x\rfloor=\max \{z \in \mathbb{Z}: z \leq x\}$.
Let us give an explanation why Theorem 2 implies Conjecture 1 . Write

$$
n\left(m^{k}-1\right) /(m-1)=b_{h} m^{h-1}+b_{h-1} m^{h-2}+\cdots+b_{2} m+b_{1}
$$

where $0 \leq b_{i}<m$. Let

$$
a_{j}=\sum_{\substack{1 \leq i \leq h \\ i \equiv j \\(\bmod k)}} b_{i} .
$$

Since all b_{i} are less than m, we have

$$
\left\lceil\frac{a_{j}}{m-1}\right\rceil \leq\left|\left\{1 \leq i \leq h: i \equiv j \quad(\bmod k), b_{i}>0\right\}\right|
$$

$$
\text { On the } m \text {-ary expansion of a multiple of }\left(m^{k}-1\right) /(m-1)
$$

On the other hand,

$$
\sum_{i=1}^{h} b_{i} m^{i-1} \equiv \sum_{j=1}^{k} m^{j-1} \sum_{\substack{1 \leq i \leq h \\ i \equiv j \\(\bmod k)}} b_{i}=\sum_{j=1}^{k} a_{j} m^{j-1} \equiv 0 \quad\left(\bmod \left(m^{k}-1\right) /(m-1)\right)
$$

It follows from Part (i) of Theorem 2 that

$$
\left|\left\{1 \leq i \leq h: b_{i}>0\right\}\right| \geq \sum_{j=1}^{k}\left\lceil\frac{a_{j}}{m-1}\right\rceil \geq \sum_{j=1}^{k}\left\lceil\frac{a_{j}}{m}\right\rceil \geq k
$$

Similarly, if $n\left(m^{k}-1\right)=b_{h} m^{h-1}+\cdots+b_{1}$ with $0 \leq b_{i}<m$ and let

$$
a_{j}=\sum_{\substack{1 \leq i \leq h \\ i \equiv j}} b_{i},
$$

by Part (ii) of Theorem 2, we have

$$
\sum_{i=1}^{h} b_{i}=\sum_{j=1}^{k} a_{j} \geq(m-1) \sum_{j=1}^{k}\left\lfloor\frac{a_{j}}{m-1}\right\rfloor \geq(m-1) k
$$

We shall prove Theorem 2 in the next section.

2. Proof of Theorem 2

Proposition 1. Suppose that $m \geq 2, k \geq 1$ and $a_{1}, a_{2}, \ldots, a_{k} \in \mathbb{N}$ are not all zero. Let q be a divisor of $m^{k}-1$. Suppose that $\tau\left(x_{1}, \ldots, x_{k}\right)$ is a nonnegative integer-valued symmetric function satisfying that

$$
\tau\left(x_{1}, x_{2}, \ldots, x_{k-1}, m d+b\right) \geq \tau\left(x_{1}+d, x_{2}, \ldots, x_{k-1}, b\right)
$$

for every $0 \leq b<m$ and $d \geq 1$. If

$$
a_{k} m^{k-1}+a_{k-1} m^{k-2}+\cdots+a_{2} m+a_{1} \equiv 0 \quad(\bmod q)
$$

then

$$
\tau\left(a_{1}, a_{2}, \ldots, a_{k}\right) \geq \min _{1 \leq t \leq\left(m^{k}-1\right) / q}\left\{\tau^{*}(t q)\right\}
$$

where

$$
\tau^{*}(h)=\tau\left(c_{1}, c_{2}, \ldots, c_{k}\right)
$$

provided $0 \leq h<m^{k}$ has the m-ary expansion $h=c_{k} m^{k-1}+c_{k-1} m^{k-2}+\cdots+c_{1}$.

Proof. Let
$S=\left\{\left(a_{1}, \ldots, a_{k}\right): a_{1}, \ldots, a_{k} \in \mathbb{N}\right.$ are not all zero, $\left.\sum_{j=1}^{k} a_{j} m^{j-1} \equiv 0 \quad(\bmod q)\right\}$.
For $\mathbf{x}=\left(a_{1}, \ldots, a_{k}\right)$, define

$$
\sigma(\mathbf{x})=a_{1}+a_{2}+\cdots+a_{k} .
$$

Let

$$
t_{0}=\min _{\left(a_{1}, \ldots, a_{k}\right) \in S} \tau\left(a_{1}, \ldots, a_{k}\right)
$$

and

$$
T=\left\{\left(a_{1}, \ldots, a_{k}\right) \in S: \tau\left(a_{1}, \ldots, a_{k}\right)=t_{0}\right\}
$$

Clearly T is non-empty. Choose an $\mathbf{x}^{\circ}=\left(a_{1}^{\circ}, \ldots, a_{k}^{\circ}\right) \in T$ such that

$$
\sigma\left(\mathbf{x}^{\circ}\right)=\min _{\left(a_{1}, \ldots, a_{k}\right) \in T} \sigma\left(a_{1}, \ldots, a_{k}\right)
$$

Since

$$
m \cdot \sum_{j=1}^{k} a_{j} m^{j-1}=\sum_{j=1}^{k} a_{j} m^{j} \equiv a_{k}+\sum_{j=1}^{k-1} a_{j} m^{j} \quad(\bmod q)
$$

$\left(a_{1}, a_{2}, \ldots, a_{k}\right) \in S$ implies $\left(a_{k}, a_{1}, a_{2}, \ldots, a_{k-1}\right) \in S$. Furthermore, note that both τ and σ are symmetric. So by the definition of T and the choice of \mathbf{x}°, without loss of generality, we may assume that $a_{k}^{\circ} \geq \max \left\{a_{1}^{\circ}, a_{2}^{\circ}, \ldots, a_{k-1}^{\circ}\right\}$. We shall prove that $a_{k}^{\circ}<m$. Assume on the contrary that $a_{k}^{\circ} \geq m$. Write $a_{k}^{\circ}=m d+b$ with $0 \leq b<m$ and $d \geq 1$. Then
$\sum_{j=1}^{k} a_{j}^{\circ} m^{j-1}=(m d+b) m^{k-1}+\sum_{j=1}^{k-1} a_{j}^{\circ} m^{j-1} \equiv b m^{k-1}+\left(d+a_{1}^{\circ}\right)+\sum_{j=2}^{k-1} a_{j}^{\circ} m^{j-1}(\bmod q)$.
Hence $\mathbf{x}^{\triangle}:=\left(a_{1}^{\circ}+d, a_{2}^{\circ}, \ldots, a_{k-1}^{\circ}, b\right) \in S$. Note that now

$$
\tau\left(a_{1}^{\circ}, \ldots, a_{k}^{\circ}\right)=\tau\left(a_{1}^{\circ}, a_{2}^{\circ}, \ldots, a_{k-1}^{\circ}, m d+b\right) \geq \tau\left(a_{1}^{\circ}+d, a_{2}^{\circ}, \ldots, a_{k-1}^{\circ}, b\right)
$$

It follows that \mathbf{x}^{\triangle} also lies in T. But clearly

$$
\sigma\left(\mathbf{x}^{\circ}\right)-\sigma\left(\mathbf{x}^{\triangle}\right)=a_{1}^{\circ}+a_{k}^{\circ}-\left(a_{1}^{\circ}+d+b\right)=(m-1) d \geq 1
$$

i.e., $\sigma\left(\mathrm{x}^{\triangle}\right)<\sigma\left(\mathrm{x}^{\circ}\right)$. This evidently leads to a contradiction with our choice of x°.

So we must have $a_{k}^{\circ}<m$, i.e.,

$$
\max \left\{a_{1}^{\circ}, a_{2}^{\circ}, \ldots, a_{k}^{\circ}\right\} \leq m-1
$$

Thus $a_{k}^{\circ} m^{k-1}+\cdots+a_{1}^{\circ}=t_{0} q$ for some $1 \leq t_{0} \leq\left(m^{k}-1\right) / q$. And

$$
\tau\left(a_{1}^{\circ}, a_{2}^{\circ}, \ldots, a_{k}^{\circ}\right)=\tau^{*}\left(t_{0} q\right) \geq \min _{1 \leq t \leq\left(m^{k}-1\right) / q}\left\{\tau^{*}(t q)\right\}
$$

Now let

$$
\tau_{1}\left(x_{1}, \ldots, x_{k}\right)=\sum_{i=1}^{k}\left\lceil\frac{x_{j}}{m}\right\rceil
$$

and

$$
\tau_{2}\left(x_{1}, \ldots, x_{k}\right)=\sum_{i=1}^{k}\left\lfloor\frac{x_{j}}{m-1}\right\rfloor
$$

We shall verify τ_{1} and τ_{2} satisfy the requirements of Proposition 1. Evidently τ_{1} and τ_{2} are symmetric. Note that

$$
\left\lceil\frac{m d+b}{m}\right\rceil=d+\left\lceil\frac{b}{m}\right\rceil
$$

and

$$
\left\lceil\frac{x_{1}+d}{m}\right\rceil \leq\left\lceil\frac{x_{1}}{m}\right\rceil+\left\lceil\frac{d}{m}\right\rceil \leq\left\lceil\frac{x_{1}}{m}\right\rceil+d
$$

Clearly it follows that

$$
\tau_{1}\left(x_{1}, x_{2}, \ldots, x_{k-1}, m d+b\right) \geq \tau_{1}\left(x_{1}+d, x_{2}, \ldots, x_{k-1}, b\right)
$$

Moreover, if $m>2$, then

$$
\left\lfloor\frac{m d+b}{m-1}\right\rfloor \geq d+\left\lfloor\frac{b}{m-1}\right\rfloor
$$

and

$$
\left\lfloor\frac{x_{1}+d}{m-1}\right\rfloor \leq\left\lfloor\frac{x_{1}}{m-1}\right\rfloor+\left\lfloor\frac{d}{m-1}\right\rfloor+1 \leq\left\lfloor\frac{x_{1}}{m-1}\right\rfloor+d
$$

That is,

$$
\tau_{2}\left(x_{1}, x_{2}, \ldots, x_{k-1}, m d+b\right) \geq \tau_{2}\left(x_{1}+d, x_{2}, \ldots, x_{k-1}, b\right)
$$

Of course, apparently the above inequality also holds when $m=2$. Finally, note that for each $1 \leq t \leq m-1$,

$$
\tau_{1}^{*}\left(t \cdot \frac{m^{k}-1}{m-1}\right)=\tau_{1}^{*}\left(\sum_{j=1}^{k} t \cdot m^{k-j}\right)=\sum_{j=1}^{k}\left\lceil\frac{t}{m}\right\rceil=k
$$

and

$$
\tau_{2}^{*}\left(m^{k}-1\right)=\tau_{2}^{*}\left(\sum_{j=1}^{k}(m-1) \cdot m^{k-j}\right)=\sum_{j=1}^{k}\left\lfloor\frac{m-1}{m-1}\right\rfloor=k .
$$

Thus applying Proposition 1, we immediately get Theorem 2.
Acknowledgment. I am grateful to two anonymous referees for their very useful comments on this paper. In particular, one of the referees informed me of the references [1] and [2]. I also thank Professor Zhi-Wei Sun for his helpful discussions.

References

[1] http://www.artofproblemsolving.com/Forum/viewtopic.php?f=56\&t=367766.
[2] http://digitsum.narod.ru/E/3.htm.
[3] Z.-W. Sun, On divisibility concerning binomial coefficients, J. Austral. Math. Soc. 93 (2012), 189-201.

HAO PAN
DEPARTMENT OF MATHEMATICS
NANJING UNIVERSITY
NANJING 210093
PEOPLE'S REPUBLIC OF CHINA
E-mail: haopan1979@gmail.com
(Received July 26, 2012; revised June 22, 2013)

[^0]: Mathematics Subject Classification: Primary: 11A63; Secondary: 11A07.

