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An algorithm determining cycles of polynomial mappings
in integral domains

By TADEUSZ PEZDA (WrocÃlaw)

Abstract. In the first part of this paper we show how all normalized cycles could

be found in a domain R, provided all nontrivial solutions in units of u + v = 1 and

u + v + w = 1 are given. Then we give an effective method to find all normalized

cycles in the ring of integers ZK in any algebraic number field K. Finally, we deal with

polynomial orbits.

For a commutative ring S with unity a tuple (x0, x1, . . . , xn−1) of distinct

elements from S is called a (polynomial) cycle if for some f ∈ S[X] we have

f(x0) = x1, f(x1) = x2, . . . , f(xn−2) = xn−1, f(xn−1) = x0. The number n is

called the length of this cycle. A cycle x0, x1, . . . is called normalized provided

x0 = 0, x1 = 1.

In the first section we show how all normalized cycles could be found in a

domain R, provided all nontrivial solutions in units of u+v = 1 and u+v+w = 1

are given. In the second section we give an effective method to find all normalized

cycles in the ring of integers ZK in any algebraic number field K. In the last

section we deal with polynomial orbits.

1. A usefulness of u + v = 1 and u + v + w = 1 in units

In [H-KNa2] the following theorem was established:
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Theorem 0. Let R be an integral domain and assume that for every nonzero

b ∈ R each of the equations: x1 + bx2 = 1, b(x1 + x2) + x3 = 1, x1 + x2 + x3 +

x4 + x5 = 1 has only finitely many nontrivial solutions xi ∈ R×. Then there are

only finitely many normalized cycles in R of a given length.

Let R be a commutative domain in which the equations u + v = 1 and

u+ v + w = 1 have only finitely many solutions in units 6= 1 (this assumption is

satisfied for finitely generated domains of 0 characteristics). Let us define A as

the set of all solutions (αi, βi, γi), i = 1, . . . ,m of α + β + γ = 1 with invertible

α, β, γ distinct from 1, and |A| = m. We also define B as the set of all solutions

(δj , εj), j = 1, . . . ,m1 of δ + ε = 1 with invertible δ, ε, and |B| = m1. In the

following theorem we improve Theorem 0.

Theorem 1. Let R,A,B be as above.

(i) The lengths of cycles in R are bounded by 6(m+ 2)2.

(ii) Fix n ≤ 6(m+ 2)2 and n 6= 4. We define a family of sets Xj as follows.

Put X1 = {1}. For odd n we put X2 = {1 − δj : j = 1, . . . ,m1}. For

even n 6= 6, 12 we put X2 = {1 − αi : i = 1, . . . ,m}. For n = 12 we put

X2 = {1 − αi, 1 + αi : i = 1, . . . ,m}. For n = 6 we put X2 ={1− αi : i=1,

. . . ,m} ∪ {1− ξ, 1− ξ2}, where ξ ∈ R is a primitive third root of unity (if it

exists in R, otherwise we skip the second component).

Having defined X1,X2, we define inductively Xi for i ≥ 3 by

Xi = {a(x− y) + y : a ∈ X2, x ∈ Xi−1, y ∈ Xi−2, x− y is invertible}.
Then for n 6= 4, 6 any normalized cycle (x0 = 0, x1 = 1, x2, . . . , xn−1) of

length n satisfies xi ∈ Xi.

Any normalized cycle (x0 = 0, x1 = 1, x2, . . . , x5) of length 6 satisfies xi ∈ Xi,

except for char R = 3, where, in addition, (0, 1, 1 − u, 2 − u, u − 1, u) is a

cycle for any invertible u 6= 1, 2.

(iii) Any normalized cycle in R of length 4 is of one of the following forms:

(a) (0, 1, 1 − αi, βi), where 1 ≤ i ≤ m and the ratio (1 − αi)/(1 − βi) is

invertible;

(b) (0, 1, 1 + αi, αi), where 1 ≤ i ≤ m and the ratio (1 + αi)/(1 − αi) is

invertible;

(c) (0, 1, 1 + ε, ε), where ε satisfies ε2 + 1 = 0;

(d) (only for char R = 2) (0, 1, 1 + v, v), where v is any unit 6= 1.

Proof. (i) Let (0, 1, x2, . . . , xn−1) be a cycle. Lemma 1 from [Na1] gives that

for any 1 ≤ k ≤ n−1 satisfying (k(k−2), n) = 1 the elements xk, x1−x2 = 1−x2
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and x2 − xk are invertible. Thus for such k the triples (α, β, γ) = (1 − x2, x2 −
xk, xk) are distinct solutions of the 3-unit equation α+ β + γ = 1. Among them

there are at most two trivial solutions, i.e. when k = 1 or x2 − xk = 1. Thus

the number l of integers k ∈ [1, n− 1] satisfying (k(k − 2), n) = 1 cannot exceed

m+ 2. Since

l =





n
∏

p|n

(
1− 2

p

)
if 2 - n,

n

2

∏
2 6=p|n

(
1− 2

p

)
if 2 | n,

(1)

and pα(1− 2/p) ≥ √
pα for prime p ≥ 5 and α ≥ 1, we get m+ 2 ≥ l ≥ √

n/
√
6.

Thus n ≤ 6(m+ 2)2.

(ii) Let n ≥ 3 and let (0, 1, x2, . . . , xn−1) be a cycle in R. Our first aim is to

prove that x2 ∈ X2.

If n is odd, then 1 − x2 = x1 − x2 and x2 are invertible. Thus x2 = 1 − δj
for some 1 ≤ j ≤ m1. Hence x2 ∈ X2.

Assume now that n 6= 4, 6, 12 is even. Then the number l from (1) satisfies

l ≥ 3. So there exists k ∈ [2, n− 1] such that (k(k − 2), n) = 1 and x2 − xk 6= 1.

Hence (1−x2, x2−xk, xk) = (αi, βi, γi) for some 1 ≤ i ≤ m, and x2 ∈ X2 follows.

For n = 12 the triples (1 − x2, x2 − x7, x7) and (1 − x6, x6 − x7, x7) are

solutions of the 3-unit equation α+ β + γ = 1. If the first solution is not trivial,

then 1 − x2 = αi, x2 = 1 − αi for some 1 ≤ i ≤ m. Otherwise x2 − x7 = 1, but

then the second solution is not trivial, and x7 = αi, x2 = 1+αi for some i. Hence

x2 ∈ X2.

Assume that n = 6. Put x6 = 0, x7 = 1 and yi = xi − xi−1 for i ∈ [2, 7].

Hence y2, . . . , y7 are invertible. Put y2 = −u. Assume that x2 6= 1 − αi (i.e.

u 6= αi) for 1 ≤ i ≤ m.

Take any i ∈ [3, 7]. Then x2 ∼ xi − xi−2 = yi−1 + yi, and 1 − u = x2 =

δ(yi−1+yi) for some invertible δ. Thus (u, δyi−1, δyi) is the trivial solution of the

equation α + β + γ = 1 in units. Since u 6= 1, we get δyi−1 = 1 or δyi = 1, and

yi/yi−1 ∈ {−u,−u−1} follows. Since y7 = 1, we get y6 ∈ {−u,−u−1}.
If u = −1, then x2 = 2, x3 = 3 and 0 = x6 = 2 · 3. This gives 2 = 0 or 3 = 0,

i.e. x2 = 0 or x3 = 0, a contradiction. Thus we get u 6= ±1.

For i = 2, . . . , 6 put yi = (−u)ai , with a2 = 1 and |ai − ai−1| = 1 for

i = 3, . . . , 6.

In this way we obtain 16 possibilities for the quadruple (a3, a4, a5, a6).

There are 9 possibilities for (a3, a4, a5, a6) such that (a3, a4, a5, a6) 6=(0, 1, 0, 1)

and a6 ∈ {±1}. In each of these possibilities the condition that 0, 1, x2, . . . , x5 are

distinct is not satisfied. A typical such possibility is (a3, a4, a5, a6) = (0, 1, 0,−1).
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In this case 0 = x6 = 1 − u + 1 − u + 1 − u−1 = (1 − u)(1 + 1 − u−1), and

1+ 1− u−1 = 0 follows. This gives x4 − x1 = −u+1− u = −u(1 + 1− u−1) = 0,

a contradiction.

There are 5 possibilities for (a3, a4, a5, a6) such that a6 ∈ {±3}. In any such

possibility y6 ∈ {−u,−u−1} gives (−u)2 = 1 or (−u)4 = 1. Since we have already

excluded u = ±1, we must have u2+1 = 0, and this gives a contradiction. Take for

example (a3, a4, a5, a6) = (0,−1,−2,−3). Since 0 = x6 = 1−u+1−u−1+u−2−
u−3 = (1−u)(1−u−1−u−3), we obtain 0 = 1−u−1−u−3 = 1−u−3(1+u2) = 1,

a contradiction. In other four cases we proceed in a similar manner.

Let us consider (a3, a4, a5, a6) = (2, 3, 4, 5). Since 0 = x6 = 1−u+u2 −u3 +

u4 − u5 = (1 − u)(1 − u + u2)(1 + u + u2) and x3 = 1 − u + u2 6= 0, we obtain

1 + u+ u2 = 0. Hence u is a primitive third root of unity and x2 = 1− u ∈ X2.

Finally, let (a3, a4, a5, a6)= (0, 1, 0, 1). Then 0=x6 = 3(1−u) and charR = 3

follows. If an invertible u 6= 1, 2 and char R = 3, then (0, 1, 1−u, 2−u, 2−2u,−2u)

is a cycle for f(X) = 1− uX − (u+ 1)/uX(X − 1) + 1/uX(X − 1)(X − (1− u)).

Lemma 1. For n ≥ 3, n 6= 4 let (0, 1, x2, . . . , xn−1) be a cycle in R for

f(X) ∈ R[X]. We extend the indices putting xn = x0 = 0, xn+1 = x1 = 1,

xn+2 = x2, xn+3 = x3 and so on. Assume that for some 2 ≤ r ≤ n + 1 we have

1− y := (xr − xr−2)/(xr−1 − xr−2) /∈ X2. Then x2 /∈ X2.

Proof. We have that (0, 1, 1− y, (xr+1 − xr−2)/(xr−1 − xr−2), . . . ,

(xr+n−3 − xr−2)/(xr−1 − xr−2)) is a cycle for

g(X) = (xr−1 − xr−2)
−1(f((xr−1 − xr−2)X + xr−2) − xr−2) ∈ R[X]. By what

we have already proved, we have n = 6, char R = 3 and (xr+1 − xr−2)/(xr−1 −
xr−2) = 2 − y, . . . , (xr−3 − xr−2)/(xr−1 − xr−2) = y. In particular the triple

((x0−xr−2)/(xr−1−xr−2), (x1−xr−2)/(xr−1−xr−2), (x2−xr−2)/(xr−1−xr−2))

is of one of the following forms (0, 1, 1−y), (1, 1−y, 2−y), . . . , (y−1, y, 0), (y, 0, 1).

This easily gives x2 ∈ {1−y, 1−1/y}. Since 1−y ∈ X2 if and only if 1−1/y ∈ X2,

we are done. ¤

Summing up, for n ≥ 3, n 6= 4 we showed that x2 ∈ X2, except for one

family of exceptions in char R = 3. Using Lemma 1, by simple induction we

obtain xj ∈ Xj for j ≥ 2 provided x2 ∈ X2. If x2 /∈ X2, then char R = 3 and

(0, 1, x2, . . . , x5) is of the form (0, 1, 1 − u, 2 − u, 2 − 2u,−2u), with invertible

u 6= 1, 2.

(iii) Let (0, 1, x2, x3) be a normalized cycle. We see that 1−x2, x3 and x3−x2

are invertible and (1− x2, x3, x2 − x3) is a solution of the 3-unit equation. If this

solution is not trivial, then (1− x2, x3, x2 − x3) = (αi, βi, γi) for some 1 ≤ i ≤ m,

and (0, 1, x2, x3) = (0, 1, 1− αi, βi) follows.
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Otherwise x2 − x3 = 1, and (0, 1, x2, x3) = (0, 1, 1 + v, v) for some unit v.

Since x3 − 1 ∼ x2, we obtain that 1− v = δ(1 + v) for some invertible δ. We see

that (v, δ, δv) is a solution of the 3-unit equation. If this solution is not trivial,

then (0, 1, x2, x3) = (0, 1, 1+αi, αi) for some 1 ≤ i ≤ m. If this solution is trivial,

then δ = 1, char R = 2 or δ = 1/v, v2 +1 = 0. One easily sees that (0, 1, 1+ v, v)

is a cycle if char R = 2 and v 6= 1 is invertible. ¤

Remark 1. Theorem 1 gives (except for two families of cycles if char R

equals 2 or 3) a finite list of tuples which may be cycles. To check whether a

given (0, 1, x2, . . . , xn−1) is a cycle we should calculate the Lagrange interpola-

tion polynomial realizing this cycle, and check whether its coefficients lie in R.

Remark 2. Generally speaking, the numbers of elements of X2,X3, . . . grow

quite rapidly. In some cases one can shrink quite a lot the sets of possible values

for xj ’s. For example if n is odd, (0, 1, x2, . . . , xn−1) is a cycle and 1 ≤ j ≤ n− 1

satisfies (j(j−1), n) = 1, then (xj , 1−xj) ∈ B. One may also restrict the possible

values for xj ’s taking into account for example that x2 ∼ x3 − x1 ∼ x4 − x2 and

some other similar relations.

Remark 3. If (x0, x1, . . . , xn−1) is a cycle, then (0, 1, (x2 − x0)/(x1 − x0),

(x3 − x0)/(x1 − x0), . . . , (xn−1 − x0)/(x1 − x0)) is a normalized cycle of the same

length. Thus having found all normalized cycles we find the set CYCL(R) of all

cycle lengths in R.

Remark 4. From the proof of Theorem 1 we infer that for odd n all normalized

cycles of length n can be found using solely the solutions of the 2-unit equation u+

v = 1. Using the ideas from the proof of Theorem 1(i), we may show that the odd

lengths of cycles are bounded by C(m1+1)(log log(m1+3))2 for some constant C.

Thus finding all normalized cycles of even lengths is much complicated than those

of odd lengths.

Remark 5. Theorem 1 does not lead directly to the determination of CYCL(R)

in the case when R = ZK is the ring of integers of an algebraic number field K,

as there is no known procedure to find all solutions of the equation u+ v+w = 1

in units 6= 1. An exception is formed by fields with unit rank ≤ 1, where all cycle

lengths were determined ([Bo] and [Ba]) for quadratic fields, [Na2] for complex

cubic fields, and [Pe2] for totally complex quartic fields.
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2. An algorithm determining all normalized cycles

Nevertheless, we have found a finitary procedure working in all number

fields K, which finds all normalized cycles in ZK , and therefore also CYCL(ZK).

It is based on some known algorithms from algebraic number theory. In the proof

of Theorem 2 below we propose such a procedure.

Theorem 2. There is an effective procedure, which for a given number

field K finds all normalized cycles in ZK . This procedure also finds CYCL(ZK).

Proof. For any number field K the following things can be effectively cal-

culated:

(A) the degree [K : Q], the discriminant disc (K), the regulator reg (K), the

class number hK , an integral basis, a fundamental system of units, all roots of

unity lying in K. One may effectively check whether a given element from K lies

in ZK .

(B) For any nonzero α, β, γ ∈ ZK let us define TK(α, β; γ) = {(u, v) : αu +

βv = γ, and u, v are invertible}. Then TK(α, β; γ) is finite and may be effectively

found (see [S], [Gy], [EGST]).

(C) For any nonzero a ∈ ZK one can effectively find the set of all (up to

associates) divisors of a. Since for any b | a one has NK/Q(b) | NK/Q(a), this

may be completed by solving a suitable norm form equation. For the solvability

of norm form equations in an effective way see [BSh], [Ga].

Lemma 2. Let K be a number field. Let a1, a2, b1, b2, c1, c2 ∈ ZK be given

and satisfy a1, a2, c1, c2, b1a2 − b2a1 6= 0. Then one can effectively determine a

finite set A1, depending on K and a1, a2, . . . , c2, consisting of all integers u ∈ ZK

satisfying aiu+ bi | ci for i = 1, 2.

Proof. For i = 1, 2 one effectively finds a finite set Di of all (up to asso-

ciates) divisors of ci. Hence a1u + b1 = d1δ1, a2u + b2 = d2δ2 for some di ∈ Di

and invertible δ1, δ2. This gives (δ1, δ2) ∈ TK(d1a2,−d2a1; b1a2 − b2a1), so for

fixed d1, d2 we effectively find possible u. Since di lies in the finite set Di, we are

done. ¤

Let K be a fixed number field. Put N = [K : Q]. Let (r, s) be the signature

of K. Let ζM = exp(2πi/M) be the generator of the group of roots of unity lying

in K and let η1, . . . , ηr+s−1 be any fundamental system of units in K.

Let us define S(n) as the set of all normalized cycles in ZK of length n. In

order to prove the assertion it suffices to bound effectively the n’s such that S(n)
is non-empty, and for n less than this bound to find effectively S(n). According
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to Remark 1, in order to check whether (0, 1, x2, . . . , xn−1) is a cycle it suffices

to check whether the (unique) polynomial h(X) of degree ≤ n − 1 realizing this

cycle, with coefficients in K, has all its coefficients in ZK . The polynomial h(X)

is calculated by the Lagrange interpolation formula, and one may effectively check

whether all its coefficients lie in ZK .

Remark 6. Let B(R) be the biggest element of CYCL(R). It is known that

B(ZK) is bounded from above by some explicit expression depending on N =

[K : Q]. The first such estimation was given in [Na1], where B(ZK) is bounded

from above by some double exponential function in N . It was improved in [Pe1],

where B(ZK) ≤ 2N+1(2N − 1) was established.

For any odd n ≤ 2N+1(2N − 1) we can find effectively all elements from

S(n), as explained in Remark 4, since by (B) all solutions of the 2-unit equation

u+ v = 1 in ZK can be effectively computed.

The procedure of finding all S(k) will be completed provided for all n ≤
2N (2N − 1) we can effectively find S(2n) having at our disposal the finite set

S(n).
Remark 7. Assume that (0, 1, x2, . . . , xn−1) is a cycle in a domain R for a

polynomial f(X) = c0 + c1X + · · · + cn−1X
n−1. Take any nonzero a ∈ R. The

Lagrange interpolation polynomial for the sequence ξa = (0, a, ax2, . . . , axn−1)

equals af((1/a)X). Thus ξa is a cycle in R if and only if a | c2, a2 | c3, . . . ,
an−2 | cn−1.

Remark 8. If (0, 1, y2, y3, . . . , y2n−1) ∈ S(2n) is a cycle for F (X), then

(0, 1, y4/y2, y6/y2, . . . , y2n−2/y2) is a cycle of length n for (1/y2)(F ◦ F )(y2X) ∈
R[X].

Owing to the last remark in order to find S(2n) it suffices to find effectively

for a fixed (0, 1, x2, . . . , xn−1) ∈ S(n) all (0, 1, y2, . . . , y2n−1) ∈ S(2n) such that

y2k/y2 = xk for all 2 ≤ k ≤ n− 1 (informally speaking (0, 1, x2, . . . , xn−1) is pro-

portional to (0, y2, y4, . . . , y2n−2)). Let us call such (0, 1, y2, . . . , y2n−1) connected

to (0, 1, x2, . . . , xn−1).

Lemma 3. Let n be given and assume that the set S(n) is explicitly known.

If for each sequence ξ = (0, 1, x2, . . . , xn−1) ∈ S(n) one can effectively construct

a finite set Y = Y(ξ,K) such that every cycle η = (0, 1, y2, . . . , y2n−1), connected

to ξ satisfies y2 ∈ Y, then there exists an effective procedure to determine S(2n).
Such a construction exists, provided one can either effectively find a nonzero

b ∈ ZK such that each cycle η connected to ξ satisfies y2 | b, or one can find
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effectively nonzero b, c ∈ ZK with b 6= 1 such that each cycle η connected to ξ

satisfies y2b− 1 | c.
Proof. Suppose that we found such Y. Fix any a ∈ Y. If η is a cy-

cle with y2 = a, connected to ξ, then y2k = axk for all 2 ≤ k ≤ n − 1.

Thus y2, y4, y6, . . . , y2n−2 are uniquely determined by a and ξ. Let TK(1, 1; a) =

{(u1, v1), . . . , (ut, vt)}.
Take any 1 ≤ k ≤ n − 1, and consider y2k+1. Then y2k+2 − y2k+1, y2k+1 −

y2k, xk+1−xk are units, and ((y2k+2− y2k+1)/(xk+1−xk), (y2k+1− y2k)/(xk+1−
xk)) ∈ TK(1, 1; a). This gives y2k+1 = axk+(xk+1−xk)vi for some 1 ≤ i ≤ t. Thus

we have only finitely many and effectively computable possibilities for the values

y3, y5, . . . , y2n−1. Having a finite number of possibilities for cycles connected to

(0, 1, x2, . . . , xn−1) we pick those which are in fact cycles.

Let b 6= 0 be effectively computable and suppose that for all cycles η con-

nected to (0, 1, . . . , xn−1) we have y2 | b. Such a set Y exists by Lemma 2 in view

of y2 − 1 | 1.
Let b 6= 0, 1; c 6= 0 be effectively computable and suppose that for all cycles

η connected to ξ we have y2b− 1 | c. Such a set Y exists by Lemma 2 in view of

y2 − 1 | 1. ¤

Let ξ = (0, 1, x2, . . . , xn−1) ∈ S(n) be fixed. Let η = (0, 1, y2, y3, . . . , y2n−1)

be connected to ξ. Put y2 = a. We will show two ways of finding a set Y fulfilling

the condition of Lemma 3. The sets Y obtained in the two ways below may differ.

First way. Let f(X) = c0+c1X+c2X
2+· · ·+cn−1X

n−1 be the unique poly-

nomial of degree ≤ n− 1 realizing ξ. Since (0, y2, y4, . . . , y2n−2) = (0, a, ax2, . . . ,

axn−1) is a cycle for (f ◦f)(X), by Remark 7 we get a | c2, a2 | c3, . . . , an−2 | cn−1.

If at least one number from c2, c3, . . . , cn−1 is nonzero we are done by Lemma 3.

Second way. We have y4 − y1 = y4 − 1 | y6 − y0 = y6, and equivalently

ax2 − 1 | ax3. Hence ax2 − 1 | ax3x2 and ax2 − 1 | x3 follows. If n > 3, then

x2 6= 0, 1; x3 6= 0, and we are done by Lemma 3.

For n ≥ 4 the set Y may be established by the second way.

Let n = 3. If the Lagrange interpolation polynomial f(X) realizing ξ =

(0, 1, x2) is of degree 2, then we establish Y using the first way. Assume that

f(X) = c0 + c1X realizes the cycle ξ. Then c0 = 1 and (since f◦3(0) = 0)

1 + c1 + c21 = 0. Thus c1 is a primitive third root of unity.

It remains therefore to consider ξ of the form ξ = (0, 1, 1+ ζ), where in what

follows ζ is a primitive third root of unity. Let η = (0, 1, y2, . . . , y5) be a cycle

connected to (0, 1, 1+ζ). We may write η in the form (0, 1, a, 1+b, a(1+ζ), 1+bz)

for some a, b, z ∈ ZK . Let g(X) be a polynomial realizing the cycle η.
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We see that (0, 1, z) is a cycle for 1/b (g◦2(bX + 1) − 1) ∈ ZK [X]. Thus

(0, 1, z) ∈ S(3).
Fix z 6= 1 + ζ, 1 + ζ2 such that (0, 1, z) ∈ S(3). Owing to the invertibility of

a−1 we obtain that η1 = (0, 1, b/(a−1), (a(1+ζ)−1)/(a−1), bz/(a−1),−1/(a−1))

is a cycle (for 1/(a − 1) (g((a − 1)X + 1) − 1) ∈ ZK [X]) connected to (0, 1, z).

Since z − 1 is not a primitive third root of unity, by the previous part of the

proof we conclude that η1 can be effectively found, and therefore also a, b can be

effectively found.

It remains therefore to consider the cases z = 1 + ζ and z = 1 + ζ2.

First, let z = 1+ζ2, and consider (0, 1, a, 1+b, a(1+ζ), 1+b(1+ζ2)) ∈ S(6).
Since y4 − 1 | y3, y5 − y2 we have a(1+ ζ)− 1 | 1+ b, 1+ b(1+ ζ2)− a. This easily

gives a(1 + ζ)− 1 | 2 + ζ2 6= 0, which together with a− 1 | 1 shows by Lemma 2

that a belongs to an effectively computable and finite set.

Secondly, let z = 1+ζ, and consider (0, 1, a, 1+b, a(1+ζ), 1+b(1+ζ)) ∈ S(6)
with a ∼ b. Since y2 − y3 and y4 − y5 are units, we get that a − 1 − b and

a(1+ζ)−(1+b(1+ζ)) are units. This gives that (a−1−b, a(1+ζ)−(1+b(1+ζ))) lies

in the finite and effectively computable set TK(1, ζ; ζ2) = {(u1, v1), . . . , (ut, vt)}.
Put a− 1− b = ui for some i ≤ t.

If ui 6= −1, then a | a − b = ui + 1, which together with a − 1 | 1 shows by

Lemma 2 that a belongs to an effectively computable and finite set.

Let ui = −1, or equivalently a = b, and consider (0, 1, a, 1 + a, a(1 + ζ), 1 +

a(1 + ζ)) ∈ S(6). Then a− 1 and 1 + a(1 + ζ) are units, and (a− 1, 1 + a(1 + ζ))

belongs to the finite and effectively computable set TK(1, ζ; ζ − 1).

In this way we showed for any n ≥ 3 that having at our disposal S(n) we can
effectively find S(2n). It remains to find effectively S(4), and this case requires a

slightly different approach.

Let us arbitrary order the units of the form ζi0Mηi11 · . . . · ηir+s−1

r+s−1 , with 0 ≤
i0, i1, . . . , ir+s−1 ≤ 1 and denote them as σ1, σ2, . . . , σ2r+s . Any unit δ may be

uniquely written in the form σiε
2 for a unit ε and some i ∈ [1, 2r+s].

Let (0, 1, x2, x3) be a cycle. Since x2 − 1 and x3 are units, we may write

x2 = 1 + δ, x3 = ε for some invertible δ, ε. Thus (0, 1, x2, x3) = (0, 1, 1 + δ, ε).

Since x2 ∼ 1 − x3, we may write 1 − ε = ψ(1 + δ) for some unit ψ. Since

x2 − x3 is invertible, (x2 − x3)/ψ = 1 + δ + δ/ψ is invertible as well. In view of

δ + δ2 − δ/ψ = −δε/ψ, we then obtain that

τ1 := 1 + δ +
δ

ψ
; τ2 := δ + δ2 − δ

ψ
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are units. Write τ1 = σiρ
2, for some 1 ≤ i ≤ 2r+s and a unit ρ.

We see that τ2 = (δ+1)2−τ1 = (δ+1)2−σiρ
2 = (δ+1+

√
σiρ)(δ+1−√

σiρ)

is invertible. Thus δ + 1 +
√
σiρ and δ + 1−√

σiρ are units in ZK(
√
σi). Hence(

δ + 1√
σiρ

+ 1,
δ + 1√
σiρ

− 1

)
∈ TK(

√
σi)(1,−1; 2).

For i = 1, . . . , 2r+s the sets TK(
√
σi)(1,−1; 2) are finite and effectively computable.

Moreover, having K we may effectively find all K(
√
σi).

Let TK(
√
σi)(1,−1; 2) = {(ui1 , vi1), . . . , (uij(i) , vij(i))}. Hence (δ+1)/(

√
σiρ)+

1 = uij for some j ≤ j(i). Thus (uij − 1)
√
σi ∈ K, and therefore (δ, ρ) ∈

TK(1,
√
σi(1− uij );−1).

For any i ≤ 2r+s and uij satisfying (uij − 1)
√
σi ∈ K we effectively find

TK(1,
√
σi(1 − uij );−1), and this gives that all possible x2 − 1 = δ belong to a

finite and effectively computable set.

Having found possibilities for δ and observing that (τ1,−δ/ψ)∈TK(1, 1; 1+δ),

we finally obtain that x3 = ε = 1 − ψ(1 + δ) also belongs to some finite and

effectively computable set. The proof of Theorem 2 is thus completed. ¤

3. Finite orbits

In a domain R a tuple (yk, yk−1, . . . , y0 = x0, x1, . . . , xn−1) of distinct ele-

ments from R is called a (finite) orbit provided there exists a polynomial f(X) ∈
R[X] realizing this orbit, i.e. f(yk) = yk−1, f(yk−1) = yk−2, . . . , f(y1) = y0 = x0,

f(x0) = x1, f(x1) = x2, . . . , f(xn−1) = x0. We underlined the unique cycle

contained in the orbit.

The counterpart of the second part of Remark 1 holds also for orbits.

The number n+k is called the length of this orbit, the cycle (x0, x1, . . . , xn−1)

will be called the head of this orbit (of length n), (yk, yk−1, . . . , y0) will be called

the tail of this orbit (of length k (not k+ 1)), and finally (n, k) will be called the

type of this orbit.

A cycle (x0, x1, . . . , xn−1) in R is called linear, provided it is realized by some

polynomial f(X) ∈ R[X] of degree ≤ 1. We call an orbit linear provided its head

is linear.

If (yk, . . . , y0 = x0, . . . , xn−1) is an orbit in R, then clearly for any invertible

a ∈ R and any b ∈ R the tuple (ayk + b, . . . , ay0 + b = ax0 + b, . . . , axn−1 + b) is

also an orbit in R. Two such orbits will be called equivalent.

In [H-KNa2] it was established that in any finitely generated domain of char-

acteristic zero there is only finitely many inequivalent nonlinear orbits.



An algorithm determining cycles of polynomial mappings. . . 409

Theorem 3. Let K be an algebraic number field of degree N . Then for

polynomial orbits in ZK the following holds.

(i) The lengths of orbits are bounded by some quantity depending solely on N .

(ii) There are only finitely many inequivalent nonlinear orbits and all of them

can be effectively found.

(iii) Any linear orbit with tail of length 0 is equivalent to

(0, a, a(1 + ζn), . . . , a(1 + ζn + ζ2n + · · ·+ ζn−2
n )) for some nonzero a ∈ ZK

and some primitive n-th root of unity ζn ∈ ZK .

(iv) There are only finitely many inequivalent linear orbits with head of length

≥ 4 and tail of length ≥ 1 and all of them can be effectively found.

(v) Any linear orbit of type (3, 1) is equivalent to (1, 0, 1 + ε, (1 + ε)(1 + ζ3)) (this

is the orbit for f(X) = (X − 1)(X − (1 + ε)(1 + ζ3))(−ζ3 + (ζ3/ε)X), and ζ3
is a primitive third root of unity) for any unit ε 6= −1.

(vi) There are only finitely many inequivalent linear orbits of type (3, k) with

k ≥ 2, and all of them can be effectively found.

(vii) Any orbit of type (2, 1) is equivalent to (1, 0, d) for some d ∈ ZK , d 6= 0, 1

(this is the orbit for f(X) = (d−X)(1−X)).

(viii) Any orbit of type (2, 2) is equivalent to (1+ ε, 1, 0, 1 + ε+ δ) for some invert-

ible ε, δ ∈ ZK , ε 6= −1, δ 6= −ε,−1 − ε; (1 + ε) | δ − 1 (this is the orbit for

f(X) = (1+ε+δ−X)(1−X)−(1 + εδ)/(εδ(1 + ε))X(X−1)(X−(1+ε+δ))).

(ix) (a, b) is the orbit of type (1, 1) for any a 6= b (for f(X) = b).

(x) Any orbit of type (1, 2) is equivalent to (d, d(1 − ε), 0) for some nonzero

d ∈ ZK and invertible ε satisfying d | 1 − ε (this is the orbit for f(X) =

(1− ε)/(εd)(X − d(1− ε))X).

(xi) There are only finitely many inequivalent orbits with head of length 1 or 2

and tail of length ≥ 3. One can effectively (up to equivalence) find all of them

if and only if one finds an effective procedure for determining all solutions of

u+ v + w = 1, 1− u | 1− v, with invertible u, v, w ∈ ZK , u, v, w 6= 1.

Proof. Any orbit is equivalent to (yk, . . . , y1, y0 = 0, a, ax2, . . . , axn−1),

where (0, 1, x2, . . . , xn−1) is a normalized cycle, and we may restrict consider-

ations to orbits of this form.

(i) In [NaPe] it was emphasized that the lengths of orbits in ZK are bounded

by some quantity depending solely on B(ZK) and the number of nontrivial solu-

tions of u+ v+w = 1 in units (the latter number is bounded by some expression

depending solely on [K : Q] (see [EG])).
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Lemma 4. Fix a, b ∈ ZK , a 6= 0, b 6= 0, a 6= b.

(α) There are only finitely many orbits with head of length ≥ 3 of the form

(yk, . . . , y0 = 0, a, . . .), and all of them can be effectively found.

(β) There are only finitely many orbits of the form (yk, . . . , y1 = b, y0 = 0, a),

and all of them can be effectively found.

(γ) There are only finitely many orbits of the form (yk, . . . , y1 = a, y0 = 0), and

all of them can be effectively found.

Proof. (α) Put (x0, x1, . . . , xn−1)= (0, a, . . . ). Then (0, 1, x2/x1, x3/x1, . . . )

is a normalized cycle. By Theorem 2 there is only finitely many possibilities for

n ≥ 3, then for x2, . . . , xn−1 and they can be effectively computed. It suffices

then to deal with tails, which have bounded lengths by (i) of Theorem 3.

Since for x2 there is only finitely many possibilities, we may fix x2 = c. The

assertion follows then from Theorem 4 of [H-KNa2], as all solutions of the unit

equations a1u + b1v = c1 (with nonzero a1, b1, c1) can be found in an effective

way. One may also use Lemma 2.

(β) and (γ) follow immediately from Theorem 3(i) and Theorem 4 of

[H-KNa2]. ¤

(ii) Since we are considering orbits up to equivalence, by Theorem 2, Re-

mark 7 and (C) we may assume that the element a from a nonlinear orbit

(yk, . . . , y1, y0 = 0, a, ax2, . . . , axn−1) belongs to some effectively computable and

finite set Y. By Lemma 4(α) we are done.

(iii) It is clear.

(iv), (v) Let (b, 0, a, a(1 + ζn), . . . , a(1 + ζn + · · ·+ ζn−2
n )) be a linear orbit

(for a polynomial f(X) ∈ ZK [X]) with head of length n ≥ 3, and ζn is a primitive

n-th root of unity. Thus f(X) is of the form f(X) = ζnX + a+ h(X)X(X − a)·
. . .·(X−a(1+ζn+· · ·+ζn−2

n )) for some h(X) ∈ ZK [X]. Since b−0 | f(b)−f(0) =

0 − a we may write a = bd, for some d ∈ ZK .In view of h(b) ∈ ZK we get

bn−1(1− d)(1− d(1+ ζn)) · . . . · (1− d(1+ ζn+ · · ·+ ζn−2
n )) | ζn+ d 6= 0 (otherwise

y1 = xn−1).

For n ≥ 4 we then get 1 − d | d + ζn and (1 − d(1 + ζn)) | d + ζn, which

gives 1 − d | ζn + 1 and (1 − d(1 + ζn)) | ζn(1 + ζn) + 1 6= 0. Lemma 2 gives

d ∈ Y for some finite and effectively computable Y. Fix any d ∈ Y , and we

obtain b | bn−1 | ζn + d. By (C), b is associated to an element of some finite and

effectively computable Y1. Thus our orbit is equivalent to some orbit of the form

(b1, 0, b1d, . . .) with b1 ∈ Y1, d ∈ Y. Since there is only finitely many possibilities

for b1d, (iv) follows from Lemma 4(α).
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Let n = 3. Then b2(1− d)(1− d(1 + ζ3)) | d+ ζ3, which gives that b2(1− d)

is invertible. So our orbit is equivalent to (1, 0, d, d(1 + ζ3)) with invertible d− 1.

This settles (v).

(vi) Consider a linear orbit (yk, . . . , y1, 0, x1, x2) of type (3, k) with some

k ≥ 2. By (v) we may assume that y1 = 1, x1 = d, x2 = d(1 + ζ3), with

d = 1 + ε for some invertible ε 6= −1. So (y2, 1, 0, d, d(1 + ζ3)) is an orbit. This

gives y2 − 1 | 1 − 0 = 1; y2 = y2 − 0 | 1 − (1 + ε) | 1. By Lemma 2, we obtain

y2 ∈ Y, for some finite and effectively computable Y.

Fix y2 ∈ Y \ {−ζ3}. Then y2 − d | d(1 + ζ3)− 1, and y2 − d | ζ3 + y2 follows.

This together with d− 1 | 1, by Lemma 2, gives that d belongs to some finite and

effectively computable set. Lemma 4(α) gives the assertion for such y2.

Assume now that y2 = −ζ3. Then d(1+ζ3)−(−ζ3) | 1−0 = 1. This together

with d − 1 | 1, by Lemma 2, gives that d belongs to some finite and effectively

computable set. Lemma 4(α ) gives the assertion for y2 = −ζ3. This settles (vi).

(vii) Let (c, 0, b) be an orbit for f(X). So f(X) = b−X +h(X)X(X − b) for

some h(X) ∈ ZK [X]. This gives c(c− b) | b− c, and c is invertible. We may thus

assume that c = 1.

(viii) By (vii) any orbit of type (2, 2) is equivalent to (m, 1, 0, d). This gives

m− 1 | 1; m− d | 1 and m | d− 1.

(ix) It is obvious.

(x) Let (d, c, 0) be an orbit for f(X). So f(X) = X(X − c)h(X) for some

h(X) ∈ ZK [X]. This gives d(d − c) | c, and d ∼ d − c follows. Put d − c = dε.

The rest is obvious.

(xi) Let us first deal with orbits with head of length 1.

Suppose, for the time being, that we have at our disposal all orbits of the

form (1, a, b, 0), and there is only finitely many of them. (∗)
Let (m, c, d, 0) be an orbit for some f(X). We see that (1, c/m, d/m, 0) is

the orbit for (1/m)f(mX) ∈ ZK [X]. Thus (1, c/m, d/m, 0) = (1, a, b, 0), with

specified possible values for a, b. Since (c, d, 0) is the orbit, by (x), we have

m | c | (d/c) = (b/a). This gives d = m(d/m) | (b/a)b = (b2)/a. Thus in

any orbit of the form (yk, . . . , y1, 0) (with k ≥ 3) the number y1 (still under our

assumption (∗)) may assume (up to associates) only finitely many known values.

By Lemma 4(γ) we then would be able to find effectively (up to equivalence) all

orbits with head of length 1 and tail of length ≥ 3.

So let (1, a, b, 0) be an orbit. We easily obtain 1 − a | a; a | b; a − b | b;
1 − b | b. This gives a = 1 − δ, b = a(1 − ε), b = 1 − ψ for some invertible

δ, ε, ψ 6= 1, and by (x) we get 1 − δ | 1 − ε. This gives ψ = δ + ε − δε and
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1/δ + 1/ε − ψ/(δε) = 1 follows. Hence (1/δ, 1/ε,−ψ/(δε)) is the solution of the

3-unit equation u+ v + w = 1 satisfying (1− 1/δ) | (1− 1/ε).

If this solution is trivial, then δ = −ε and we obtain 1−δ | 1+δ, i.e. 1−δ | 2.
By Lemma 2, we may effectively find all such δ, and there is only finitely many

of them.

Conversely, suppose that (u, v, w) is a nontrivial solution of the 3-unit equa-

tion u+ v + w = 1 with u− 1 | v − 1. Then (1, 1− 1/u, (1− 1/u)(1− 1/v), 0) is

the orbit for

X

(
X −

(
1− 1

u

)(
1− 1

v

))

×
(
u(v − 1)

u− 1
+

u(v − uv2 + u2 − u)

(u+ v − 1)(u− 1)

(
X −

(
1− 1

u

)))
∈ ZK [X].

Notice that if (u1, v1, w1) 6= (u2, v2, w2), then (1, 1 − 1/u1, (1 − 1/u1)(1 −
1/v1), 0) is not equivalent to (1, 1− 1/u2, (1− 1/u2)(1− 1/v2), 0).

In this way we obtained the one-to-one correspondence between the set of all

nontrivial solutions of the 3-unit equation u+ v + w = 1 satisfying u− 1 | v − 1

and a certain subset S of orbits of the form (1, a, b, 0). Since any orbit of the

form (1, a, b, 0) lying out of S is effectively computable we are done in the case of

orbits with head of length 1.

Now we deal with orbits with head of length 2.

By (viii) and Lemma 4(β) it suffices to find all orbits of the form (t,m, 1, 0, d)

provided we have all nontrivial solutions of the 3-unit equation u + v + w = 1

with u− 1 | v − 1.

Assume that we have all such solutions of this 3-unit equation at our disposal.

(∗∗)
Since t − m | m − 1 | 1 − 0 = 1; t − d | m − 0 = m; t − 1 | m − 0 = m;

t = t− 0 | m− d | 1− 0 = 1, we obtain that t, t−m, m− 1, m− d are invertible

and 1 − t | m. Hence (t, 1 − m,m − t) is the solution of the 3-unit equation

u+ v + w = 1 satisfying t− 1 | (1−m)− 1 = −m.

If this solution is nontrivial, then by (∗∗) the numbers t, m belong to some

finite and explicitly given set.

If this solution is trivial, then t = m− 1. This gives m− 2 | m, i.e. m− 2 | 2
and m− 1 | 1. By Lemma 2 we obtain that for such m there is only finitely many

possibilities, and they can be effectively computed.

All in all, there is only finitely many possibilities for t, m, and all these

possibilities can be effectively computed assuming (∗∗). Fix any possible t, m.
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Then t − d | m; m − d | 1 and by Lemma 2 we may compute all possible values

for d. This settles (xi). ¤

Remark 9. In the proof of Theorem 3(xi) we showed that in terms of effective

computability finding (up to equivalence) all orbits of type (1, k) (with k ≥ 3) in

an effective way is equivalent to finding in an effective way all nontrivial solutions

of u+ v+w = 1 satisfying u− 1 | v− 1. One sees that finding in an effective way

all orbits (up to equivalence) of type (2, k) (with k ≥ 3) is equivalent to finding

in an effective way all nontrivial solutions of u+ v+w = 1 satisfying u− 1 | v− 1

and some other condition.
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