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Two estimates concerning classical diophantine
approximation constants

By JOHANNES SCHLEISCHITZ (Vienna)

Abstract. In this paper we aim to prove two inequalities involving the classical

approximation constants λn(ζ), λ̂n(ζ) that stem from the simultaneous approximation

problem |ζjx−yj |, 1 ≤ j ≤ n, on the one side and the constants w∗
n(ζ), ŵ

∗
n(ζ) connected

to approximation with algebraic numbers of degree ≤ n on the other side. We concretely

prove w∗
n(ζ)λ̂n(ζ) ≥ 1 and ŵ∗

n(ζ)λn(ζ) ≥ 1. The first result is due to H. Davenport and

W. Schmidt, however our method of proving it allows to derive the other inequality as

a dual result.

Finally we will discuss estimates of w∗
n(ζ), ŵ

∗
n(ζ) uniformly in ζ depending on

wn(ζ), ŵn(ζ) or only on n as an application.

1. Introduction

1.1. Approximation constants λn(ζ), λ̂n(ζ) and w∗
n(ζ), ŵ

∗
n(ζ). For a fixed

positive integer n and a vector ζ = (ζ1, ζ2, . . . , ζn) ∈ Rn define the approximation

constants λn,j(ζ), 1 ≤ j ≤ n + 1, as the supremum of all real numbers ν, such

that the system

|x| ≤ X, |ζix− yi| ≤ X−ν , 1 ≤ i ≤ n, (1.1)

has j linearly independent solution (x, y1, . . . , yn) for certain arbitrary large va-

lues of X. Similarly, define λ̂n,j(ζ), 1 ≤ j ≤ n + 1 as the supremum of all ν,

such that system (1.1) has j linearly independent solutions for all sufficiently
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large X. Clearly λ̂n,j(ζ) ≤ λn,j(ζ) for all 1 ≤ j ≤ n + 1. In the special case

ζ = (ζ, ζ2, . . . , ζn) for some real number ζ, which will be in the focus of our

study, let λn,j(ζ) := λn,j(ζ) and similarly λ̂n,j(ζ) := λ̂n,j(ζ). For convenient

writing we further put λn(ζ) := λn,1(ζ), λ̂n(ζ) := λ̂n,1(ζ). In particular λn(ζ)

(resp. λ̂n(ζ)) is the supremum of all ν such that (1.1) with ζi = ζi has infinitely

many solutions respectively a solution for all sufficiently large X.

The approximation constants w∗
n(ζ), ŵ

∗
n(ζ) quantify how good a real number

can be approximated by algebraic numbers of degree at most n. For a polynomial

P ∈ Z[T ] define H(P ) as the largest absolute value of its coefficients and for an

algebraic number α define H(α) := H(P ) for the minimal polynomial P of α

with relatively prime integral coefficients. The constants w∗
n(ζ) are given by the

supremum of all real ν such that

|ζ − α| ≤ H(α)−ν−1 (1.2)

has infintely many solutions α algebraic of degree ≤ n.

The uniform aproximation constants ŵ∗
n(ζ) are defined as the supremum of

all real numbers ν, such that

|ζ − α| ≤ H(α)−1N−ν (1.3)

has a solution α for any sufficiently large value of N , where α is algebraic of

degree ≤ n and H(α) ≤ N . Note that by this definition we immediately see that

these quantities ŵ∗
n(ζ) can be estimated below by the supremum of all real ν such

that

|ζ − α| ≤ N−ν−1 (1.4)

has a solution α algebraic of degree ≤ n and H(α) ≤ N for any sufficiently

large N .

Clearly w∗
n(ζ), ŵ

∗
n(ζ) are monotonically increasing as n increases. For w∗

n(ζ)

it is known that we have
n+ 1

2
≤ w∗

n(ζ) (1.5)

for all ζ ∈ R not algebraic of degree ≤ n as a consequence of (1.11) and (3.1) we

will establish later.

It is however conjectured that even the stronger lower bound w∗
n(ζ) ≥ n

holds for any ζ not algebraic of degree ≤ n. It is well known that n is the

optimal possible uniform (in ζ) lower bound in (1.5), as for a generic ζ we have

w∗
n(ζ) = ŵ∗

n(ζ) = n, see Theorem 4.1 in [4] for example.
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1.2. Related approximation problems and constants. We will only treat

the case ζ = (ζ, ζ2, . . . , ζn) in the sequel which is sufficient for our concern,

although most of the following results in the introduction hold for any vector

ζ ∈ Rn.

In order to study the values λn(ζ), λ̂n(ζ) we first introduce a closely connected

Diophantine approximation problem. Consider the system

|x| ≤ Q1+θ

|ζx− y1| ≤ Q− 1
n+θ

|ζ2x− y2| ≤ Q− 1
n+θ

...
...

...

|ζnx− yn| ≤ Q− 1
n+θ, (1.6)

parametrised by Q > 1. Let ψn,j(Q) be the infimum of all θ such that (1.6)

has j linearly independent solutions. The functions ψn,j(Q) can alternatively be

interpreted via successive minima. Consider the lattice Λ = {(x, ζx − y1, . . . ,

ζnx − yn) : x, y1, . . . yn ∈ Z} and the convex body (in fact the parallelepiped)

K(Q) defined as the set of points (z1, z2, . . . , zn+1) ∈ Rn+1 with

|z1| ≤ Q (1.7)

|zi| ≤ Q− 1
n , 2 ≤ i ≤ n+ 1. (1.8)

Now define λn,j(Q) to be the j-th successive minimum of K(Q) with respect

to Λ, which by definition is the smallest value λ such that λ · K(Q) contains

(at least) j linearly independent lattice points. (Note: using the parameter Q

instead of ζ or explicitely talking about successive minma, we will always be able

to distinguish the functions λn,j(Q) from the quantities λn,j(ζ) in the sequel, so

no misunderstandings can occur.) Then we have

Qψn,j(Q) = λn,j(Q).

Put ψ
n,j

:= lim infQ→∞ ψn,j(Q), ψn,j := lim supQ→∞ ψn,j(Q). We have −1 ≤
ψn,j(Q) ≤ 1

n for all Q > 1 and 1 ≤ j ≤ n + 1 (which is implicitely derived

rigurously from Section 4 in [12] considering the functions Lj arising from ψn,j)

and consequently

−1 ≤ ψ
n,1

≤ ψ
n,2

≤ · · · ≤ ψ
n,n+1

≤ 1

n

−1 ≤ ψn,1 ≤ ψn,2 ≤ · · · ≤ ψn,n+1 ≤ 1

n
.
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A crucial observation for the study of the functions ψn,j(Q) (a special case of

Theorem 1.1 in [12]) is that for ζ not algebraic of degree ≤ n and every 1 ≤ j ≤ n

there are infinitely many Q with ψn,j(Q) = ψn,j+1(Q). Thus in particular

ψ
n,j+1

≤ ψn,j , 1 ≤ j ≤ n. (1.9)

An easy generalisation of Theorem 1.4 in [12] states that we have

(
1+λn,j(ζ)

)(
1+ψ

n,j

)
=
(
1+λ̂n,j(ζ)

)(
1+ψn,j

)
=

n+ 1

n
, 1 ≤ j ≤ n+1, (1.10)

which enables us to easily compute the value ψ
n,j

from λn,j(ζ) such as ψj from

λ̂n,j(ζ) and vice versa.

The approximation constants w∗
n(ζ), ŵ

∗
n(ζ) are in close connection to the dual

problem of approximation of a linear form, which in our case is just x + ζy1 +

· · ·+ ζnyn.

First, define the approximation constants wn,j(ζ) (resp. ŵn,j(ζ)) as the sup-

remum of all ν ∈ R, such that the system

|yi| ≤ X, |x+ ζy1 + · · ·+ ζnyn| ≤ X−ν

has j linearly independent solutions (x, y1, . . . , yn) for certain arbitrary large va-

lues ofX (respectively all sufficiently largeX) and put wn(ζ) := wn,1(ζ), ŵn(ζ) :=

ŵn,1(ζ). In virtue of Dirichlet’s Theorem we have

wn(ζ) ≥ ŵn(ζ) ≥ n. (1.11)

Given the dual lattice Λ∗ and the convex bodies K∗(Q) dual to K(Q), namely

Λ∗ := {(x+ ζ1y1 + ζ2y2 + · · ·+ ζnyn, y1, y2, . . . , yn) : x, y1, . . . , yn ∈ Z} (1.12)

K∗(Q) := {x = (x, y1, . . . , yn) : |〈x,z〉| ≤ 1 ∀z ∈ K(Q)} (1.13)

we can define the functions λ∗
n,j(Q) as the successive minima of K∗(Q) with

respect to Λ∗. Put

Qψ∗
n,j(Q) = λ∗

n,j(Q).

(Note: The ∗ in K∗,Λ∗, λ∗
n,j is in no direct connection to the ∗ in w∗

n(ζ) or ŵ
∗
n(ζ).)

Furthermore we denote by η∗n,j(Q) the successive minima of K(Q) (instead of
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K∗(Q)) with respect to Λ∗, which correspond to the successive minima of the

convex body K+(Q) with respect to the lattice Λ+ given by

Λ+ := Zn+1 (1.14)

K+(Q) :=
{
x ∈ Rn+1 : |yt| ≤ Q

1
n 1 ≤ t ≤ n,

|x+ ζy1 + · · ·+ ζnyn| ≤ Q−1
}

(1.15)

and define functions ν∗n,j(Q) by Qν∗
n,j(Q) = η∗n,j(Q). If we put

ψ∗
n,j

:= lim infQ→∞ ψ∗
n,j(Q), ψ

∗
n,j := lim supQ→∞ ψ∗

n,j(Q) and similarly define

ν∗n,j , ν
∗
n,j the obvious inequalities K∗(Q) ⊂ K(Q) ⊂ (n+ 1)K∗(Q) yield

lim
Q→∞

ψ∗
n,j(Q)− ν∗n,j(Q) = 0 (1.16)

and thus

ψ∗
n,j

= ν∗n,j , ψ
∗
n,j = ν∗n,j . (1.17)

Combined with Mahler’s inequality λn,jλ
∗
n,n+2−j ³ 1 for 1 ≤ j ≤ n+ 1 we have

ψ
n,j

= −ψ
∗
n,n+2−j = −ν∗n,n+2−j , ψn,j = −ψ∗

n,n+2−j
= −ν∗n,n+2−j . (1.18)

It will be more convenient to work with the functions ν∗n,j in the sequel. Again

by generalizing Theorem 1.4 in [12] we have

(wn,j(ζ) + 1)

(
1

n
+ ψ∗

n,j

)
= (ŵn,j(ζ) + 1)

(
1

n
+ ψ

∗
n,j

)
=

n+ 1

n
(1.19)

for 1 ≤ j ≤ n+ 1, and obviously by (1.17) we can write ν∗j resp. ν∗j instead of ψ∗
j

resp. ψ
∗
j .

A main ingredient in the proof of the Theorem 1.2 will be Minkowski’s The-

orem, which asserts that for a convex body K ∈ Rn+1, a lattice Λ and corres-

ponding successive minima λn,j we have

2n+1

(n+ 1)!

det(Λ)

vol(K)
≤ λn,1λn,2 . . . λn,n+1 ≤ 2n+1 det(Λ)

vol(K)
. (1.20)

For a proof see Theorem 1 page 60 and Theorem 2 page 62 in [8].

In our special case the thickness of the parallelepipeds K+(Q) in direction

of the x-axis in every point (x, y1, . . . , yn) with (y1, y2, . . . , yn) ∈ [−Q
1
n , Q

1
n

]n
is 2Q−1, so we have vol(K+(Q)) =

(
2Q

1
n

)n · 2Q−1 = 2n+1 for all Q > 1, and
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furthermore det(Λ+) = det(Zn+1) = 1. Since η∗n,j are the successive minima of

K+(Q) with respect to Λ+, (1.20) leads to

1

(n+ 1)!
≤ η∗n,1(Q)η∗n,2(Q) · · · η∗n,n+1(Q) ≤ 1.

Hence by taking logarithms, there is a constant C depending only on n such that

∣∣∣∣∣
n+1∑

i=1

ν∗n,i(Q)

∣∣∣∣∣ ≤
C(n)

log(Q)
. (1.21)

The constants w∗
n(ζ), ŵ

∗
n(ζ) are closely linked to the constants wn,j(ζ), ŵn,j(ζ), as

already indicated above. For instance we have wn(ζ)+1
2 ≤ w∗

n(ζ) ≤ wn(ζ), which

by (1.11) implies the bound (1.5) for all ζ mentioned in Subsection 1.1. See also

Remark 3 to Corollary 2.2 in Section 2.2. In fact, we will prove

Theorem 1.1. For any integer n ≥ 1 and any ζ ∈ R not algebraic of degree

≤ n we have
w∗

n(ζ) ≥ wn,n+1(ζ) (1.22)

ŵ∗
n(ζ) ≥ ŵn,n+1(ζ). (1.23)

Note that by (1.10), (1.18), (1.19) one can directly compute λn,n+2−j(ζ) from

ŵn,j(ζ) as well as λ̂n,n+2−j(ζ) from wn,j(ζ) for 1 ≤ j ≤ n+ 1, which leads to

λn,n+2−j(ζ) =
1

ŵn,j(ζ)
, λ̂n,n+2−j(ζ) =

1

wn,j(ζ)
. (1.24)

Combining (1.24) with Theorem 1.1 we immediately obtain

Theorem 1.2. For any integer n ≥ 1 and any ζ ∈ R not algebraic of degree

≤ n we have

w∗
n(ζ) ≥

1

λ̂n(ζ)
ŵ∗

n(ζ) ≥
1

λn(ζ)
.

At this point one should point out again (as in the abstract), that the first

inequality was found by Davenport and Schmidt in [7]. The latter result is

new.

It remains to prove Theorem 1.1. A basic observation linking w∗
n(ζ) with

the constants wn,j(ζ) is the fact that any non-zero polynomial P ∈ Z[T ] with
P ′(ζ) 6= 0 has a root α satisfying

|ζ − α| ≤ n

∣∣∣∣
P (ζ)

P ′(ζ)

∣∣∣∣ , (1.25)
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since for P (ζ) =
∏

1≤i≤n(ζ − αi) with α the closest zero to ζ (i.e. minimizing

|ζ − α|) we have
∣∣P ′(ζ)
P (ζ)

∣∣ = |∑1≤i≤n
1

ζ−αi
| ≤ nmax1≤i≤n

1
|ζ−αi| = n 1

|ζ−α| . So in

order to get a sequence of good apprimation values α for a fixed ζ, we only need to

find a sequence of polynomials with small values
∣∣ P (ζ)
P ′(ζ)

∣∣. Note that the logarithm
of P (ζ) to the basis H(P ) (see Section 1.1) is directly connected to wn(ζ), ŵn(ζ).

Putting

w∗
n(ζ,H) := min

P :H(P )≤H
−
log

∣∣∣ P (ζ)
P ′(ζ)

∣∣∣
logH

− 1 (1.26)

where for all fixed H, P runs through all polynomials P with H(P ) ≤ H, by

virtue of (1.25) and (1.2) (resp. (1.3) and (1.4)) one easily deduces

w∗
n(ζ) ≥ lim sup

H→∞
w∗

n(ζ,H) (1.27)

ŵ∗
n(ζ) ≥ lim inf

H→∞
w∗

n(ζ,H). (1.28)

2. Two proofs of Theorem 1.1

We will give two proofs of Theorem 1.1. The first will be quite short, the

other one heavily uses the connection of the constants wn,j(ζ), ŵn,j(ζ) and the

successive minima functions ψn,j(Q) and is hence a little more technical and

longer.

2.1. First proof of Theorem 1.1. Define two hyperplanes of Rn+1 as follows:

B := {(x0, x1, . . . , xn) ∈ Rn+1 : x0 + ζx1 + · · ·+ ζnxn = 0}
D := {(x0, x1, . . . , xn) ∈ Rn+1 : x1 + 2ζx2 + · · ·+ nζn−1xn = 0}

which correspond to the hyperplanes P (ζ) = 0 respectively P ′(ζ) = 0. Take

arbitrary w1 < wn,n+1(ζ) respectively arbitrary w2 < ŵn,n+1(ζ). Then for (some)

arbitrarily large values of H respectively for all sufficiently large values of H the

parallelepiped

Π1 :=
{
(x0, x1, . . . , xn) ∈ Rn+1 : max

1≤j≤n
|xj | ≤ H, |x0+ζx1+ · · ·+ζnxn| ≤ H−w1 |}

resp.

Π2 :=
{
(x0, x1, . . . , xn) ∈ Rn+1 : max

1≤j≤n
|xj | ≤ H, |x0+ζx1+ · · ·+ζnxn| ≤ H−w2 |}
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contains n+1 linearly independent integer points. For simplicity we will write Π

in the sequel for either Π1 or Π2 as the proofs are exactly the same. Then the

dilated parallelepipeds (n+1)Π must contain a fundamental domain with respect

to the lattice Zn+1. So for any z ∈ Rn+1 the shifted parallelepipeds z+(n+1)Π

contains an integer point. Consider a shift z ∈ B such that the distance between

D and z + (n+ 1)Π is equal to H but z + (n+ 1)Π belongs to a ball with radius

O(H) centered in the origin of Zn+1. Then the integer point in z+(n+1)Π, say

(z∗1 , z
∗
2 , . . . , z

∗
n+1), corresponds to a polynomial

P (t) = z∗0 + z∗1t+ · · ·+ z∗nt
n

such that

|P (ζ)| ¿ H−w1 , H(P ) ¿ H, |P ′(ζ)| À H,

respectively |P (ζ)| ¿ H−w2 , H(P ) ¿ H, |P ′(ζ)| À H.

This gives the bound w∗
n(ζ) ≥ w1 respectively ŵ∗

n(ζ) ≥ w2 in view of (1.27)

respectively (1.28). The assertions follow because we can take w1 respectively w2

arbitrarily close to wn,n+1(ζ) respectively ŵn,n+1(ζ).

2.2. Strategy of the second proof. In fixed dimension n we consider two

successive minima problems. On the one hand the successive minima η∗n,j(Q) of

the bodies K+(Q) with respect to the lattice Λ+ defined in (1.14), (1.15) and

the resulting functions ν∗n,j(Q) arising from η∗n,j(Q) from Section 1.2. On the

other hand, we compress the bodies K+(Q) in direction orthogonal to the hy-

perplane P ′(ζ) = 0 by a fixed factor and consider their successive minima with

respect to Λ+. By applying Minkowski’s Theorem (1.20) to both systems we

will infer that at least one of the successive minima of these two systems must

differ from the corresponding successive minimum of the other system. This will

imply the existence of lattice points (in fact points corresponding to a successive

minimum!) with relatively “large” values |P ′(ζ)| ≈ H(P ), which is helpful for

lower bounds for w∗
n(ζ), ŵ

∗
n(ζ) in view of (1.25) (or (1.26)). Assuming this point

corresponds to the last (i.e. (n + 1)-st) successive minimum gives a lower est-

imate for w∗
n(ζ), ŵ

∗
n(ζ) and together with the very intuitive geometric Lemma 2.1

(although slightly technical to prove) concerning the volume of the compressed

bodies, (1.19) and (1.27) resp. (1.28) leads to the estimates (1.22) resp. (1.23) in

Theorem 1.1.

2.3. Detailed second proof of Theorem 1.1. We will assume ζ fixed and

identify a point P = (x, y1, . . . , yn) ∈ Zn+1 with the polynomial P (ζ) = x +

ζy+ · · ·+ ζnyn. For technical reasons we will call the successive minima problem

concerning K+(Q) and Λ+ system A throughout Section 2. We denote it with
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superscript A and for simplicity we write ηAn,j(Q) := η∗n,j(Q), νAn,j(Q) := ν∗n,j(Q)

with η∗n,j(Q), ν∗n,j(Q) as defined in Section 1.2.

Furthermore, define system B as the successive minimum problem concerning

Λ+ and the convex body

K (Q) := K+(Q) ∩ c(Q) ·W (Q) (2.1)

with

W (Q) :=
{
(x, y1, . . . , yn) ∈ Rn+1 :

∣∣y1 + 2ζy2 + · · ·+ nζn−1yn
∣∣ ≤ Q

1
n

}

and positive real numbers c(Q) to be chosen later. Observe that W (Q) is just

the set of points P ∈ Rn+1 with |P ′(ζ)| ≤ Q
1
n , so the convex bodies K+(Q) are

“somehow compressed” by some factor c(Q) in the direction orthogonal to the

hyperplane P ′(ζ) = 0 (although this is not quite true as the boundary changes

shape). Successive minima functions ηBn,j(Q), νBn,j(Q) arise from system B simil-

arly as in system A. Note that by construction we have K (Q) ⊂ K+(Q) and

therefore ηBn,j(Q) ≤ ηAn,j(Q) and νBn,j(Q) ≤ νAn,j(Q) for every 1 ≤ j ≤ n + 1 and

Q > 1.

We now choose the constants c(Q) in (2.1) such that

vol(K (Q)) =
1

2(n+ 1)!
vol(K+(Q)) <

1

(n+ 1)!
vol(K+(Q)) =

2n+1

(n+ 1)!
. (2.2)

Clearly, this is possible as the volume of K (Q) with arbitrary c(Q) in (2.1)

depends continuously on c(Q) and for sufficiently large c(Q) ≥ c0(Q) we have

K+(Q) = K (Q), so in particular vol(K+(Q)) = vol(K (Q)), as well as

vol(K (Q)) = 0 for c(Q) = 0. By the intermediate value theorem and as the

volume increases strictly as c(Q) increases (as long as K (Q) ( K+(Q)), there is

a unique c(Q) with (2.2) for every Q > 1.

By (1.20) we infer that for any Q > 1, for at least one k = k(Q) ∈
{1, 2, . . . , n+ 1} we have strict inequality ηBn,k(Q) < ηAn,k(Q). By the definition

of successive minima and the choice of our convex bodies K (Q) and K+(Q) this

gives the existence of vectors d(Q) ∈ Zn+1 with

d(Q) ∈ (
QνA

n,k(Q)K+(Q)
) \ (QνB

n,k(Q)K (Q)
)
.

We will again identify any such d(Q) = (x, y1, . . . , yn) with the corresponding

polynomial P (ζ) = x + ζy1 + · · · + ζnyn. We consider these polynomials P (ζ)

as Q increases and will drop the dependence of P from Q in the notation as no
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misunderstandings can occur. Since K (Q) only differs from K+(Q) in direction

orthogonal to P ′(ζ) = 0 we have

|P ′(ζ)| > QνA
n,k(Q) · c(Q)Q

1
n = c(Q)QνA

n,k(Q)+ 1
n . (2.3)

On the other hand, as d(Q) ∈ QνA
n,j(Q)K+(Q) we have

|P (ζ)| ≤ Q−1+νA
n,k(Q), (2.4)

H(P ) ¿ Q
1
n+νA

n,k(Q). (2.5)

with constants in ¿ depending only on n, ζ. More precisely, as by defintion we

have |yt| ≤ Q
1
n+νA

n,k(Q) for 1 ≤ t ≤ k and clearly |P (ζ)| ≤ 1 for Q sufficiently

large, we have the estimates

|x| ≤ |P (ζ)|+ (1 + |ζ|+ · · ·+ |ζ|n) max
1≤t≤n

|yt| ≤ 1 + (1 + |ζ|+ . . .

+ |ζ|n)Q 1
n+νA

n,k(Q). (2.6)

So we infer H(P ) ≤ 1 + (1 + |ζ|+ · · ·+ |ζ|n)Q 1
n+νA

n,k(Q) and thus (2.5).

Note that (2.3), (2.4), (2.5) hold for any large Q and νAn,k(Q) ≤ νAn,n+1(Q)

as well as νAn,n+1 − ε ≤ νn,n+1(Q) ≤ νn,n+1 + ε for all ε > 0 and Q ≥ Q(ε). So

on the one hand we can choose a sequence of values (Qs)s≥1 → ∞ such that the

corresponding polynomials for any ε > 0 and sufficiently large Q ≥ Q0(ε) satisfy

|P (ζ)| ≤ Q−1+νA
n,n+1+ε (2.7)

|P ′(ζ)| ≥ c(Q)Q
1
n+νA

n,n+1 (2.8)

H(P ) ¿ Q
1
n+νA

n,n+1+ε (2.9)

with constants depending only on n, ζ in ¿.

On the other hand, for any sufficiently large Q ≥ Q0(ε) we clearly have

|P (ζ)| ≤ Q−1+νA
n,n+1+ε (2.10)

|P ′(ζ)| ≥ c(Q)Q
1
n+νA

n,n+1 (2.11)

H(P ) ¿ Q
1
n+νA

n,n+1+ε. (2.12)

Assume in our present situation, i.e. c(Q) defined by (2.1), (2.2), we already knew

lim inf
Q→∞

logQ c(Q) ≥ 0, (2.13)
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which will be shown in Corollary 2.2 from Lemma 2.1. Then a choice of poly-

nomials leading to (2.7), (2.8), (2.9) gives in combination with (1.26), (1.27) and

ε → 0

w∗
n(ζ) + 1 ≥ lim

H(P )→∞
−
log

(
P (ζ)
P ′(ζ)

)

log(H(P ))
≥ n+ 1

n

1
1
n + νAn,n+1

= wn,n+1(ζ) + 1, (2.14)

the equality on the right being just a variation of (1.19). Similarly, for fixedH > 0

implicitely defining Q by the identity H = Q
1
n+νA

n,n+1+ε the induced polynomials

satisfying (2.10), (2.11), (2.12) give in combination with (1.26), (1.28), (1.19) and

ε → 0

ŵ∗
n(ζ) + 1 ≥ lim

H→∞
−
log

(
P (ζ)
P ′(ζ)

)

log(H)
≥ n+ 1

n

1
1
n + νAn,n+1

= ŵn,n+1(ζ) + 1. (2.15)

Subtracting one from both sides of (2.14), (2.15) establishes the assertions of

Theorem 1.1.

It remains to prove (2.13). In fact, we prove that c(Q) is even bounded below

uniformly in the parameter Q.

Lemma 2.1 (Geometric lemma). Given n ≥ 2, ζ ∈ R as well as positive real

parameters R and Q > 1, consider the sets

χA(Q) :=
{
(x, y1, . . . , yn) ∈ Rn+1 : |P (ζ)| ≤ Q−1

}

χB(R) :=
{
(x, y1, . . . , yn) ∈ Rn+1 : |P ′(ζ)| ≤ R

}

χC(Q) :=
{
(x, y1, . . . , yn) ∈ Rn+1 : |yt| ≤ Q

1
n , 1 ≤ t ≤ n

}
,

where P (ζ) = x+ ζy1 + · · ·+ ζnyn.

Then for sufficiently large Q and all R we have

vol (χA(Q) ∩ χB(R) ∩ χC(Q)) ≤ ERQ− 1
n

with some constant E = E(n, ζ) independent of Q.

Proof. Note first that χA(Q) is bounded by the two translates of the fixed

hyperplane P (ζ) = 0 by Q−1 in direction orthogonal to P (ζ) = 0 to both sides

of this hyperplane P (ζ) = 0. In particular χA(Q) converges to P (ζ) = 0 for

Q → ∞, which is not so important, however. Similarly, χB(R) is the space

between two hyperplanes parallel to the hyperplane P ′(ζ) = 0 with distance R
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in both directions from the hyperplane P ′(ζ) = 0. Note that with respect to any

other fixed direction v ∈ Rn+1 with v /∈ {P : P (ζ) = 0} resp. v /∈ {P : P ′(ζ) = 0}
(which is equivalent to P (v) 6= 0 resp. P ′(v) 6= 0) χA(Q) resp. χB(R) has

width at most N1Q
−1 resp. N2R for fixed constants N1, N2 depending on v but

independent from Q,R. Throughout the proof we will make use of this for some

given v determined by n, ζ.

Finally, χC(Q) just bounds the coordinates (y1, y2, . . . , yn) of the vectors

(x, y1, . . . , yn) ∈ Rn+1 in dependence of Q.

Observe that by these restrictions for χC(Q) and in view of the left hand

inequality in (2.6) we can assume |x| ≤ C(n, ζ)Q
1
n for some constant C(n, ζ)

independent of Q without loss of generality. Thus every coordinate (x, y1, . . . , yn)

of a point in χA(Q) ∩ χB(R) ∩ χC(Q) is bounded by C(n, ζ)Q
1
n . Consequently

for every Q > 1 any rotation of the set χA(Q) ∩ χB(R) ∩ χC(Q) lies in the

centralsymmetric cube with side length
√
nC(n, ζ)Q

1
n and surfaces parallel to

the hyperplanes x = 0, y1 = 0, . . . , yn = 0 given by

κ(Q) :=
{
(x, y1, . . . , yn) : |x| ≤

√
nC(n, ζ)Q

1
n , |yt| ≤

√
nC(n, ζ)Q

1
n , 1 ≤ t ≤ k

}
.

We apply a rotation $ on Rn+1 in such a way that the hyperplane P (ζ) = 0

is sent to the hyperplane H0 defined by x = 0. Let H1 be the image of the

hyperplane P ′(ζ) = 0 under $. Clearly H0 6= H1 as P ′(ζ) has lower degree than

P (ζ) and hence the intersection H0 ∩ H1 has dimension (n − 1). As rotations

preserve volumes,

vol ($(χA(Q) ∩ χB(R) ∩ χC(Q))) = vol(χA(Q) ∩ χB(R) ∩ χC(Q)).

Moreover note also that intersecting χA(Q) ∩ χB(R) ∩ χC(Q) with κ(Q) doesn’t

change the volume as stated (we may replace χC(Q) by κ(Q)).

More generally, for real numbers a, b define

H0,a := $ ({P : P (ζ) = a}) = {
(x, y1, . . . , yn) ∈ Rn+1 : x = a

}
,

H1,b := $ ({P : P ′(ζ) = b}) ,

such that in particular H0 = H0,0,H1 = H1,0.

From the preliminary descriptions of χA(Q), χB(R) we easily see

$(χA(Q)) =
⋃

a∈[−Q−1,Q−1]

H0,a,

$(χB(Q)) =
⋃

b∈[−R,R]

H1,b,
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and by construction of κ(Q) we conclude

$ (χA(Q) ∩ χB(R) ∩ χC(Q))

⊂ (∪a∈[−Q−1,Q−1]H0,a

)⋂(∪b∈[−R,R]H1,b

)⋂
κ(Q). (2.16)

In view of (2.16) and since rotations don’t change the volume it is sufficient to

prove the upper estimate ERQ− 1
n for the volume of the right hand side of (2.16),

i.e.

vol
((∪a∈[−Q−1,Q−1]H0,a

)⋂(∪b∈[−R,R]H1,b

)⋂
κ(Q)

)
≤ ERQ− 1

n , (2.17)

to establish the assertions of the Lemma.

In order to do this we use Fubini’s Theorem twice. We first give upper bounds

for the (n− 1)-dimensional volumes of the intersections H0,a ∩H1,b ∩ κ(Q), then

apply Fubini’s Theorem to derive upper bounds for the n-dimensional volumes

of H0,a ∩
⋃

b∈[−R,R] H1,b ∩ κ(Q) for every a ∈ [−Q−1, Q−1] and then again apply

Fubini’s Theorem by integrating these n-dimensional volumes along the x-axis to

finally derive the required upper bound.

Clearly, the (n − 1)-dimensional volume of H0 ∩ H1 ∩ κ(Q) is proportional

to Q
n−1
n , let’s say vol(H0 ∩ H1 ∩ κ(Q)) = DQ

n−1
n for a constant D depending

only on the angle between H0 and H1 which is determined by n, ζ (in particular

independent of Q). Similarly we see that we can find a constant D0 = D0(n, ζ)

such that simultaneously for all a, b ∈ R we have

vol(H0,a ∩H1,b ∩ κ(Q)) ≤ D0Q
n−1
n , a, b ∈ R, (2.18)

as all H0,a ∩H1,b are (n− 1)-dimensional subspaces in a n-dimensional cube with

side length proportional to Q
1
n .

Since χB(R) (and so $(χB(R)) = ∪b∈[−R,R]H1,b too) has width R in direc-

tion orthogonal to H1,b, and in view of (2.18), we infer that

voln

(
H0,a

⋂(∪b∈[−R,R]H1,b

)⋂
κ(Q)

)
≤ D0Q

n−1
n ·D1R, a ∈ R (2.19)

with some constant D1 depending only on the angle between the x-axis and H1,

which itself is determined by n, ζ. So we have estimated the n-dimensional vo-

lume of $ (χB(R) ∩ χC(Q)) =
(∪b∈[−R,R]H1,b

) ∩ κ(Q) in every hyperplane H0,a.

Observe that $ (χA(Q) ∩ χB(R) ∩ χC(Q)) has width mQ−1 in direction of the

x-axis with a constant m depending only on the angle between the hyperplane
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P (ζ) = 0 and the hyperplane H0, which is again determined by n, ζ (so in parti-

cular independent of Q). We apply Fubini’s Theorem to (2.19) and conclude

vol
((∪a∈[−Q−1,Q−1]H0,a

)⋂(∪b∈[−R,R]H1,b

)⋂
κ(Q)

)

≤ mQ−1 ·D0D1Q
n−1
n R = mD0D1Q

− 1
nR.

Inequality (2.17) and hence the assertion of the Lemma follows with

E = E(n, ζ) := mD0D1. ¤

Corollary 2.2. In the context of the first part of the proof of Theorem 1.1

(i.e. (2.2) holds) we have c(Q) ≥ B for some constant B uniformly in Q, in

particular (2.13) holds.

Proof. By definition of c(Q) we have c(Q) = R(Q)Q− 1
n for R = R(Q) that

satisfies

vol (χA(Q) ∩ χB(R) ∩ χC(Q)) =
2n+1

2(n+ 1)!
.

We may apply Lemma 2.1 and with respect to the constant E = E(n, ζ) of this

lemma this yields
2n+1

2(n+ 1)!
≤ ER(Q)Q− 1

n ,

or equivalently B ·Q 1
n ≤ R(Q) = Q

1
n c(Q) with B := 2n+1

2(n+1)!E for all Q > 1 and

we conclude c(Q) ≥ B uniformly in the parameter Q. ¤

Thus we have established Theorem 1.1 and consequently Theorem 1.2.

Remarks. 1) One can show vol(χA(Q) ∩ χB(R) ∩ χC(Q)) ≥ FRQ− 1
n for

some constant F = F (n, ζ) independent from Q with a proof similar to the one of

Lemma 2.1. So by arguments very similar to those in the proof of Corollary 2.2 we

have that in fact c(Q) is also uniformly bounded above by a positive constant and

consequently in combination with (2.13) we actually have limQ→∞ logQ c(Q) = 0.

2) Observe that all the constants occuring throughout the proof of Lemma 2.1

can be estimated explicitely in dependence of n, ζ so we can write c(Q) ≤ K(n, ζ)

with an effective constant K(n, ζ) in (2.8), (2.11). However, the ε-term in the

exponent of (2.7), (2.9) as well as (2.10), (2.12) doesn’t allow any improvements

in (2.14), (2.15) for any given n, ζ.

3) Lemma 15 Chap. 3 of §3 in [14] states that for a polynomial P of degree

D and length L and with zero α satisfying |ζ − α| ≤ 1

|P (ζ)| ≤ |ζ − α| · LD(1 + |ζ|)D−1
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holds, leading to the well known result

w∗
n(ζ) ≤ wn(ζ) = wn,1(ζ).

So w∗
n(ζ) can be bounded above in terms of the approximation constants wn,j(ζ)

which reverses the direction of the estimates in Theorem 1.1.

For other inequalities concerning wn(ζ), w
∗
n(ζ) we refer to Section 3.4 in [4],

especially Theorem 3.4.

3. Estimates for w∗
n(ζ), ŵ

∗
n(ζ) infered from Theorem 1

3.1. Estimates depending on n only. A famous result of Wirsing [18] states

w∗
n(ζ) ≥

wn(ζ) + 1

2
. (3.1)

We combine the results of Theorem 1.1, 1.2 with (3.1) to give lower bounds for

w∗
n(ζ) uniformly in ζ not algebraic of degree ≤ n. In order to do this, we use the

functions ψ∗
n,j which have the useful property

∣∣∣∣∣
n+1∑

j=1

ψ∗
n,j(Q)

∣∣∣∣∣ ≤
C(n)

log(Q)
, (3.2)

which follows from (1.21) and (1.16), and ψ∗
n,j relate to the constants wn,j(ζ). To

get a slightly better result we will also use the dual version of (1.9): indeed from

(1.9) and (1.18) it follows that for ζ not algebraic of degree ≤ n we have

ψ∗
n,j+1

≤ ψ
∗
n,j , 1 ≤ j ≤ n. (3.3)

The following preliminary Proposition is a very easy consequence of (1.16)

and (3.3).

Proposition 3.1. Let n ≥ 2 be an integer. Then for ζ not algebraic of

degree ≤ n the relation

ψ∗
n,1

≤ − 2

n− 1
ψ∗
n,n+1

holds for the approximation constants ψ∗
n,1, ψ

∗
n,n+1 associated to (ζ, ζ2, . . . , ζn).
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Proof. By definition for any ε > 0 and sufficiently large Q we have

ψ∗
n,n+1(Q) ≥ ψ∗

n,n+1
− ε. By (3.3) we also have ψ∗

n,n+1
≤ ψ

∗
n,n, so that there exist

arbitrarily large values of Q such that ψ∗
n,n(Q) ≥ ψ∗

n,n+1(Q)−ε. Combining these

observations yields arbitrarily large values Q, such that ψ∗
n,n(Q) + ψ∗

n,n+1(Q) ≥
2ψ∗

n,n+1
(Q)− 2ε.

On the other hand, for anyQ we have (n−1)ψ∗
n,1(Q) ≤ ∑n−1

j=1 ψ∗
n,j(Q), in par-

ticular for those values Q with the property ψ∗
n,n(Q)+ψ∗

n,n+1(Q) ≥ 2ψ∗
n,n+1

(Q)−
2ε. The assertion of the Proposition follows with (3.2) and ε → 0. ¤

We give two applications of Proposition 3.1. The first is a new estimate for

w∗
n(ζ) in dependence of wn(ζ) derived easily by combining (1.19) and Proposit-

ion 3.1 with Theorem 1.1.

Theorem 3.2. For n ≥ 2 and ζ not algebraic of degree ≤ n we have

w∗
n(ζ) ≥

wn(ζ) + n

wn(ζ)− n+ 2
. (3.4)

Proof. Note that one can express wn(ζ) by ψ∗
n,1

such as wn,n+1(ζ) by

ψ∗
n,n+1

using (1.19) and vice versa. Now compute straight forward.

For fixed wn(ζ) express ψ
∗
n,1

in terms of wn(ζ) with (1.19), then apply Propo-

sition 3.1 to obtain an upper bound for ψ∗
n,n+1

in terms of wn(ζ) and then again

use (1.19) to obtain lower bound for wn,n+1(ζ) in terms of wn(ζ). Simplifying

this bound gives the right hand side of (3.4). ¤

Note that Theorem 3.2 improves Wirsing’s

w∗
n(ζ) ≥

wn(ζ)

wn(ζ)− n+ 1

in [18]. There is a better known estimate for w∗
n(ζ) than Wirsing’s though, namely

w∗
n(ζ) ≥

ŵn(ζ)

ŵn(ζ)− n+ 1
(3.5)

by Laurent and Bugeaud that can be found in [6]. Together with Theorem 3.2

we have

w∗
n(ζ) ≥ max

{
wn(ζ) + n

wn(ζ)− n+ 2
,

ŵn(ζ)

ŵn(ζ)− n+ 1

}

One checks that (3.4) improves (3.5) if and only if

ŵn(ζ) ≤ wn(ζ) < 2ŵn(ζ)− n. (3.6)
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However, (1.20′) in Theorem 1.3 in [12] by Summerer and Schmidt transfered

in our present notation together with (1.18) yields

ψ∗
n,1

≤ (n2 − 3n+ 3)ψ
∗
n,1 − (n− 3)nψ

∗2
n,1

(n− 2)2 + (2n− 5)nψ
∗
n,1 + n2ψ

∗2
n,1

,

which in combination with frequent use of (1.19) (similar to the proof of The-

orem 3.2) gives

wn(ζ) ≥ (n− 1)
ŵn(ζ)

2 − ŵn(ζ)

1 + (n− 2)ŵn(ζ)
. (3.7)

The lower bound in (3.7) is easily checked to be only smaller than 2ŵn(ζ)−n (the

necessary condition according to (3.6)) for n = 2 and arbitrary ŵn(ζ) > n, but

larger for n ≥ 3 and arbitrary ŵn(ζ) > n. It can be shown too that Theorem 3.2

also doesn’t improve (3.5) for n = 2, even provided that there is equality in (3.7).

So (3.4) is weaker than (3.5).

However, the bound in Proposition 3.1 is not expected to be good (sharp),

so it is likely that using the same method with better estimates one can improve

(3.5) for at least some values of n and some ζ ∈ R with not too large values of

wn(ζ). It is worth mentioning that since for every ζ not algebraic of degree ≤ n

we have ŵn(ζ) ≤ 2n − 1 for all ζ not algebraic of degree ≤ n, see [7], for ζ with

large values of wn(ζ) the bound in (3.5) will probably be impossible to improve

with similar methods (i.e. even if result (3.4) can be improved by an improvement

of Proposition 3.1). However Wirsing’s bound (3.1) is much better in cases with

values of wn(ζ) not too close to n anyway.

Note that for n = 2 the extremal numbers defined in [11] have equality in

(3.7) with w2(ζ) =
(

2√
5−1

)3
, ŵ2(ζ) =

(
2√
5−1

)2
. However, as mentioned above the

condition (3.6) doesn’t hold, so there is no improvement in this case either. Note

in this context also that there cannot be equality in (3.7) for any ζ ∈ R with

w2(ζ) >
(

2√
5−1

)3
.

Indeed, for n = 2 and ζ not algebraic or quadratic irrational we have λ̂2(ζ) ≤√
5−1
2 see Roy [11]. Together with Jarnik’s equality in the form λ̂2(ζ)+λ2,3(ζ) = 1

(which is derived directly from ψ2,1 +2ψ2,1ψ2,3
+ψ

2,3
= 0, which is Theorem 1.5

in [12], and (1.10)) and observing λ2,3(ζ) =
1

ŵ2(ζ)
by (1.24) we deduce the bound

ŵ2(ζ) ≤ (
2√
5−1

)2
. Combined with the assumed equality in (3.7) this leads to

w2(ζ) ≤
(

2√
5−1

)3
. (However there is a good chance that there is equality for some

(ζ1, ζ2) together with 1 linearly independent over Q with ζ2 6= ζ21 and ŵn(ζ1, ζ2) >(
2√
5−1

)3
.)
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Remark. Using ψ∗
n,n+1

≤ −nψ
∗
n,1, which is dual to (1.10) in [13], instead of

Proposition 3.1, and proceeding as in the proof of Theorem 3.2 we obtain the

bounds

w∗
n(ζ) ≥

n

ŵn(ζ)− n+ 1
.

This is weaker than (3.5) as ŵn(ζ) ≥ n, however the bound ψ∗
n,n+1

≤ −nψ
∗
n,1

isn’t expected to be any sharp.

Applying Proposition 3.1 directly to Wirsing’s result (3.1) yields

Corollary 3.3. Let n ≥ 2 be an integer. Then for ζ not algebraic of degree

≤ n the approximation constant w∗
n(ζ) of (ζ, ζ2, . . . , ζn) is bounded below as

follows

w∗
n(ζ) ≥

1

4

(
n+ 1 +

√
n2 + 10n− 7

)
=: U (n). (3.8)

For n → ∞ we have the asymptotical behaviour U (n) = n
2 + 3

2 + o(1).

Proof. From (1.19) we have

ψ∗
n,n+1

=
n− wn,n+1(ζ)

n(wn,n+1(ζ) + 1)
. (3.9)

Dividing the right hand side of (3.9) by (n−1) and combining it with the estimate

from Proposition 3.1 gives an upper bound for ψ∗
n,1

in terms of wn,n+1(ζ). Using

this expression in (1.19) and applying Wirsing’s result (3.1) leads to

w∗
n(ζ) ≥

wn(ζ) + 1

2
≥ n+ 1

2
· 1

1− 2
n−1

n−wn,n+1(ζ)
wn,n+1(ζ)+1

.

On the other hand we have the lower bound wn,n+1(ζ) for w
∗
n(ζ) by Theorem 1.1,

so

w∗
n(ζ) ≥ max

{
n+ 1

2
· 1

1− 2
n−1

n−wn,n+1(ζ)
wn,n+1(ζ)+1

, wn,n+1(ζ)

}
.

It’s not hard to see that the left hand term in the maximum decreases as wn,n+1(ζ)

increases, so the minimum is attained at the value wn,n+1(ζ) > 0 where both

expressions in the maximum coincide. This leads to a quadratic equation and

after basic simplifications finally yields U (n) as the minimum lower bound for

w∗
n(ζ). Checking the asymptotics for U (n) is a standard calculation. ¤
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Remarks. 1) Lemma 1 on page 46 in [10] states that in the present case of

simultaneous approximation of (ζ, ζ2, . . . , ζn) of ζ not algebraic of degree ≤ ⌈
n
2

⌉

the approximation constant λ̂n(ζ) is bounded above by
⌈
n
2

⌉−1
. Applying this to

(1.24) and Theorem 1.1 we immediately derive

λn(ζ) ≥
⌈n
2

⌉

and slight refinements in combination with Wirsing’s result can be derived simil-

arly as in Corollary 3.3. However, the results of Corollary 3.3 are a little stronger.

2) Bernik and Tishchenko established slightly better results than Corol-

lary 3.3 on the approximation constant w∗
n(ζ), for example

w∗
n(ζ) ≥

n

4
+

√
n2 + 16n− 8

4

with right hand side n
2 + 2 + o(1) as n → ∞, see [3] or [15] for instance.

We now turn our focus to the approximation constant ŵ∗
n(ζ). Note that there

exists no nontrivial upper bound for the value λn(ζ) (as for λ̂n(ζ) in Remark 1)

even in the present special case of simultaneous approximation of (ζ, ζ2, . . . , ζn).

Indeed, we can have λn(ζ) = ∞ (which is equivalent to ŵn,n+1(ζ) = 0 by (1.24)),

taking ζ =
∑

l≥1 10
−l! for example. So we cannot use Theorems 1.1, 1.2 to give

nontrivial bounds for the approximation constant ŵ∗
n(ζ) as easily as above.

Moreover, no analogue of (3.1) for ŵ∗
n(ζ) seems to be known. Bugeaud and

Laurent established in Theorem 2.1 in [6] for ζ not algebraic of degree ≤ n the

inequality

ŵ∗
n(ζ) ≥

wn(ζ)

wn(ζ)− n+ 1
, (3.10)

which we can combine with Theorem 1.1 to get

ŵ∗
n(ζ) ≥ max

{
wn(ζ)

wn(ζ)− n+ 1
, ŵn,n+1(ζ)

}
. (3.11)

However, any number ζ with λn(ζ) = ∞ (for instance again ζ =
∑

l≥1 10
−l!)

automatically yields wn(ζ) = ∞ (which follows easily from the definition of

wn(ζ), λn(ζ) or alternatively from Khinchins transference principle

wn(ζ) ≥ nλn(ζ)+n−1, see [9]). For such ζ, by (1.24) we also have ŵn,n+1(ζ) = 0

though, so in this case (3.11) only leads to the very weak bound ŵ∗
n(ζ) ≥ 1.
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3.2. Finding ζ for which (3.11) is an improvement. As a last point we

want to investigate (3.11) a bit further. Our result (1.23) or equivalently (1.2)

improves the result (3.10) of Bugeaud and Laurent only in the case of numbers ζ

satisfying
1

λn(ζ)
>

wn(ζ)

wn(ζ)− n+ 1
. (3.12)

So the question naturally arises if such numbers exist and what we can tell about

them.

Firstly, as the right hand side of (3.12) is bounded below by 1, it only makes

sense to look for numbers ζ satisfying λn(ζ) ∈ ( 1n , 1). Also note that for n ≥ 2

and all wn > n we have that the upper bound (n−1)wn+n
wn

for the value 1
λn(ζ)

arising from Khinchin’s transference principle is easily checked to be larger than
wn(ζ)

wn(ζ)−n+1 , which enables (3.12). For n ≥ 3, just looking at the transference

principle even the case

wn(ζ) = ∞, λn(ζ) =
1

n− 1

is reasonable, where wn(ζ) = ∞, λn(ζ) < 1 would already be sufficient for (3.12).

So the existence follows if the bounds in the transference principle are “somehow

sharp”, especially for large values of wn = wn(ζ).

In order to give further reasons that numbers satisfying (3.12) do exist we

first quote two metrical results.

Theorem 3.4. Let τ ≥ 1 be a real number. Then the Hausdorff-dimension

of the set

{ζ ∈ R : wn(ζ) = τ(n+ 1)− 1} (3.13)

is 1
τ .

This is Theorem 5.8 in [4].

Furthermore it is known due to Beresnevich [1] that

Theorem 3.5. Let n ≥ 2 be an integer. Let λ be a real number satisfying
1
n ≤ λ < 3

2n−1 . Then

dim({ζ ∈ R : λn(ζ) ≥ λ}) ≥ n+ 1

λ+ 1
− (n− 1). (3.14)

Beresnevich, Dickinson, Vaughan and Velani [2], [16] further prove

that there is actually equality in (3.14) for n = 2 and Beresnevich conjectures

this to be true for all n ≥ 2. Under the assumption that this is true we can prove

the existence of uncountably many ζ satisying (3.12) for n ≥ 3.
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Lemma 3.6. If for some n ≥ 3 there is equality in (3.14), then for this n

the set of values ζ such that (3.12) holds has Hausdorff-dimension 1.

Proof. Let n be fixed. For a real number x ≥ n to be specified later consider

the set of all ζ ∈ R such that wn(ζ) = x. Basic rearrangements of Theorem 3.4

lead to

dim ({ζ ∈ R : wn(ζ) = x}) = n+ 1

x+ 1
. (3.15)

On the other hand, assuming x ∈ (n, n+ ε) for sufficiently small ε > 0 (precisely

such that x−n+1
x < 3

2n−1 ) we may apply Theorem 3.5 with the additive equality

condition for λ := x−n+1
x and infer

dim

({
ζ ∈ R : λn(ζ) ≥ x− n+ 1

x

})
=

(n+ 1)x

2x− n+ 1
− (n− 1).

Defining κn(t) := n+1
t+1 − [ (n+1)t

2t−n+1 − (n − 1)] one readily checks κn(n) = 0 and

κ′
n(n) = n−2

n+1 > 0 for n ≥ 3, such that we have κn(t) > 0 in an interval t ∈
(n, n+ ε) for sufficiently small ε > 0. This means for x ∈ (n, n+ ε) we have

dim

({
ζ ∈ R : λn(ζ) ≥ x− n+ 1

x

})
< dim ({ζ ∈ R : wn(ζ) = x}) . (3.16)

For those values of x we infer that {ζ ∈ R : wn(ζ) = x} * {ζ ∈ R : λn(ζ) ≥
x−n+1

x }, so there are numbers ζ with wn(ζ) = x and λn(ζ) <
x−n+1

x = wn(ζ)−n+1
wn(ζ)

,

and consequently these ζ satisfy (3.12).

In view of (3.15), (3.16) and the fact and the Hausdorff-dimension of a finite

union of sets is the maximum of the Hausdorff-dimensions we get that for any

x ∈ (n, n+ ε) the Hausdorff-dimension of the set satisfying (3.12) and wn(ζ) = x

is at least n+1
x+1 . Letting x− n = ε → 0 we infer that the Hausdorff-dimsension of

the set satisfying (3.12) is arbitrarily close to 1, so it equals 1. ¤

Finally an idea how to construct numbers satisfying (3.12) for n ≥ 3 (and

similarly for n = 2).

Let n ≥ 3 be fixed and η :=
∑

k≥1 10
−k!. For any rational number a ∈ Q to

be fixed later consider ζ := (a+η)
1
n . By definition of the approximation constants

wn, their stability under birational transformations and our choice of ζ, clearly

wn(ζ) ≥ w1(ζ
n) = w1(η) = ∞. So the right hand side of (3.12) equals 1 for these

values ζ. So, if λn(ζ) < 1 for some a, we would be done. Numerical computations

suggest this could be true.

In the case n = 2 (where λ2 < 1 is not possible by transference principle),

one could consider η :=
∑

k≥1 10
−bk with some fixed large b and proceed similarly.
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Remark. Dually to the Remark preceding Corollary 3.3 in Section 3.1 (where

we treated w∗
n(ζ)), one can use ψ

∗
n,n+1 ≤ −nψ∗

n,1
, which is again dual to (1.10)

in [12], to infer

ŵ∗
n(ζ) ≥

n

wn(ζ)− n+ 1
.

This is again weaker than (3.10) as wn(ζ) ≥ n, note however that the bound

ψ
∗
n,n+1 ≤ −nψ∗

n,1
isn’t expected to be good.

Acknowledgements. Thanks to Yann Bugeaud for some remarks especi-

ally concerning the last chapter and the second supervisor, especially for giving

a shorter proof of Theorem 1.1.
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