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Commutativity preservers via maximal centralizers

By GREGOR DOLINAR (Ljubljana) ALEXANDER GUTERMAN (Moscow)
BOJAN KUZMA (Koper) POLONA OBLAK (Ljubljana)

Abstract. Bijective maps on matrices over arbitrary fields with sufficiently many

elements which preserve commutativity in both direction are classified.

1. Introduction and statement of the main result

The study of commutativity preserving maps on Mn(F), the algebra of n×n

matrices over a field F with additional assumption of linearity goes back to the

work by Watkins [13]. He proved that for n ≥ 4 every bijective linear commuta-

tivity preserving map Φ on Mn(F), F algebraically closed field with characteristic

zero, is of one of the following two standard forms: Φ(A) = cSAS−1 + f(A)I for

all A ∈ Mn(F) or Φ(A) = cSAtS−1 + f(A)I for all A ∈ Mn(F), where 0 6= c ∈ F,
S ∈ Mn(F) is invertible, and f is a linear functional on Mn(F). The research

in this area was continued by many authors, see for example [3], [5], [9], [10],

[11], [12] and references therein. In particular, Šemrl [12] removed the linearity

assumption and characterized bijective maps on complex matrices which preserve

commutativity in both directions, i.e., they preserve the set of commuting matrix

pairs and the set of non-commuting matrix pairs. The main tool he used was

the characterization of complex matrices with minimal and maximal centralizer.

In the recent paper [4] we were able to extend Šemrl’s result about minimal and

maximal centralizers to matrix algebras over algebraically non-closed fields and

in the present one we use our result to classify bijective maps, which preserve
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commutativity in both directions on matrices over algebraically non-closed fields

thus extending the main result in [12].

Before stating our main theorem let us introduce some notations and let us

recall some definitions. The centralizer of a matrix A ∈ Mn(F) is the set C(A) =
{X ∈ Mn(F) | AX = XA} of all matrices that commute with A. The centralizer

of a set S ⊆ Mn(F) is C(S) = {X ∈ Mn(F) | AX = XA for every A ∈ S},
the intersection of centralizers of all elements in S. Recall that the Centralizer

Theorem (see, e.g., [8, p. 113, Corollary 1] and also [14, p. 106, Theorem 2]) states

that for each matrix A we have C(C(A)) = F[A], where F[A] is the unital algebra

over F generated by A.

Centralizer induces two natural relations on Mn(F). The first one is a pre-

order defined by A ¹ B if C(A) ⊆ C(B). The second relation is the equivalence

relation given by A ∼ B if C(A) = C(B). We call such matrices C-equivalent,
and we say A, B are C-nonequivalent (abbreviated A 6∼ B) if C(A) 6= C(B). It is

immediate that the preorder induces a partial order on a set of equivalence classes

Mn(F)/∼.
A non-scalar matrix A is minimal if for every X ∈ Mn(F) with C(A) ⊇

C(X) it follows that C(A) = C(X). A non-scalar matrix A is maximal if for

every non-scalar X ∈ Mn(F) with C(A) ⊆ C(X) it follows that C(A) = C(X).

Minimal and maximal elements in the poset Mn(F)/∼ are the equivalence classes

corresponding to the minimal and maximal matrices introduced above. Observe

that a bijective map Φ preserves commutativity in both directions if and only

if Φ(C(A)) = C(Φ(A)) holds for every A. Hence, such a map also preserves the

partial order relation on equivalence classes.

By Eij we denote the matrix with 1 on (i, j)-th position and 0 elsewhere, by 0k
and Ik we denote the zero k×k matrix and the identity k×k matrix, respectively.

When clear from the context we omit the subscript. For a given scalar λ ∈ F define

Jn(λ) = λI+
∑n−1

i=1 Ei(i+1) to be an elementary upper-triangular Jordan cell. We

denote Jn = Jn(0). A matrix A ∈ Mn(F) is an idempotent if A2 = A, it is a

nilpotent if there exists an integer k > 1 such that Ak = 0. The smallest such k is

its nilpotency index. The matrices with nilpotency index two are called square-zero

matrices. For a monic polynomial m(x) = m0 +m1x + · · · +mn−1x
n−1 + xn ∈

F[x] we let C(m) =
∑n−1

i=1 E(i+1)i −
∑n

i=1 mi−1Ein ∈ Mn(F) be a companion

matrix of m. A matrix is non-derogatory if its minimal polynomial equals its

characteristic polynomial. Given a field homomorphism σ : F → F and a matrix

A ∈ Mn(F), we denote by Aσ a matrix obtained from A by applying σ to A entry-

wise. We denote by Dn(F) ⊂ Mn(F) the subset of all diagonalizable matrices,

and by I1
n(F) ⊂ Mn(F) the subset of all rank-one matrices.
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The main result of the paper is as follows.

Theorem 1.1. Let n ≥ 3 be an integer and let F be a field with at least

2n−1 elements. If a bijective map Φ : Mn(F) → Mn(F) preserves commutativity

in both directions, then there is a field homomorphism σ : F→ F and an invertible

matrix S such that one of the following holds.

(i) Φ(A) = S pA(A
σ)S−1 for all A ∈ Dn(F) ∪ I1

n(F).
(ii) Φ(A) = S pA(A

σ)T S−1 for all A ∈ Dn(F) ∪ I1
n(F).

Here pA : Mn(F) → Mn(F) is a matrix polynomial depending on A.

Remark 1.2. Note that in the above theorem we cannot obtain a nice struc-

ture of Φ on the full matrix algebra, see for example [12, p. 22].

Remark 1.3. We do not know if the bound |F| ≥ 2n−1 is optimal. It would

be interesting to know if a similar result holds also for the fields with at least n

elements. Note that n is the smallest possible cardinality of a field to ensure that

there exists n× n non-derogatory diagonal matrix.

Remark 1.4. With the additional assumption of additivity more is known

about commutativity preservers. See for example Banning and Mathieu [1]

where bijections on semiprime rings which preserve commutativity are classified

and also Brešar [3] for similar results on prime rings.

2. Proofs

The following Lemma will be used frequently. It is an easy consequence of

the Centralizer Theorem.

Lemma 2.1. Let A,B ∈ Mn(F). Then C(A) ⊆ C(B) if and only if B ∈ F[A].
Consequently C(A) = C(B) if and only if F[A] = F[B].

Let A and B be two matrices. We write A ≺ B if C(A) ( C(B). A chain of

length k from A to B is a set of k+1 matrices A = X0, X1, . . . , Xk = B such that

Xi ≺ Xi+1, i = 0, . . . , k − 1. We say that the length from A to B is k if there

exists a chain of the length k from A to B but there is no chain of the length

k + 1 from A to B.

Lemma 2.2. Let F be a field with |F| ≥ 2n−1. Let A = C(mα1
1 ) ⊕ · · · ⊕

C(mαk

k ) ∈ Mn(F) be in its rational canonical form, where k ≥ 1, α1 ≥ · · · ≥
αk ≥ 1 are integers and m1, . . . ,mk are relatively prime irreducible polynomials.
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Assume that either α1 ≥ 4 or 3 ≥ α1 ≥ α2 ≥ 2. Then there are at least 2n−1

pairwise C-nonequivalent maximal matrices that commute with A.

Proof. First, suppose α1 ≥ 4 and let us consider the polynomial m =

m1m
α2
2 . . .mαk

k ∈ F[x]. Matrix B̂ = m(A) = (m1m
α2
2 . . .mαk

k )(A) ∈ F[A] is

nilpotent with index of nilpotency α1. It easily follows that matrices Bγ =

B̂α1−2 + γB̂α1−1 ∈ F[A], γ ∈ F, are non-scalar square-zero, hence maximal by [4,

Theorem 3.2]. They all commute with A and are pairwise C-nonequivalent. Since
|F| ≥ 2n−1, there are at least 2n−1 such matrices and the result holds.

Now, suppose 3 ≥ α1 ≥ α2 ≥ 2. For the sake of simplicity we denote

Ai = C(mαi
i ). If α1 = α2 = 3, then for each γ ∈ F the matrices Lγ = (m1(A1))

2⊕
γ (m2(A2))

2 ⊕ 0 ⊕ · · · ⊕ 0 are non-scalar square-zero and Lγ ∈ F[A1] ⊕ F[A2] ⊕
· · ·⊕F[Ak] = F[A], where the last equality follows by [2, Proposition 4.1]. Hence,

the result holds. We treat the two remaining cases similarly by considering Mγ =

(m1(A1))
2 ⊕ γ m2(A2)⊕ 0⊕ · · · ⊕ 0 when (α1, α2) = (3, 2), and Nγ = m1(A1)⊕

γ m2(A2)⊕ 0⊕ · · · ⊕ 0 when (α1, α2) = (2, 2). ¤

Lemma 2.3. Let A = C(mα1
1 ) ⊕ · · · ⊕ C(mαk

k ) ∈ Mn(F), n ≥ 3, be in

its rational canonical form, where k ≥ 1, α1 ≥ · · · ≥ αk ≥ 1 are integers and

m1, . . . ,mk are relatively prime irreducible polynomials of the degrees µ1, . . . , µk,

respectively. Assume that α1 ∈{2, 3} and either k=1 or k ≥ 2, α2 = · · · = αk = 1.

Then the number of pairwise C-nonequivalent maximal matrices that commute

with A differs from 2n−1 − 1.

Proof. For the sake of simplicity we write Ai = C(mαi
i ), i = 1, . . . , k.

1. Suppose first that α1 = 3 and either k ≥ 2 with α2 = . . . = αk = 1

or k = 1. Then A = A1 ⊕ D for r × r matrix A1 = C(mα1
1 ) = C(m3

1) and

(n− r)× (n− r) matrix D = C(m2)⊕ · · · ⊕C(mk), where D is omitted if k = 1.

Case 1. If µ1 = degm1 ≥ 2, then the matrix

Bγ = (γIr +A1)(m1(A1))
2 ⊕ 0n−r ∈ F[A1]⊕ F[D] = F[A] (1)

is square-zero, hence it is maximal for every γ ∈ F. Let us show that Bγ1 and Bγ2

are C-nonequivalent for γ1 6= γ2. If C(Bγ1) = C(Bγ2) then Bγ2 = p(Bγ1) for some

polynomial p ∈ F[x]. Since B2
γ1

= 0, we may assume p(x) = βx + δ, β, δ ∈ F.
Hence

0 = p(Bγ1)−Bγ2

= β((γ1Ir +A1)(m1(A1))
2 ⊕ 0n−r) + δI − (γ2Ir +A1)(m1(A1))

2 ⊕ 0n−r

= q(A1)⊕ δIn−r,
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where q(x) = (βγ1 − γ2 + x(β − 1))(m1(x))
2 + δ. Note that degm1 ≥ 2 by

the condition of Case 1. Thus polynomial q is not divisible by polynomial m3
1, a

contradiction to q(A1) = 0r. Consequently, A commutes with at least |F| pairwise
C-nonequivalent maximal matrices Bγ , γ ∈ F.

Case 2. If µ1 = degm1 = 1, then without loss of generality we may assume

m1(x) = x. So A1 = JT
3 ∈ M3(F) is a lower triangular nilpotent Jordan cell.

Since A is non-derogatory, C(A) = F[A] = F[JT
3 ] ⊕ F[D]. Hence F[A] is not a

field. Moreover, for any non-scalar matrix X ∈ F[A] there is λ ∈ F such that

X − λI has a nilpotent right-upper 3 × 3 block. Hence X − λI is non-zero and

non-invertible. Thus X cannot be similar to C ⊕ · · · ⊕ C for companion matrix

C = C(m̃) of an irreducible polynomial m̃. Indeed, if the matrix is similar to

C ⊕ · · · ⊕C, then the generated algebra is a field by the irreducibility of m̃, so it

does not contain non-zero non-invertible matrices.

Hence by [4, Theorem 3.2], maximal matrices that commute with A are

square-zero matrices and idempotents, up to C-equivalence. Since the blocks

A2, . . . , Ak (if any) have irreducible minimal polynomials, F[Ai] is a field for

i = 2, . . . , k. Therefore, all non-scalar square-zero matrices in F(A) are C-
equivalent to (JT

3 )2 ⊕ 0 and each idempotent in F[A] is C-equivalent to 03 ⊕ P

for some idempotent P ∈ Mn−3(F). Then there are at most 2n−3 − 1 pairwise

C-nonequivalent non-scalar idempotents in F[A] and thus 2n−3 C-nonequivalent
maximal matrices in F[A] = C(A). Since n ≥ 3 we have that 2n−3 < 2n−1 − 1,

and the result follows.

2. Suppose now that α1 = 2 and either k ≥ 2 with α2 = . . . = αk = 1

or k = 1. If µ1 = degm1 ≥ 2, then we define Bγ = (γIr + A1)m1(A1) ⊕
0n−r ∈ F[A1] ⊕ F[D] = F[A] as in (1) and proceed similarly as in the Case 1.

If µ1 = degm1 = 1, then without loss of generality A1 = JT
2 , and we proceed

similarly as in the Case 2. ¤

Lemma 2.4. Let A = C(m) ∈ Mn(F) be a companion matrix of an irredu-

cible polynomial m. Then F[A] is a field and any chain of proper intermediate

subfields between F and F[A] is finite with length l ≤ log2 n.

Proof. Since A is a companion matrix of an irreducible polynomial, F[A]

is a field and the degree [F[A] : F] of field extension F [A] ⊃ F equals n. Also,

for every two subfields Lk ⊃ Li between F and F[A] we have [Lk : Li] ≥ 2. The

result follows from n = [F[A] : F] = [F[A] : Lk] · [Lk : Li] · [Li : F]. ¤

Lemma 2.5. Let A = C(m) ∈ Mn(F) be a companion matrix of an irre-

ducible polynomial m. Then the length of each chain from A to any maximal

matrix commuting with A is at most log2 n− 1.
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Proof. Sincem is irreducible, C(A) = F[A] is a field. Recall from Lemma 2.1

that for any Xi, Xj ∈ Mn(F) it holds that A ≺ Xi ≺ Xj if and only if F[A] )
F[Xi] ) F[Xj ]. Let A = X0 ≺ X1 ≺ · · · ≺ Xk = M be a chain from A to a

maximal matrix M ∈ C(A). This chain is in one-to-one correspondence with a

chain of intermediate subfields F[A] = F[X0] ) F[X1] ) · · · ) F[Xk] = F[M ] ) F.
It follows by Lemma 2.4 that each chain from A to a maximal matrix M has

length at most (log2 n)− 1. ¤

Lemma 2.6. Let a non-diagonalizable A = C(m1)⊕· · ·⊕C(mk) ∈ Mn(F) be
in its rational canonical form, where 2 ≤ k ≤ n− 1 and m1, . . . ,mk are relatively

prime irreducible polynomials.

(a) Assume that all maximal matrices in C(A) are C-equivalent to idempo-

tents. Then the number of pairwise C-nonequivalent maximal matrices in C(A) is

at most 2k − 2.

(b) Assume some maximal matrix M ∈ C(A) is not C-equivalent to idempo-

tent. Then the length of any chain from A to M is at most n− 3.

Proof. For the sake of simplicity we write Ai = C(mi), i = 1, . . . , k.

To prove (a), observe that F[Ai] is a field for every i. So, each diagonal block

of every idempotent in C(A) = F[A1] ⊕ · · · ⊕ F[Ak] has to be the zero matrix or

the identity matrix. Hence, there are at most 2k − 2 non-scalar idempotents in

C(A). But since A is non-diagonalizable we have k ≤ n−1. Therefore the number

of pairwise C-nonequivalent maximal matrices that A commutes with is at most

2k − 2 ≤ 2n−1 − 2.

To prove (b), note that C(A) = F[A] = F[A1] ⊕ · · · ⊕ F[Ak] is a direct sum

of fields, so there is no non-scalar nilpotent matrix commuting with A. By [4,

Theorem 3.2], M is similar to C⊕ · · ·⊕C for some C ∈ M`(F) with properties as

in Theorem [4, Theorem 3.2]. Note that ` ≥ 2, otherwise M is a scalar matrix.

We claim that the length from A to M is at most n− 3.

Since M ∈ C(A) = F[A1] ⊕ · · · ⊕ F[Ak] ⊆ Md1(F) ⊕ · · · ⊕ Mdk
(F) we have

M = M1 ⊕ · · · ⊕ Mk, where Mj ∈ Mdj (F). By [7, Theorem 11.20] the rational

form of a matrix is unique up to permutation of blocks, so each Mj is similar to
dj

` copies of C. It follows that each dj is divisible by ` ≥ 2, so dj ≥ 2. Now,

consider an arbitrary chain

A = X0 ≺ · · · ≺ Xi ≺ Xi+1 ≺ · · · ≺ Xz = M. (2)

Since Xi ∈ C(A) = F[A1]⊕ · · · ⊕F[Ak] it follows that Xi = Xi1 ⊕ · · · ⊕Xik where

Xij ∈ F[Aj ] ⊆ Mdj (F). For each j = 1, 2, . . . , k, F[Aj ] is a field, so F[Xij ] is a
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subfield of F[Aj ]. As such, F[Xij ] contains neither non-scalar nilpotents nor non-

scalar idempotents, so the rational form of Xij consists of one or more identical

cells that correspond to the same irreducible polynomial.

Each matrixXi from the chain (2) induces a partition Pi of the set {1, . . . , k},
where two indices j1 and j2 are in the same cell of Pi if the blocks Xij1 and

Xij2 have the same minimal polynomial. For example, P0 = {{1}, . . . , {k}} and

Pz = {{1, . . . , k}}. Recall that the partition {Sj}1≤j≤s of the set S = {1, 2, . . . , k}
is the collection of non-empty disjoint subsets S1, . . . , Ss ⊆ S, called cells, such

that ∪s
j=1Sj = S. Moreover, a partition {Sj}1≤j≤s is coarser than a partition

{S̃j}1≤j≤s̃ if every cell S̃j is a subset of some cell S`, and it is strictly coarser if

it is coarser but not equal to {S̃j}1≤j≤s̃.

By Lemma 2.1, Xi+1 ∈ F[Xi] for all i = 1, 2, . . . , z − 1. This implies that

X(i+1)j ∈ F[Xij ] for each j, and since the rational form of each block Xij consists

of direct sum of identical cells, Pi+1 is coarser than Pi.

Now, Xi ≺ Xi+1 implies that either there exists j, such that F[X(i+1)j ] (
F[Xij ], or else F[X(i+1)j ] = F[Xij ] for each j and the induced partition Pi+1 is

strictly coarser than Pi. To see this, assume erroneously that F[Xij ] = F[X(i+1)j ]

for all j = 1, . . . , k and that the induced partitions ofXi andXi+1 are equal. Write

them as Pi = {S1, . . . , Ssi} = Pi+1 and devise another block-decomposition of Xi

Xi = X̂i1 ⊕ · · · ⊕ X̂isi , X̂it =
⊕

j∈St

Xij ∈ Mnt(F),

where nt =
∑

j∈St
dj , and likewise for

Xi+1 = X̂(i+1)1 ⊕ · · · ⊕ X̂(i+1)si , X̂(i+1)t =
⊕

j∈St

X(i+1)j ∈ Mnt(F).

Clearly, Xi+1 ∈ F[Xi] so to gain a contradiction we only have to show that

Xi ∈ F[Xi+1], which will imply that C(Xi+1) = C(Xi). Since Xij ∈ F[Aj ] and

F[Aj ] is a field, i.e., has no non-scalar idempotents nor nilpotents, the rational

form of Xij consists of identical cells which are all companion matrices of the same

irreducible polynomial. The definition of induced partition further implies that

the rational form of each X̂it consists of identical cells, so that X̂it =
⊕nt/`t

r=1 Cit,

where Cit = C(mit) ∈ M`t(F) is a companion matrix corresponding to the same

irreducible polynomial mit. Applying a suitable similarity, we can assume that

X̂it =
⊕nt/`t

r=1 Cit actually equals its rational form. Then Xi+1 ∈ F[Xi] implies

Xi+1 = f(Xi) = f(X̂i1)⊕ · · · ⊕ f(X̂isi), so

X̂(i+1)t = f(X̂it) =

nt/`t⊕
r=1

f(Cit), t = 1, . . . , si. (3)
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Fix now t ∈ {1, . . . , si} and j ∈ St. Since F[Xij ] = F[X(i+1)j ] there is a polynomial

gt such that Xij = gt(X(i+1)j). Note that X(i+1)j = f(Xij) =
⊕dj/`t

r=1 f(Cit),

wherefrom gt(f(Cit)) = Cit. Because of (3), all block constituents X̂(i+1)t are the

same, so gt(X̂(i+1)t) = X̂it.

Given distinct t, t′, the blocks X̂(i+1)t and X̂(i+1)t′ have relatively prime

minimal polynomials, since otherwise the partition Pi+1 would be strictly coarser

that Pi. This implies then F[Xi+1] = F[X̂(i+1)1] ⊕ · · · ⊕ F[X̂(i+1)si ], and we can

find a polynomial g with g(X̂(i+1)t) = gt(X̂(i+1)t) = X̂it for each t = 1, . . . , si.

Thus, Xi = g(Xi+1) ∈ F[Xi+1], a contradiction.

Let us find the upper bound for the length of chain (2). By Lemma 2.5

there exist at most log2 dj − 1 nested proper intermediate subfields F ( F[Mj ] =

F[Xzj ] ( · · · ( F[X(i+1)j ] ( F[Xij ] ( · · · ( F[Aj ]. Also, we obtain the final

induced partition Pz = {{1, . . . , k}} from the initial one P0 = {{1}, . . . , {k}} in

at most k − 1 steps, where at each step the partition is strictly coarser than the

previous one. All together, the upper bound for the length of chain (2) is

(
(log2 d1 − 1) + · · ·+ (log2 dk − 1)

)
+ (k − 1) = log2 d1 + · · ·+ log2 dk − 1

≤ (d1 − 1) + · · ·+ (dk − 1)− 1 ≤ n− 2. (4)

If k ≥ 2, then the last inequality in (4) is strict. If k = 1, then 3 ≤ n = d1
implies the first inequality in (4) is strict. Whatever the case, the length is at

most n− 3. ¤

Remark 2.7. Suppose F has characteristic 0. Then, the splitting field of an

irreducible polynomial m is Galois over F [6, Corrolary 1, p. 91 and Theorem 3.4,

p. 92]. Let A = C(m). Then, with the help of the Fundamental Theorem of Galois

theory [6, Theorem 2.10] it is easy to see the number of pairwise C-nonequivalent
maximal matrices in C(A) coincides with the number of maximal subgroups of

Galois group of field extension (F[A] : F).

Lemma 2.8. Let n ≥ 3. Assume F is a field with |F| ≥ 2n−1. Let A ∈ Mn(F)
be non-derogatory. Then the following statements are equivalent.

(i) A is diagonalizable over F.
(ii) Up to C-equivalence there exists exactly 2n−1 − 1 maximal matrices that

commute with A and the length from A to each of them is n− 2.

Proof. Let us prove that (i) implies (ii). We may assume without loss

of generality that A is diagonal. Since A is non-derogatory it has n different

eigenvalues. If a maximal matrix B ∈ Mn(F) commutes with A, then B is also
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diagonal and by Theorem [4, Theorem 3.2] it is C-equivalent to an idempotent.

Since non-scalar diagonal idempotents are exactly diagonal maximal matrices and

diagonal idempotents have only 0 and 1 entries on the main diagonal, B must

be equal to one of the 2n − 2 diagonal non-scalar idempotents. Note that for an

arbitrary idempotent P the only idempotent C-equivalent to it is I−P . Therefore

there exists 2n−1 − 1 pairs of C-nonequivalent diagonal idempotents and hence

exactly 2n−1−1 pairwise C-nonequivalent maximal matrices that commute with A.

Let B be a maximal diagonal matrix which commutes with A. Let us deter-

mine the length of a chain from A to B. If

A = X0 ≺ · · · ≺ Xk = B

is an arbitrary chain from A to B, then each Xi commutes with A, so it is

diagonal. Moreover, Xi ≺ Xi+1, i.e., C(Xi) ( C(Xi+1) implies Xi+1 ∈ F[Xi], see

Lemma 2.1. ThusXi+1 cannot have more distinct eigenvalues thanXi. Also, ifXi

and Xi+1 would have the same number of distinct eigenvalues, then the repeated

eigenvalues of Xi and Xi+1 would be at the same positions implying C(Xi+1) =

C(Xi), a contradiction. Therefore in each chain from A to B the number of

distinct eigenvalues is strictly decreasing. Since A has n distinct eigenvalues and

B has 2 different eigenvalues, every chain has length at most n− 2. Clearly, the

chain with length n− 2 does exist.

We will prove that (ii) implies (i) by assuming that non-derogatory matrix

A is not diagonalizable and showing that (ii) is not true in that case. We can

assume that A = C(mα1
1 ) ⊕ · · · ⊕ C(mαk

k ) is in its rational form, where k ≥ 1,

α1 ≥ · · · ≥ αk ≥ 1 are integers and m1, . . . ,mk are relatively prime irreducible

polynomials.

If α1 ≥ 4 or 3 ≥ α1 ≥ α2 ≥ 2, then by Lemma 2.2 there exist at least 2n−1

pairwise C-nonequivalent maximal matrices that commute with A, so (ii) does

not hold. Thus it remains to consider the cases α1 ≤ 3 and αi = 1 for i ≥ 2. If

α1 ∈ {2, 3}, then (ii) does not hold by Lemma 2.3. The case k = 1 and α1 = 1

contradicts (ii) by Lemma 2.5 since log2 n− 1 < n− 2 for n ≥ 3. The case k ≥ 2

and α1 = 1 contradicts (ii) by Lemma 2.6. ¤

Proof of main Theorem. We will prove the theorem in several steps.

1. We start by showing that Φ maps diagonal matrices bijectively onto diago-

nal ones. Let D ∈ Mn(F) be a non-derogatory diagonal matrix. By [4, Proposit-

ion 2.3] non-derogatory matrices are exactly minimal ones, and since Φ preserves

the partial order relation on equivalence classes we obtain that Φ(D) is also non-

derogatory. It follows by Lemma 2.8 that Φ(D) is diagonalizable. By applying a

suitable similarity transformation, we may assume that Φ(D) is already diagonal.
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Since D and Φ(D) are diagonal non-derogatory matrices, each of them has

distinct diagonal entries and therefore C(D) and C(Φ(D)) consist of diagonal

matrices only. Hence Φ maps diagonal matrices bijectively onto diagonal ones.

2. We next show that Φ has the form (i) or (ii) on the scalar multiples of

idempotents of rank one. Repeating the arguments on pages 73 and 74 in [5] we

obtain that a diagonal idempotent of rank-one is mapped by Φ onto a diagonal

idempotent of rank-one up to C-equivalence. (The main idea is to compute the

cardinality of the set

SP = {C(A) | C(A) ⊆ C(P ), A diagonal}

for various maximal diagonal matrices P . It is proved in [5, p. 73–74] that |SP |
is maximal if and only if P is C-equivalent to a rank-one idempotent.) Using

the standard arguments we obtain that idempotents of rank-one are mapped to

idempotents of rank-one up to C-equivalence.
Note that each C-equivalence class contains at most one rank-one idempo-

tent. Indeed by Lemma 2.1 two matrices A and B are C-equivalent if and only

if F[A] = F[B] and clearly a subalgebra of Mn(F), n ≥ 3, generated by an idem-

potent of rank one contains only one idempotent of rank one. So Φ induces a

bijective map on the set of idempotents of rank-one which preserves commuta-

tivity in both directions. Since two idempotents of rank-one commute if and

only if they are either orthogonal or equal, the induced bijection preserves ort-

hogonality among rank-one idempotents. By [12, Theorem 2.3] there exists an

invertible T and a field isomorphism σ : F → F such that Φ(P ) ∼ TP σT−1 for

every rank-one idempotent P or Φ(P ) ∼ T (Pσ)T T−1 for every rank-one idempo-

tent P . Moreover, since Φ preserves C-equivalence among matrices it also holds

that Φ(αP ) ∼ αTP σT−1 for every rank-one idempotent P and every α ∈ F \ {0}
or Φ(αP ) ∼ αT (Pσ)T T−1 for every rank-one idempotent P and every α ∈ F\{0}.

By appropriately modifying Φ we may assume that Φ(αP ) ∼ αP for every

scalar multiple of rank-one idempotent P . By Lemma 2.1, Φ(αP ) = γααP + δαI,

so we may further assume that Φ fixes every scalar multiple of rank-one idem-

potent P . The new map may not be bijective any longer, but it still preservers

commutativity in both directions.

3. Action of Φ on the square-zero rank-one matrices. Let N be a square-

zero rank-one matrix. Since it is similar to E12 we may assume without loss

of generality that N = E12. It is easy to see that the linear span of rank-one

idempotents in C(E12) contains all matrices with zero entries in the upper left

2 × 2 block, and in the second row and the first column. Indeed, Eji = (Eji +
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Eii) − Eii, Eik = (Eik + Eii) − Eii, where i = 3, . . . , n, j 6= 2, k 6= 1, and

Eji+Eii, Eik+Eii, Eii ∈ C(E12). Note that Φ fixes rank-one idempotents. Hence

Φ(E12) commutes with every matrix having zeros in the second row and in the first

column. This is possible only if Φ(E12) = αE12+βI for some α, β. Since Φ maps

maximal matrices to maximal matrices, α must be non-zero, and appropriately

modifying Φ again, we can assume Φ(E12) = E12. So, Φ fixes each sqare-zero

rank-one matrix.

4. Action of Φ on the diagonalizable matrices. Let A =
∑n

i=1 λiEii. Then

A commutes with Eij if and only if λi = λj . Since each Eij is fixed, we see

that Φ(A) ∼ A for every diagonal matrix A, and by the standard arguments

also for every diagonalizable matrix. By Lemma 2.1, Φ(A) ∼ A if and only if

F[Φ(A)] = F[A], and in particular, Φ(A) is a polynomial in A for every diagona-

lizable matrix A. ¤
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