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Strong version of the Stečkin–Lenski approximation theorem

By LÁSZLÓ LEINDLER (Szeged)

Dedicated to Professors Zoltán Daróczy and Imre Kátai on their 75th birthdays

Abstract. Very recently W. Lenski [5] verified the pointwise analog of Stečkin’s

theorem on approximation of Fourier series by de la Vallée Poussin means. In [3] we

extended the same Stečkin’s theorem to strong approximation. In this paper we show

that the pointwise expansion of our sharper result also holds.

1. Introduction

The fundamental Fejér and Lebesgue theorems have been extended countless

different ways by various authors. E.g. results pertaining to the approximation

rate are known as Bernstein theorems, regarding the strong summability we can

mention the result due to Hardy and Littlewood [2], and nearly fifty years

later G. Alexits [1] raised some analogous problems in connection with the

strong approximation. Nikolskǐı [6] and Stečkin [7] using the de la Vallée Po-

ussin means, proved again theorems regarding ordinary approximation. They

gave estimates for the order of approximation with the aid of the best approxi-

mation En(f) given by trigonometric polynomials. In [7] Stečkin proved the

most general result including or improving the previous ones. His result states:

If f(x) is a continuous function, then

‖f(x)− σn,m(x)‖ 5 K

n∑
ν=0

En−m+ν(f)

m+ ν + 1
(0 5 m 5 n, n = 0, 1, . . .),
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where

σn,m(x) :=
1

m+ 1

n∑
ν=n−m

sν(x),

and ‖ · ‖ denotes the maximum norm.

In [3] we sharpened this result using strong means, that is, it is proved that

∥∥∥ 1

m+ 1

n∑
ν=n−m

|sν(x)− f(x)|
∥∥∥ 5 K

n∑
ν=0

En−m+ν(f)

m+ ν + 1

also holds.

Very recently Lenski [5] proved the pointwise analog of the Stečkin theorem.

The aim of the present paper is to prove the pointwise version of our theorem

cited above.

2. Notions and notations

To establish Lenski’s theorem and our one, we remember some notions and

notations.

Let Lp (1 5 p < ∞) [respect C] be the class of 2π-periodic real functions

integrable with p-th power [continuous] over Q = [−π, π], and let Xp = Lp if

1 5 p < ∞ and Xp = C for p = ∞.

Let

‖f‖ = ‖f‖Xp :=





{∫

Q

|f(x)|pdx
}1/p

, if 1 5 p < ∞,

sup
x∈Q

|f(x)|, if p = ∞,

and

‖f‖x,δ = ‖f‖Xp,x,δ :=





sup
0<h5δ

{
1

2h

∫ x+h

x−h

|f(t)|pdt
}1/p

, 0 5 p < ∞,

sup
0<h5δ

{
sup

0<|t|5h

|f(x+ t)|
}
, p = ∞.

If f(x) ∈ Xp then let

f(x) ∼ a0
2

+

∞∑
n=1

(an cosnx+ bn sinnx) (2.1)

be its Fourier series. Denote by sn = sn(x) = sn(f, x) the n-th partial sum of
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(2.1), and the de la Vallée Poussin sums by

σn,m := σn,m(x) :=
1

m+ 1

n∑
ν=n−m

sν(x) (0 5 m 5 n, n = 0, 1, 2, . . .).

The strong de la Vallée Poussin means of differences are defined as follows:

Vn,m := Vn,m(x) :=
1

m+ 1

n∑
ν=n−m

|sν(x)− f(x)|.

It is clear that

Vn,m(x) = |σn,m(x)− f(x)|.
Let T := T (x) denote trigonometric polynomial of the degree at most n

(T ∈ Hn).

The pointwise best approximation of f are defined as follows:

En(x, δ) := En(f, x, δ) := En(f, x, δ)Xp

:=





inf
T∈Hn

{
sup

0<h5δ

( 1

2h

∫ h

−h

|f(x+ t)− T (x+ t)|pdt
)1/p}

, 1 ≤ p < ∞,

inf
T∈Hn

{
sup

0<h5δ

|f(x+ h)− T (x+ h)|
}
, p = ∞;

and their arithmetic means will be denoted by

Fn,m := Fn,m(x) := Fn,m(f, x)Xp :=
1

m+ 1

m∑

k=0

En

(
x,

π

k + 1

)
.

We note plus that

En(f, x, 0) := |f(x)− Tn(x)|,
where Tn(x) is the trigonometric polynomial of the degree at most n of the best

approximation of f .

As usual, N0 denotes the set of nonnegative integers, and

Dn(t) :=
1

2
+

n∑
ν=1

cos νt

the Dirichlet kernel of order n.

We shall also use the following notation: L ¿ R if there exists a positive

constant K such that L ¿ KR, but not necessarily the same K at each occur-

rence.
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3. Theorems

First we recall Lenski’s main theorem.

Theorem L. If f ∈ Xp, then for any positive integers m 5 n and all real x

|σn,m(x)− f(x)| ¿
n∑

ν=0

Fn−m+ν,m(x) + Fn−m+ν,ν(x)

m+ ν + 1
+ E2n−m(f, x, 0) (3.1)

holds.

Analyzing the proof of Theorem 1 verified in a preceding paper of Lenski

[4], it is easy to see that, implicitly, he proved the following inequality, too.

Corollary L. If f ∈ Xp, then for any positive integers m 5 n and all real x

Vn,m(x) ¿ Fn−m,m(x)

(
1 + ln

n+ 1

m+ 1

)
+ En−m(f, x, 0).

In our proof we shall use this corollary.

Roughly speaking, our result is the statement, that the left hand side of (3.1)

can be replaced by Vn,m(x), as well.

More precisely, our result reads as follows:

Theorem. If f ∈ Xp, then for any positive integers m 5 n and all real x

Vn,m(x) ¿
n∑

ν=0

Fn−m+ν,m(x) + Fn−m+ν,ν(x)

m+ ν + 1
+ E2n−m(f, x, 0)

holds true.

4. Lemmas

To prove our theorem we shall use two lemmas of [5] in unchanged form, and

three of then, we modify to strong means.

Lemma 1. If Tn is the trigonometric polynomial of the degree at most n of

the best approximation of f ∈ Xp with respect to the norm ‖ · ‖Xp , then it is also

the trigonometric polynomial of the degree at most n of the best approximation

of f ∈ Xp with respect to the norm ‖ · ‖Xp,x,δ for any δ ∈ [0, π].

Lemma 2. If n ∈ N0 and δ > 0 then En(f, x, δ)Xp is nonincreasing function

of n and nondecreasing function of δ. These imply that for m,n ∈ N the function

Fn,m(f, x)Xp is nonincreasing function of n and m simultaneously.
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Lemma 3. Let m,n, q ∈ N0 such that m 5 n and q = m + 1. If f ∈ Xp

then

|Vn+q,m(x)− Vn,m(x)| ¿ Fn−m,m(x)

q−1∑
ν=0

1

m+ ν + 1
.

Proof. An easy consideration shows that with Vn,m := Vn,m(x)

(m+ 1)|Vn+q,m − Vn,m| =
∣∣∣∣∣

n+q∑

k=n+q−m

|sk − f | −
n∑

k=n−m

|sk − f |
∣∣∣∣∣

5
n∑

k=n−m

∣∣∣∣|sk+q − f | − |sk − f |
∣∣∣∣ 5

n∑

k=n−m

|sk+q − sk|.

Let Tν := Tν(f ;x) denote the polynomial of best trigonometric approxima-

tion of order ν for f . Since the kernels Dk+q(x) − Dk(x), for k = n − m, are

orthogonal to the trigonometric polynomial Tn−m, thus we have that

n∑

k=n−m

|sk+q(x)− sk(x)|

=

n∑

k=n−m

∣∣∣∣
1

π

∫ π

−π

[f(x+ t)− Tn,m(x+ t)](Dk+q(t)−Dk(t))dt

∣∣∣∣ =:
∑

.

Lenski [5] in his Lemma 7 proved that

∑
¿ Fn−m,m(x)

q−1∑
ν=0

1

m+ ν + 1
,

herewith our Lemma 3 is also verified. ¤

Before formulating our fourth lemma we define a new difference. Let m,n ∈
N0 and m 5 n. Denote

τn,m := τn,m(x) := τn,m(f, x) := (m+ 1)(Vn+m+1,m − Vn,m).

Lemma 4. Let m,n, µ ∈ N0 such that 2µ 5 m 5 n. If f ∈ Xp then

|τn,m(x)− τn−µ,m−µ(x)| ¿ µFn−µ+1,µ−1(x) ln
m

µ
.
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Proof. An easy consideration gives the following equality:

τn,m − τn−µ,m−µ =

(
n+m+1∑

k=n+m−2µ+2

−2

n∑

k=n−µ+1

)
|sk − f |.

Next we use Lemma 3 to estimate the following differences:

∣∣∣∣∣

(
n+m−µ+1∑

k=n+m−2µ+2

−
n∑

k=n−µ+1

)
|sk − f |

∣∣∣∣∣ = µ|Vn+m−µ+1,µ−1 − Vn,µ−1|

¿ µFn−µ+1,µ−1(x) ln
m

µ

and

∣∣∣∣∣

(
n+m+1∑

k=n+m−µ+2

−
n∑

k=n−µ+1

)
|sk − f |

∣∣∣∣∣ = µ|Vn+m+1,µ−1 − Vn,µ−1|

¿ µFn−µ+1,µ−1(x) ln
m

µ
,

herewith Lemma 4 is proved. ¤

Lemma 5. Let m,n ∈ N0 and m 5 n. If f ∈ Xp then

|τn,m(x)| ¿
n∑

k=n−m

Fk,k−n+m(x). (4.1)

Proof. We may assume that m = 2, otherwise (4.1) is trivial. Next we

present the sequence {ms} constructed by Stečkin [7]. Let

m0 = m, ms := ms−1 − [ms−1/2] (s = 1, 2, . . .),

where [y] denotes the integral part of y. Clearly there exists an index t = 1 such

that

m = m0 > m1 > . . . > mt = 1.

By the definition of ms we have

ms = ms−1/2,

ms−1 −ms = [ms−1/2] = ms−1/3 (s = 1, 2, . . . , t), (4.2)

thus

mt−1 = 2 and mt−1 −mt = 1, (4.3)
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furthermore
ms−1 −ms 5 ms 5 3(ms −ms+1) (s = 1, . . . , t− 1). (4.4)

Using the equality

τn,m(x) =

t∑
s=1

{τn−m+ms−1,ms−1
− τn−m+ms,ms

}+ τn−m+mt,mt
,

and that mt = 1 we get

|τn,m(x)| 5
t∑

s=1

|τn−m+ms−1,ms−1 − τn−m+ms,ms |+ |τn−m+1,1|. (4.5)

To estimate the terms in the sum
∑t

s=1 in (4.5) we use Lemma 4 with

µ = ms−1 −ms and m = ms−1, whence

|τn−m+ms−1,ms−1 − τn−m+ms,ms |
¿ (ms−1 −ms)Fn−m+ms+1,ms−1−ms ln

ms−1

ms−1 −ms
, (s 5 t− 1) (4.6)

follows, furthermore by Lemma 5,

|τn−m+i,i| ¿ Fn−m,i, i = 1, 2, (4.7)

holds.

In virtue of (4.2)–(4.7) we obtain that

|τn,m(x)| ¿
{

t−1∑
s=1

(ms −ms+1)Fn−m+ms+1,ms + Fn−m+2,m−2 + Fn−m,1

}
,

whence, due to the monotonicity of Fn,m,

|τn,m(x)| ¿
{

t−1∑
s=1

ms∑
ν=ms+1+1

Fn−m+ν+1,ν + Fn−m+2,m−2 + Fn−m,1

}

¿
n∑

k=n−m

Fk,k−n+m,

which proves Lemma 5. ¤
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5. Proof of Theorem

The proof is a unified version used in the following three papers [7], [3] and

[5]. Let n > 0 and 0 5 m 5 n be fixed, and following Stečkin’s idea, construct

an increasing sequence {ns} (s = 0, 1, . . . , t) in the following way. Set n0 = n.

If n0, . . . , ns are already defined and ns < 2n, we define ns+1 as follows in (5.2):

Let νs = νs(x) denote the smallest natural number such that

Fn−m+νs,ν(x) 5
1

2
Fns−m,ν(x) (ν = 0, 1, . . . , n). (5.1)

According to the magnitude of νs let

ns+1 :=





ns +m+ 1, if νs 5 m,

ns + νs, if m+ 1 5 νs < 2n+m− ns,

2n+m, if νs = 2n+m− ns.

(5.2)

In ns+1 < 2n, the we continue the procedure, and if ns+1 = 2n, the we stop, and

define t := s+ 1.

This sequence {ns} has the following properties:

t = 1, n = n0 < n1 < . . . < nt, 2n 5 nt 5 2n+m,

and

ns+1 − ns = m+ 1, (s = 0, 1, . . . , t− 1). (5.3)

By (5.1) and (5.3) we also have the relations

Fns+1−m,ν(x) 5
1

2
Fns−m,ν(x), if s 5 t− 2; (5.4)

furthermore if ns+1 − ns > m+ 1 and s 5 t− 1, then

1

2
Fns−m,ν(x) 5 Fns+1−m−1,ν(x). (5.5)

Namely, if nt = ns+1 = 2n+m, then νs = 2n+m−ns, or equivalently, νs −m+

νs−1 = 2n−1 = ns+1−m−1, thus, by (5.1), Fns+1−m−1(x) = Fns−m+(νs−1),ν >
1
2Fns−m,ν clearly holds.

Now, by means of this sequence {ns} we can write

Vn,m =

t−1∑
s=0

{Vns,m − Vns+1,m}+ Vnt,m. (5.6)
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First we estimate the extra term. Using Corollary L and that 2n 5 nt 5 2n+m

we get

|Vnt,m(x)| ¿ Fnt−m,m(x)

(
1 + ln

nt + 1

m+ 1

)
+ Ent−m(x, 0)

¿ F2n−m,n(x) ln
n+m

m+ 1
+ E2n−m(x, 0)

¿
n∑

ν=0

Fn−m+ν,m(x)

m+ ν + 1
+ E2n−m(x, 0). (5.7)

Newt we estimate the terms of the sum. If ns+1 − ns = m+ 1, then

Vns+1,m(x)− Vns,m(x) =
1

m+ 1
τns,m(x).

Applying Lemma 5 we obtain that

|Vns+1,m(x)− Vns,m(x)| ¿ 1

m+ 1

ns∑

k=ns−m

Fk,k−ns+m(x)

¿
ns+1−ns−1∑

ν=0

Fns−m+ν,ν(x)

m+ ν + 1
. (5.8)

If ns+1 − ns > m+ 1, then we use Lemma 3 and the inequality (5.5), and arrive

at the inequalities:

|Vns+1,m(x)− Vns,m(x)| ¿ Fns−m,m(x)

ns+1−ns−1∑
ν=0

1

m+ ν + 1

¿ Fns+1−m−1,m(x)

ns+1−ns−1∑
ν=0

1

m+ ν + 1
¿

ns+1−ns−1∑
ν=0

Fns−m+ν,m(x)

m+ ν + 1
. (5.9)

The inequalities (5.8) and (5.9) give

|Vns,m(x)− Vns+1,m(x)| ¿
ns+1−ns−1∑

ν=0

Fns−m+ν,m(x) + Fns−m+ν,ν(x)

m+ ν + 1
(5.10)

for any s = 0, 1, . . . , t− 1.
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Applying (5.10) we get

∑∗
1
:=

t−1∑
s=0

|Vns,m(x)− Vns+1,m(x)|

¿
t−1∑
s=0

ns+1−ns−1∑
ν=0

Fns−m+ν,m(x) + Fns−m+ν,ν(x)

m+ ν + 1
=:

∑∗
2
. (5.11)

Since ns+1 − ns 5 2n+m− n− 1 = n+m− 1 for all s 5 t− 1, and if we change

the order of summation in
∑∗

2, then we get the inequality

∑∗
2
5

n+m−1∑
ν=0

1

m+ ν + 1

∑
s:ns+1−ns>ν

(Fns−m+ν,m(x) + Fns−m+ν,ν(x)). (5.12)

The non-void inner sums of (5.12) can be estimated as follows: Let p denote the

smallest index s having the property ns+1 − ns > ν. Then

∑
s:ns+1−ns>ν

(Fns−m+ν,m(x) + Fns−m+ν,ν(x)) = Fnp−m+ν,m(x) + Fnp−m+ν,ν(x)

+
∑

s=p+1:ns+1−n+s>ν

[Fns−m+ν,m(x) + Fns−m+ν,ν(x)]

5 Fnp−m+ν,m(x) + Fnp−m+ν,ν(x)

+
∑

s:s=p+1

[Fns−m+ν,m(x) + Fns−m+ν,ν(x)] =:
∑∗

3
. (5.13)

Now using the inequalities (5.4) and that Fn,m(x) are nonincreasing, we get

∑∗
3
5 3[Fnp−m+ν,m(x) + Fnp−m+ν,ν(x)]. (5.14)

Finally, collecting our partial results, (5.6), (5.7) and (5.10)–(5.14), we arrive

at (5.1), and hereby our theorem is proved.
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ARADI VÉRTANÚK TERE 1

6720 SZEGED

HUNGARY

E-mail: leindler@math.u-szeged.hu

(Received March 12, 2013)


