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Conformal vector fields on a locally projectively
flat Randers manifold

By ZHONGMIN SHEN (Indianapolis) and QIAOLING XIA (Hangzhou)

Abstract. We study and characterize conformal vector fields on a Randers mani-

fold of projectively isotropic flag curvature. In particular, we prove that any conformal

vector field on a non-Riemannian locally projectively flat Randers manifold of dimension

n ≥ 3 must be homothetic and completely determine conformal vector fields on a locally

projectively flat Randers manifold.

1. Introduction

It is well known that there are a vast amount of literatures on the conformal

(resp. homothetic or killing) vector fields on a Riemannian manifold M . They are

closely related with the conformal (resp. homothetic or isometric) transformation

group on M , which plays a very important role in geometry and physics.

Conformal (resp. homothetic or killing) vector fields on a Riemannian mani-

fold have been successfully applied to the study of non-Riemannian Finsler ma-

nifolds. For example, a Randers metric of weakly isotropic (resp. constant) flag

curvature can be generated by a Riemannian metric h of isotropic (resp. cons-

tant) sectional curvature K and its conformal (resp. homothetic) vector fields.
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This leads to the classification of Randers metrics of weakly isotropic (resp. cons-

tant) flag curvature ([BRS], [SY]). The key idea is to express a Randers metric

F = α + β in terms of a Riemannian metric h =
√
hij(x)yiyj and a vector field

W = W i ∂
∂xi by

F =

√
λh2 +W 2

0

λ
− W0

λ
, W0 := Wiy

i, (1.1)

where Wi := hijW
j and λ := 1 − ‖Wx‖2h. (h,W ) is called the navigation data

of F . However, this idea can not be used to classify Randers metric of scalar flag

curvature. In fact, it is an open problem to classify Randers metric of scalar flag

curvature up to now.

In [Sh], the first author in the present paper discussed the navigation problem

in a more general setting. It is shown that the shortest time paths on a Finsler

manifold (M,F ) under the influence of a force field V with F (x,−Vx) < 1 are

just the geodesics of the new Finsler metric F̃ = F̃ (x, y) defined by the following

equation:

F

(
x,

y

F̃ (x, y)
− Vx

)
= 1, y ∈ TxM. (1.2)

Note that if F = h is a Riemannian metric h and V = W is a vector field W onM ,

then the new metric F̃ defined by (1.2) is a Randers metric expressed in (1.1). If

F is a Randers metric expressed by (h,W ) in (1.1) and V is a vector field on M ,

then the new metric F̃ defined by (1.2) is still a Randers metric expressed by (1.1)

with W replaced by W +V (cf. [ShX1]). X. Mo and L. Huang have established

the relation between the flag curvature of a given Finsler metric F and that of the

new Finsler metric F̃ generated by (F, V ) if V is a conformal (resp. homothetic)

vector field on a Finsler manifold (M,F ) (cf. [MH1], [MH2]). To have a better

understanding on Finsler metrics with some flag curvature properties, it is very

important to study the conformal (resp. homothetic or killing) vector fields on a

Finsler manifold.

Recently, some progress has been made in the study of the conformal (resp.

homothetic or killing) vector fields on a Finsler manifold (cf. [JB], [Kang] etc.).

In particular, we have completely determined all conformal vector fields on a

Randers manifold of weakly isotropic flag curvature and constructed a new class

of Randers metrics of scalar flag curvature (cf. [ShX1], [ShX2]). For a Randers

metric F = α+ β, if there is a closed 1-form η such that F̄ := α+ β̄(β̄ := β − η)

is of weakly isotropic flag curvature, then F = α+ β is projectively equivalent to

F̄ = α+β̄ and hence it is of scalar flag curvature. Randers metrics F = α+β with

such property are said to be of projectively isotropic flag curvature. Obviously,
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every locally projectively flat Randers metric or every Randers metric of weakly

isotropic flag curvature is of projectively isotropic flag curvature and consequently

of scalar flag curvature.

In this paper, we shall study and characterize conformal vector fields on

a Randers manifold of projectively isotropic flag curvature. In particular, we

completely determine all conformal fields on a locally projectively flat Randers

manifold.

Theorem 1.1. Let F = α + β be a Randers metric on an n-dimensional

manifold M (n ≥ 3) such that F̄ := α+ β̄ is a Randers metric of weakly isotropic

flag curvature and η := β − β̄ is closed. Let (h̄, W̄ ) be the navigation data of F̄

and V be a conformal vector field on (M,F ) with conformal factor c(x). Assume

η = ηiy
i 6= 0 and V satisfies

V jηi;j + ηjVj;i = 2cηi, (1.3)

where “;” is the covariant derivative with respect to the Levi–Civita connection

of h̄. Then V must be homothetic with respect to F .

Under the restriction (1.3), V is a conformal vector field on (M,F ) with the

conformal factor c(x) if and only if V is a conformal vector field on (M, F̄ ) with

the same conformal factor c(x), which is regarded as the geometric meaning of the

equation (1.3) (see Lemma 3.1). Theorem 1.1 shows that V must be homothetic

with respect to F and F̄ respectively in this case. Thus, one can determine

the homothetic vector fields on (M,F ) from those on (M, F̄ ). Furthermore, in

Theorem 1.1, since F̄ is of weakly isotropic flag curvature and dimM ≥ 3, at

any point, there is a local coordinate system (U, (xi)), in which h̄ is of constant

sectional curvature µ and W̄ is a conformal vector field with conformal factor

σ(x) with respect to h̄ according to [SY]. Explicitly, h̄ and W̄ are respectively

expressed by:

h̄ =

√
(1 + µ|x|2)|y|2 − µ〈x, y〉2

1 + µ|x|2 , y ∈ TxR
n (1.4)

W̄ = −2

{(
δ
√
1 + µ|x|2 + 〈v, x〉

)
x− |x|2v

1 +
√
1 + µ|x|2

}

+ xQ+ d+ µ〈d, x〉x, (1.5)

where δ is a constant, Q is a skew symmetric matrix independent of x ∈ Rn and

v, d ∈ Rn are constant vectors (cf. [SX]). In this case,

σ =
δ + 〈v, x〉√
1 + µ|x|2 . (1.6)
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Thus we have

Theorem 1.2. Let F and F̄ be as in Theorem 1.1. Assume (h̄, W̄ ) is the

navigation data of F̄ given by (1.4)–(1.5). Let V be a vector field on Rn given

by one of the following

(i) V = xQ, where Q and v are those in (1.5) with vQ = 0 (v 6= 0);

(ii) V = 2ε
√
1 + µ|x|2 x + xQ + µ〈x, d〉x + d, where ε is a constant with εµ =

εδ = 0, and Q and d are those in (1.5) with δd = εQ = 0.

If there is a function f = f(x) on M such that η = df 6= 0, which satisfies

V ifxi − 2εf = k, (1.7)

where k is a constant, then V is a homothetic vector field of F with dilation ε.

Conversely, if V is a homothetic vector field of F with dilation ε and η = df 6= 0

satisfying (1.7), then V must be given by (i) or (ii) above.

In particular, if β̄ = 0 in Theorem 1.1, then η = β is closed and F̄ = α is of

isotropic sectional curvature (=constant if dimM ≥ 3) from Theorem 1.2 in [SY].

Thus F = α+η is projectively flat. Since F̄ = h̄ = α is a Riemannian metric and

V is conformal with respect to F , (1.3) holds by (2.4) in §2 and V is conformal

with respect to α by Lemma 3.1. Consequently, V can be expressed in the form

(1.5). On the other hand, by Theorem 1.1 and Lemma 3.1, V is homothetic with

respect to α. Thus, v = 0 and δµ = 0 by (1.6). Notice that the conformal factor

c(x) in this paper is minus one times the conformal factor in [SX] and [SY]. One

obtains the following

Corollary 1.1. Let F = α+ β(β 6= 0) be a locally projectively flat Randers

metric on an n-dimensional manifold M . Suppose V is a conformal vector field

on (M,F ) and dimM ≥ 3. Then V must be homothetic. In this case,

V = 2δ
√
1 + µ|x|2 x+ xQ+ µ〈d, x〉x+ d,

where δ, µ are constants with δµ = 0, Q is a constant skew symmetric matrix

and d is a constant vector in Rn.

Consider a special Randers metric F = α+ β on Rn

α =

√
(1 + µ|x|2)|y|2 − µ〈x, y〉2)

1 + µ|x|2 , (1.8)

β = df 6= 0, (1.9)
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where f = f(x) is a scalar function. F is projectively flat. Let

Φ := fi|jyiyj , Ψ := fi|j|kyiyjyk. (1.10)

where fi|j and fi|j|k are the coefficients of the covariant derivatives of f with

respect to α. Then the flag curvature of F is given by

KF (x, y) =
µα2

F 2
− Ψ

2F 3
+

3Φ2

4F 4
(1.11)

(cf. see (6.10) in [CS]). Let V be a conformal vector field on (M,F ) with con-

formal factor c. Then, V is homothetic and is given by (1.1). By [MH1], F̃

generated from (F, V ) by solving (1.2) is of scalar flag curvature KF̃ (x, y) =

KF (x, y − F̃ V ) − c2. Thus one obtains a series of Randers metric of scalar flag

curvature. In general, such F̃ is not locally projectively flat, not of weakly isot-

ropic flag curvature and not the metric constructed by Chen–Zhao ([CZ]). To

see this, we consider a more special case.

Example 1.1. Let α = |y|, f = |x|2/2, and V = xQ with |xQ| < 1, where Q

is a skew symmetric matrix. Then (1.7) holds for c = 0 and k = 0 and V is a

Killing vector field with respect to F = α+df . By solving (1.2), we obtain a new

Randers metric F̃ = α̃+ β̃, where α̃ and β̃ are given by

α̃ =

√
(1− |xQ|2)(|y|2 − 〈x, y〉2) + (〈xQ, y〉 − 〈x, y〉)2

1− |xQ|2 (1.12)

β̃ = −〈xQ, y〉 − 〈x, y〉
1− |xQ|2 . (1.13)

F̃ is of scalar flag curvature with

KF̃ =
3

4

(
|y − F̃ V |

|y − F̃ V |+ 〈x, y − F̃ V 〉

)4

. (1.14)

From (1.13), one can see that β̃ is not closed. Thus F̃ is not locally projectively

flat. From (1.14), one can see that F̃ is not of weakly isotropic flag curvature.

Note that the metrics constructed by Chen–Zhao have the following special

properties: α is of constant Ricci curvature (Einstein). Since α̃ is not Einstein,

F̃ is not the metric constructed by Chen–Zhao.
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2. Preliminaries

In this section, we shall review the navigation problem and some results on

conformal vector fields on a Randers manifold (M,F = α+ β).

Consider a Riemannian metric h =
√
hijyiyj and a vector field W = W i ∂

∂xi

on a manifold M . The Zermelo navigation problem is to determine the shortest-

time paths on (M,h) for an object driven by a constant interval force and under

the influence of the external force field W (cf. [Zer]). It is shown that the shortest-

time paths are the geodesics of the Randers metric F = F (x, y) defined by the

following equation:

h

(
x,

y

F (x, y)
− Vx

)
= 1, y ∈ Tx(M) (2.1)

Solving (2.1), one obtains a Randers metric F = α + β as (1.1). In fact, every

Randers metric F = α + β on a manifold M can be expressed in terms of a

Riemannian metric h =
√
hij(x)yiyj and a vector field W = W i(x) ∂

∂xi with

‖Wx‖h < 1 by (1.1) (cf. [BRS]). We call (h,W ) a navigation data of F . More

generally, given a Finsler metric F and a vector field V with F (x,−V ) < 1 on a

manifold M , one obtains a new Finsler metric F̃ , which is defined by (1.2). See

[Sh] in detail.

A vector field V on a Finsler manifold (M,F ) is called a conformal vector field

with a conformal factor c = c(x) if the 1-parameter transformation ϕt generated

by V is a conformal transformation on (M,F ). In local coordinates, conformal

vector fields V are characterized by

Vi,j + Vj,i + 2Cp
ijVp,qy

q = 4cgij , (2.2)

where Cijp are the coefficient of Cartan torsion C of F , Cp
ij = gpqCijq, Vi = gijV

j

and “, ” is the horizontal covariant derivative with respect to the Chern connec-

tion of F . See [ShX1]. When F = α + β be a Randers metric, conformal vector

fields V are characterized by
Vi|j + Vj|i = 4caij ; (2.3)

V jbi|j + bjVj|i = 2cbi (2.4)

where we use the Riemannian metric tensor aij to raise and lower the indices of V

or b and “|” is the covariant derivative with respect to α ([Kang]). We can also

express F = α + β in terms of the navigation data (h,W ) by (2.1). It has been

shown that V is conformal with respect to F if and only if

Vi;j + Vj;i = 4chij (2.5)

V jWi;j +W jVj;i = 2cWi (2.6)
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where we use the Riemannian metric tensor hij to raise and lower the indices of V

or W and “; ” is the covariant derivative with respect to h ([ShX1]).

Consider a Randers metric F = α+ β with the navigation data (h,W ). If F

is of weakly isotropic flag curvature KF = 3θ
F + ζ, where θ is a 1-form on M and

ζ = ζ(x) is a scalar function on M , then at any point, there is a local coordinate

system (U, (xi)), in which h is of isotropic sectional curvature µ(x)(µ = constant

when n ≥ 3) and W is conformal with conformal factor σ(x) with respect to h

according to [SY]. If dimM ≥ 3, we can express h in the following projective

form:

h =

√
(1 + µ|x|2)|y|2 − µ〈x, y〉2

1 + µ|x|2 , y ∈ TxR
n (2.7)

and W is given by the following

W = −2

{(
δ
√
1 + µ|x|2 + 〈v, x〉

)
x− |x|2v

1 +
√
1 + µ|x|2

}

+ xQ+ d+ µ〈d, x〉x, (2.8)

where δ and µ are constants, Q = (qij) is a skew symmetric matrix independent

of x and v, d ∈ Rn are constant vectors (cf. [SX]). In this case,

σ =
δ + 〈v, x〉√
1 + µ|x|2 . (2.9)

We call the above expressions of h andW the local standard expression of F . With

this, we can determine all conformal vector fields V with conformal factor c(x) on

a Randers manifold (M,F ) of weakly isotropic flag curvature when dimM ≥ 3

([ShX1]). In fact, in the same local coordinates for the local standard expression

of F , V is given by one of the following

(a) V = xQ, where Q and v are those in (2.8) with vQ = 0 (v 6= 0). In this case,

c = 0.

(b) V = 2
(
ε
√
1 + µ|x|2 + 〈a, x〉

)
x− 2|x|2a

1 +
√
1 + µ|x|2 , (2.10)

where ε is a constant and a is a nonzero constant vector in Rn. In this case,

c = ε+〈a,x〉√
1+µ|x|2 .

(c) V = 2ε
√
1 + µ|x|2x+ xQ+ d+ µ〈x, d〉x, (2.11)

where ε is a constant with δε = 0, Q and d are those in (2.8) with δd = µεd =

εQ = 0. In this case, c = ε√
1+µ|x|2 .
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3. Proofs of Theorem 1.1 and 1.2

In this section, we will study conformal vector fields on a Randers manifold

of projectively isotropic flag curvature and prove Theorem 1.1 and 1.2. First, we

need the following Lemmas.

Lemma 3.1 ([ShX2]). Let F̄ = α+ β̄ and F = α+β be Randers metrics on

a manifold M . Let η := β − β̄ and (h̄, W̄ ) be the navigation data for F̄ . Assume

V is a vector field on M . Then each two of the following imply the third one.

(1) V is a conformal vector field on (M,F ) with conformal factor c(x);

(2) V is a conformal vector field on (M, F̄ ) with conformal factor c(x);

(3) η = (ηi) satisfies

V iηj;i + ηiVi;j = 2cηj , (3.1)

where we use h̄ij to raise and lower the indices of V , and η, and ”;” is the

covariant derivative with respect to the Levi–Civita connection of h̄.

Lemma 3.2. Let F̄ = α + β̄ be a Randers metric on an n-dimensional

manifold M with the navigation data (h̄, W̄ ). Suppose that η = ηiy
i is a closed

1-form on M and V = (V i) is a vector field on M satisfying (3.1). Then either

c(x) = constant or η = νc0, where ν = ν(x) is a scalar function on M with

νjci = νicj and c0 = ciy
i is a 1-form on M , here ci := cxi and νi := νxi .

Proof. By assumption and (3.1), we have ηi;j = ηj;i and V = (V i) satisfies

V jηj;i + ηjVj;i = 2cηi. (3.2)

Taking the covariant derivative on the both sides of (3.2), we get

V j
;kηj;i + V jηj;i;k + ηj ;kVj;i + ηjVj;i;k = 2cηi;k + 2ckηi. (3.3)

Exchanging the indices i, k in (3.3) yields

V j
;iηj;k + V jηj;k;i + ηj ;iVj;k + ηjVj;k;i = 2cηk;i + 2ciηk. (3.4)

Observe that

V jηlR̄j
l

ik + Vlη
jR̄j

l

ik = V jηlR̄jlik + V lηjR̄jlik = 0, (3.5)

where R̄jilk is a Riemannian curvature tensor of h̄. Subtracting (3.3) from (3.4)

yields
ckηi = ciηk. (3.6)

Here we have used the Ricci identity and (3.5).
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Assume that dc 6= 0. It follows from (3.6) that there is a scalar function

ν = ν(x) such that

ηi = νci.

Further, dη = 0 implies that

νjci = νicj . ¤

Proof of Theorem 1.1. We prove the theorem by contradiction. Assume

that V is a conformal vector field on (M,F ) with a non-constant conformal factor

c = c(x). By Lemma 3.1, V is also a conformal vector field (M, F̄ ) with the same

conformal factor c = c(x).

Since F̄ = α + β̄ is of weakly isotropic flag curvature and n ≥ 3, at any

point, there is a local coordinate system (U, (xi)), in which h̄ =
√
hijyiyj and

W̄ = W̄ i ∂
∂xi are given by (1.4)–(1.5). We have

h̄ij =
δij

1 + µ|x|2 − µxixj

(1 + µ|x|2)2 . (3.7)

Its inverse (h̄ij) and the connection coefficients Γ̄k
ij are respectively given by

h̄ij = (1 + µ|x|2)(δij + µxixj), Γ̄k
ij = −µ(xiδ

k
j + xjδ

k
i )

1 + µ|x|2 . (3.8)

Assume that c(x) 6= constant on U . By (2.10)–(2.11), V is given by one of

the following (A1) V = 2
(
ε
√
1 + µ|x|2 + 〈a, x〉)x − 2|x|2a

1+
√

1+µ|x|2 (a 6= 0). In this

case, c = ε+〈a,x〉√
1+µ|x|2 .

(A2) V = 2ε
√
1 + µ|x|2x (µ 6= 0, ε 6= 0). In this case, c = ε√

1+µ|x|2 .

Moreover, by Lemma 3.2, there is a function ν on M such that ηi = νci 6= 0 with

νjci = νicj . Consequently, there is a function σ(x) on M such that νi = σci.

Noting that c;i;j = −µch̄ij from Lemma 2.2 in [SX] when n ≥ 3. We have

ηi = h̄ijνcj = ν
√
1 + µ|x|2(ai − µεxi),

ηi;j = νjci − µcνh̄ij = σcicj − µcνh̄ij . (3.9)

Case I : If V is given by (A1), then

Vi = h̄ijV
j =

2cxi

1 + µ|x|2 − 2|x|2ai
(1 + µ|x|2)(1 +

√
1 + µ|x|2 ) , (3.10)
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where the indices of a and x are raised and lowered by δij . From (3.10) and (3.8),

we have

Vj;i = 2ch̄ji − 2(ajxi − aixj)

(1 + µ|x|2)2 , (3.11)

Plugging (3.9)–(3.11) into (3.1) yields

Ax+ (1 + τ)−1Ba = 0, (3.12)

where

A := −µcτ(σD + 2cν)− 2ν|a|2 + 2µεν〈x, a〉, (3.13)

B := στ2(1 + τ)D + 2µcντ |x|2 + 2ν(1 + τ)
(〈x, a〉 − µε|x|2) , (3.14)

D := V jcj = 2ε〈a, x〉+ 2〈a, x〉2
τ

− 2|a|2|x|2
τ(1 + τ)

− 2cµ(ε+ c)

1 + τ
|x|2, (3.15)

where τ :=
√
1 + µ|x|2. From (3.12) and a 6= 0, we get A = 0 and B = 0. If

µ = 0, then A = 0 implies ν = 0, i.e. η = 0. This is impossible by assumption.

Hence µ 6= 0. Multiplying τ(1+ τ) on the both sides of A = 0 and cµ on the both

sides of B = 0, and adding these two identities yield

− τ2(1 + τ)µc2 − τ(1 + τ)|a|2 + τ(1 + τ)µε〈x, a〉
+ c2µ2τ |x|2 + (1 + τ)cµ

(〈x, a〉 − µε|x|2) = 0. (3.16)

By the irrationality of τ , (3.16) is decomposed as
{

τ2
(−µc2 − |a|2 + µε〈x, a〉)+ cµ

(〈x, a〉 − µε|x|2) = 0,

−µc2τ2 − |a|2 + µε〈x, a〉+ c2µ2|x|2 + cµ
(〈x, a〉 − µε|x|2) = 0.

(3.17)

(3.17)1–(3.17)2 gives
µε〈a, x〉 = |a|2 + c2µ. (3.18)

Plugging (3.18) into (3.17)1 and using µ 6= 0, c 6= constant yield 〈x, a〉−µε|x|2 = 0.

By replacing x by −x and adding these two identities, we get 〈x, a〉 = µε|x|2 = 0,

which means a = 0. This is a contradiction with a 6= 0. Consequently, c is a

constant.

Case II : If V is given by (A2), then

Vi =
2cxi

1 + µ|x|2 , Vi;j = 2ch̄ij . (3.19)

In the same way as Case I, we get Āx = 0, which means Ā = 0, where

Ā := σc2µ2(ε+ c)|x|2 − (1 + τ)c2µν. (3.20)

Since µ 6= 0 and c is not constant, Ā = 0 means ν = 0 by the irrationality of τ ,

which is impossible because of η 6= 0. This completes the proof. ¤
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Moreover, in [ShX2], we have shown the following Lemma.

Lemma 3.3 ([ShX2]). Assume that the vector field V in Theorem 1.1 is

homothetic, i.e., c = constant and η = df for some scalar function f = f(x).

Then (3.1) is equivalent to the following equation

V jfxj − 2cf = k, (3.21)

where k = constant.

Proof of Theorem 1.2. By the assumption and (2.10)–(2.11), V is ho-

mothetic with respect to F̄ with dilation ε. Thus V is homothetic with respect to

F with dilation ε from Lemma 3.3 and Lemma 3.1. Conversely, if V is homothetic

with respect to F with dilation ε and η satisfies (1.7), then by Lemma 3.3 and

Lemma 3.1, V is also homothetic with respect to F̄ with dilation ε and (i) or (ii)

in Theorem 1.2 follows from (2.10)–(2.11) directly. ¤
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