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On the number of solutions of the generalized
Ramanujan—Nagell equation 2?2 — D = p"

By LE MAOHUA (Changsha, Hunan)

Abstract. Let D be a positive integer, and let p be an odd prime with p 1 D.
In this paper, by using Baker’s method, we prove that if max(D,p) > 1095, then the
equation 2 — D = p" has at most three positive integer solutions (x,n).

1. Introduction

Let Z, N, Q be the sets of integers, positive integers and rational
numbers respectively. Let D € N, and let p be an odd prime with p { D.
Further let N(D, P) denote the number of solutions (x,n) of the equation

(1) >~ D=p", z,neN.

In [1], BEUKERS proved that N(D,p) < 4. Simultaneously, he suspected

that N(D,p) < 3. Recently, the author [4] proved that if max(D,p) >

10249, then N(D,p) < 3. In this paper we shall improve the above result.
If D, p satisfy

( 2
m41
(3, (3 4+ ) —3m> , 24 m,

(2)  (p,D)= ) a,méeN, m>1,
m—1
(4@2 +1, <p ) —pm> ,
\ 4a
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then the pair (D,p) is called exceptional. BEUKERS [1] showed that if
(D, p) is exceptional, then ( 1) has at least three solutions

(5 ) ()
m
4 ) )
(r1,m1) = m (2,m2) = m
P — 2,1 -1
4a 4a ’
(3)
+1
(2 3m— ,2m—|—1), if p=3,
(33'3, 77/3>
p"t—1 .
(2ap + ,2m+1>, if p # 3.
{ 4a
In this paper we prove the following result.
Theorem. If
3478, if p=3 and (D, p) is exceptional,
max(D,p) > < 2-10Y,  if p+# 3 and (D,p) is exceptional,
1092, otherwise,

then N(D,p) < 3.

2. Auxiliary Lemmas

Lemma 1 ([4, Lemma 3]). For D € N which is not a square, let
u1 + v1V'D be the fundamental solution of the equation

(4) u? — Dv? =1
If the equation
(5) X2 -DY?*=p* ged(X,Y)=1, Z>0

has solutions (X,Y, Z), then (5) has a unique positive solution (X1, Y1, Z1)
which satisfies

X; +Y1vD )
—— =< (ug +uv1vD)~,
X, —Y./D (u1 +v1vD)

where Z runs over all solutions of (5). Such (X1,Y1,Z1) is called the least
solution of (5). Then every solution (X,Y,Z) of (5) can be expressed as

Z =27, X+YVD=(X;+Y1VD)'(u+vVD),

where t € N, (u,v) is a solution of (4).

<7, 1<
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Lemma 2 ([2, Theorem 10-8-2]). Let k € Z with ged(k,D) = 1. If
k| < v/D and (X',Y") is a positive solution of the equation

(6) X?-DY? =k, ged(X,Y')=1,
then X'/Y' is a convergent of VD.

It is a well known fact that the simple continued fraction of v/D can
be expressed as [ag, @1, ..., as], where ag = [V/D], as = 2a¢ and a; < 2ag
fori=1,---,s5—1.

Lemma 3. For any m € Z with m > 0, let p,,/qm, Tm denote the

mth convergent and complete quotient of v/D respectively. Further let
km = (—=1)""Y(p2, — Dq?,). Then we have:
(i) km > 0 and apmy1 = (A + VD) /ky,| for a suitable A, € N.

(ii) Let
, s—1, if 2| s,
S =
2s—1, if24s.

Then py + qoV/D is the fundamental solution of (5).

(i) If 1 < k < VD, k € N, 2D # 0 (mod k) and (6) has solu-
tion (X',Y’), then (6) has at least two positive solutions (p;,q;) and
(Ps'—j—1,qs'—j—1), where j € Z with 0 < j < s’ — 1.

PROOF. The lemma follows from Satz 10 and Satz 18 of [6, Chapter
II1] and from various results scattered in [6, Section 26].

Lemma 4. Let (X1,Y1,Z;) be the least solution of (5). If p*" < /D
for some r € N, then uy + v1vVD > D"/2.

ProoF. Under the assumption, by Lemma 1, there exists X;,Y; € Z
(¢=1,...,r) such that

X? - DY? =p™', ged(X;,Yi)=1,i=1,,r.
Since p*'" < v/D, by Lemma 2 and (iii) of Lemma 3, v/D has 2r conver-
gents P, /G, Pm! /qm: (i =1,--- ,7) such that
K, = Kk =p 2tmyml, 0<my,mi<s,i=1,...,r,
where s’ was defined as in (ii) of Lemma 3. Therefore, by (i)

(A, +VD] VD
ami—l—l - k , > pzli - ]_,

(A +VD] VD

Ay =
mi—i—l km’

(7)
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Notice that pg = ag = [VVD], p1 = apa1 + 1 and ppyo = GmioPmi1 + Pm
for m > 0. By (ii) of Lemma 3, we get from (7) that

uy +01VD = Py + gD > Py + VD >

(s'=3)/2 (s'—3)/2
> lao [ (azjs1+asjye)—ao | +VD>a0 [[ (agjpr+1)>
j=0 j=0
2
: ~ VD aoD"
_ r/2
2 o 1_[1<ami + 1)(am; + 1) > Qo (1_[1 pzu' o pZ1T(T+1) > D ’

since ag = [V/D]. The lemma is proved.

Lemma 5 ([5, Formula 3-76]). For any m € N and any complex num-
bers a, 3, we have

[m/2]
am 5" = 3= (1|7 @+ By
1=0

where

[T] B (Tn;i;z;')z'vm €N, i=0,--,[m/2].

Lemma 6 ([2, Theorem 6-10-3]). Let a/b, a' /¥, a" /b € Q be positive
with ab' —a'b = +1. If a” /" lies in the interval £ = (a/b,a’/b"), then there
exist k, k' € N such that o = ak + a'k’ and V"' = bk + b'k’.

Let a be an algebraic number of degree d with the minimal polynomial

d
aoz + -+ ag_1z +aq = ag H(z — o), ag >0,
i=1
where o1, - -+ ,04a are all conjugates of a. Then

d
1
h(a) = yi (log ap + Zlog max(1, |O'id|)>

i=1
is called the logarithmic absolute height of a.

Lemma 7. Let ay,as be real algebraic numbers with «; > 1 and
as > 1, and let r denote the degree of Q(ay,a2). Let by, by € N, and
let b = by/rh(as) + ba/rh(ay). For any T' > 1, if 0.52 4+ logb > T and
A = by logay — bylogas # 0, then
0.1137

T

2
log |A| > =70 (1 + ) r*h(ay)h(az)(0.52 + log b)?.
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PROOF. Let B = log(5cy/c1) + logh, K = [c173Bh(a1)h(az)], L =
[corB], R1 = [e3r®/?BY?h(ag)] + 1, S1 = [e3r®/2BY?h(a1)] + 1, Ry =
[C4T23h(a2)], Sy = [047“2Bh(a1)], R=Ri+Ry—1,5=5+55—1, where
c1, Co2, C3, C4 are positive constants. Notice that (u — 1/T)v < [uv] < wv
for any real numbers u, v with w > 0 and v > T. By the proof of [3,
Theorems 1 and 3], if B > T,

o+1 (o+1)2  o+1 2
- ) > )
(8) ver (log 0)3/2 \/(10g 0F " Tloge' 7 logo
1
C3 :max(\/c_la\/a)a Cq = \/201024_?7
then
9) log |A| > —(ciezlog o + 1)7*h(ay ) h(a) B,

where p is a positive constant with o > 1. Set o = 5.803. We can choose
1, C2, €3, ¢4 such that (8) holds and such that

0.1137

2
(10) cicalogo+1 <70 (1 + ) , B <0.524logb.

Substituting (10) into (9), the lemma is proved.

Lemma 8 ([7, Theorem 1-2]). Let a,k,¥,q,r,s € N be such that 2 t k{
and q is not a square. If there exist X, A € 7Z such that

X2 —I—A _ a2qk, a2qk Z 41+S/T|A|2+S/T’

then

y 23(3%a?q" /4)1/¢ 2
aq'l? 3Tad g2k ;

for any Y € N, where v satisfies ¢*¥ = 9a%(3%a?q" /4)7/°.

3. Proof of theorem for exceptional cases

Throughout this section we assume that (D, p) is exceptional. Let

(X1,Y1, Z,) and uy+v1v/D be the least solution of (5) and the fundamental
solution of (4) respectively, and let

(11) €:X1—|—Y1\/5, 6_‘:X1—Y1\/5,
(12) o=u; +nVD, 8=u;—v1VD.
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Now we suppose that N(D,p) > 3. Then (1) has four solutions (z;,n;)
(¢=1,---,4), where (z;,n;) (j = 1,2,3) satisfy (3). By the proof of [4,
Theorem 1], we have ng > ns3, 21 ny and

z; + 6;VD =" g%, §; € {-1,1}, s; € Z, 0 < s; < ny,

(13) .
ged(ng, s) =1, i=1,--- 4.

Since p < D by (2), we find from n; = 1, and 1 < (21 +vD)/(z1—vD) <
4D < ¢? that (X1,Y1,Z1) = (21,1,1) by Lemma 1. Together with (13)
this implies that 61 = 1 and s; = 0.

Assertion 1. do = —1 and so =1 .

PROOF. Let X + YD =™ = £", u + vV/D = ¢°2. From (2) and
(13) we get

(14) o =Xu—DYv, 0o =Yu— Xu, X,Y,u,v €Z.

Recalling that (X1,Y1,721) = (21,1,1), we have X = 2™ 127 (mod p)
and Y = 271271 (mod p). From (14), we get x5 = 2™ a7 (u — z1u)
(mod p) and §y = 2" 12" 1 (u — xv) (mod p), since 27 = D (mod p).
Hence, 02 = z3/x1 = —1 (mod p) by (2). Since p > 3 and 42 € {—1,1},
we get 01 = —1.

Since m > 1, by Lemma 3 of [1], we see from (13) that s; # 0. If
m = 2, then s, = 1 by (13). If (D,p,m) = (22,3,3), then from x5 — /D =
7— /22 = (54 V22)3(197 — 421/22) = £33, we get s = 1. If m > 3 and
so > 1, then from (13) we have

m
— € S2 2

(15) ($1+\/5)m>pim($1+\/5)m(l'2+\/ﬁ) ng ZQ .

On the other hand, by (2),

\/5 > 3m_2, if p =3,
pm~t if p# 3 and m > 3.
Therefore, by Lemma 4,

m—2 3 —
D™=l if p+# 3 and m > 3.

Since x; + /D < 2.05v/D, the combination of (15) and (16) yields

DmM/2=2 if p =3,

(2.05)™ >
D™/2=1 if p+£3 and m > 3.
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This is impossible except (D,p,m) = (22,3,3). Thus ss = 1 the assertion
is proved.

Assertion 2. There exists some k, k' € N such that

mk + (2m + 1)K/,
TN nt DE+ @mo+ DE,

(2 = VD )¥(a3 +VD)K, ifp=3,
T4+ 64V D = m k
170 (p +1+2a\/5> (mg—\/ﬁ)k/, it p# 3.

PrOOF. By (2) and (13) we have
(.’E1+\/E)($2—\/5)2, ifp:?),
(1’1—\/5)(1’2-1-\/5)2, ifp%i)).

Recalling that (d1,s1) = (1,0) and (d2,82) = (—1,1) by Assertion 1, we
get

Ig—f-\/ﬁz

g?mtlg? if p=3
17 + VD = ’ ’
(17) s { 2mtlg?  ifp#£3.
For any solution (z,n) of (1), let
x+vVD
Az, n) =log ——,
() =log =5

and let o = (loge/&))/log 0. By Lemma 5 of [1], ngy > 2n3+ng = 5m+2.
From (2), m > 3 for p =3 and m > 2 for p # 3. So we have
(18)

32m —14-3m 41 4
log 1 gm + >10g§, ifp=3
A(CL'Q,TLQ) > 5 >
pm—22p—1)pm +1

Alp—1
log c1og 2P g
p

(p—1)pm
> A(xs,n3) > A(xg,na).
When p = 3, by (17) and Assertion 1, we have

1 A(:I?g,nz) 2 A(l‘g,ng)
]_9 —_— — = > — —
(19) “ YT om1 (2m + 1) log 0?

m m log o?
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Since

. A(.T4, ’I”L4)

"~ nglogp?’

S4
a_ JE—
ng

we see from (18) and (19) that s4/n4 lies in the interval £ = (1/m,2/2m+
1)). Therefore, by Lemma 6, we get

(20) sa=k+2k', ng=mk+ 2m+ 1)k, kK& €N.

When p # 3, by (2) and Assertion 1, we have

(21) pm; ! +2aVD = (z1 + VD) (22 — VD) = ™15

™ 4+1)/2 4 2a/D 2m _9(2p — 1)p™ + 1
log B+ /24 20VD o p 22— 1 L
(22) (p™ +1)/2 — 2av/D pmt

> A(zsg,n3) > Ay, n4)

by (18), we see from

S S (p™ +1)/2 + 2avD
m+1 % (pm+1)/2—2avD

2 . A(Ig,ng)

om+1 O (2m + 1) log o?

) /(m+1)logg2>0,

that s4/n4 lies in the interval & = (1/(m + 1),2/(2m + 1)). Hence, by
Lemma 6, we get

(23) sa=k+2K, ng=m+1k+2m+ DK, kK €N

Thus, the assertion follows immediately from (13), (17), (20), (23) and
Assertion 1.

Assertion 3. Ifp=3, thenk+k —1>2-3m"1,

PROOF. Let &5 :CEQ—'—\/E, €9 :xg—\/ﬁ, E3 = Z‘g—{-\/ﬁ, E3 =
x5 — VD, and let

(24) X+vVD=¢k, X' +Y'VD=¢F.
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Then, by Lemma 5, X, Y, X', Y’ € Z satisfy

1 I -
X =56 +e) =3 X 1|} - e Han) -
1=0
L /2 o .
=3 (—1) { }(2:(;2)’6 zigmi = gk—lgk = ST (mod 3™),
=0
1 _ ek — &k IR
(25) V=qup =, = taT =
1
= (2z0)" 1 = ST (mod 3™),
1 ’ 1/ ’_ ’ (—]_)k/ m
X' = §(E§ —|—€§ )= ok 1x'§ = S (mod 32 Jr1),
I - A S 5 DL
! k =k 3 3 — 2m+1
Y'= 2\/5(53 —&3 )= e, C (mod 3 ).

By Assertion 2, we get from (24) and (25) that
(_1)k’—1
ok k1
Since 2 { mny, we see from (20) that K+ k" —1 =0 (mod 2). Further, by
(26), we get 281K =1 = +1 (mod 3™). Therefore k + k' —1 =0 (mod 2-

3m~1). Notice that k, k' € Nand k+k'—1 > 0. Thus k+k'—1>2.3m" 1
The assertion is proved.

Assertion 4. Ifp # 3 and p™~! > 20, then k' — 1 > 2p™~1.

PROOF. Let &) = (p™ +1)/2+2aV/D, &, = (p™ +1)/2 — 2a\/D, and
let
'k

(27) X+YVD=¢V X +Y'VD=¢b.
According to the analysis for (25), X, Y, X', Y’ satisfy

(26) §1=XY' —X'Y = (mod 3™).

1
X = 5 (mod p™), Y =2a (mod p™),
N (-1
— m ! — m
By Assertion 2, we get from (27) and (28) that

’

—1)k
s=XY-XY = ( )

Qa1 (mod p™).
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This implies that

(29) (20)"~'=41 (mod p™).
Since p = 4a® + 1, we see from (29) that

(30) ' —1=0 (mod 2p™1).

Since p™* > D?. we have
b )

ea 4 VD WD )
log—————==log |1+ ——— | =
( ) 334—\/5 564—\/5
31 .
WD A (B) <Pt
X4 j:O2j+1 T4 \/5
By Assertion 2 and (22), if p™~! > 20 and k > k’, then
I
log 4T VD _ ‘kl 2y _
-TC4—\/E €9

0og
= (k—Fk) log —I— K (log — log —) >

> (k — k) log(p™ — 4) + ¥ (1og(pm1 —4) —log (4 - %)) > 1,

which contradicts (31). Thus &’ > k, and ¥’ —1 =0 (mod 2p™~1) by (30).
The assertion is proved.

Assertion 5. If (D,3) is special, and D # 22, 3478, then N (D, 3) = 3.

PROOF. Notice that 37882437 = 31°. by the definitions as in Lemma,
8, we may put X =3788, A=37,a=1,¢q=3, k=15 r =2, s =3 and
v =0.9217. Then we have

1’ > 3—51—0960856

for any ¢, Y € N with 24 ¢. If N(D,3) > 3, then from (32) we get

(33)

L4 ~51-0.96085n4
oV 1 3 ,
4

since 2 { ng. We see from (2) that D < 3?™, hence

T4 B D < 32m
3na/2 T 3na/2(gy + 374/2) T 2.3n4

(34)
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The combination of (33) with (34) yields
(35) 50.4 + 2m > 0.03915n4.
On the other hand, by Assertions 2 and 3, we have
(36) ng =mk+2m+1)E >m(k+k —1)+2m+1>2-3""'m42m+1.
From (35) and (36),
50.4 4+ 2m > 0.03915(2 - 3™ tm 4 2m + 1),
whence we conclude that m < 5, since 2 4 m. The assertion is proved.

Assertion 6. If (D, p) is special, p # 3 and max(D,p) > 2-10%, then
N(D,p) = 3.

PROOF. Let
_ (pm+1)/2+2aVD N _a3+VD
(™ +1)/2—2avD a3 —VD

By Assertion 2, we get

334—1—\/5
1’4—\/5

(37) log = |kloga; — k'log az| > 0.

Since oy ao satisfy

2
M+ 1
pHla? — 2 ((p 2+ ) 4 4a2D) ay +pmtl =0,

p*" g = 2(23 + D)o +p* T =0

respectively, we have

(38)  hla) = log (

By Lemma 7, we have

p"+1

- 2a\/5) . h(ag) =log(zs + VD).

(39) |klog a; — k' log an| >

1137\
> exp (—70 (1 + 0 T37> 2*h (o) h(a2)(0.52 + log b)Q)

for any T' > 1, where

(40) b= -
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which satisfies 0.52 4+ logb > T. We may choose T' = 10 and then from
(39) we get

(41) |klog a; — k' log ap| > exp(—1146h () h(a2)(0.52 4 log b)?).
By Assertions 2 and 4, the combination of (41) with (31) yields

log 4V'D + 1146h(a1 ) () (0.52 4 log b)? > log z4 > log p™/? =
(42) 1
= 5((m + 1k + (2m + 1)k') logp > K’ log p™t1/2.

When m = 2, we get h(ag) < log(p? + 1) and h(as) < log2r3 <
log 3p>*1/2 by (38). Since k' > k by Assertion 4, we obtain from (40) and
(42) that

log4v/' D 9 K log 3
————— +1146(0.52 + log b —_— 1+ ——— b
Hlanh(ay) T 1140052 Hlogb)" > prrs (1 e ) > b

whence we conclude that b < 160000. Further, since k'/2h(c7) < b by (40)
and k' — 1 > 2p by Assertion 4, we get

2p+ 1 < k' < 320000 k() < 320000 log(p? + 1).

It implies that p < 4200000 and D < 2 - 109 by (2).
When m > 3, we get h(a;) < log(p™ + 1) and h(az) < log3p™+1/2
by (38). Then, by (42) we also obtain that b < 160000. Since p < p™/3 in

this case, we can conclude p™ < 9-10° and D < 10'¢ by the same way.
Thus the assertion is proved.

By Assertion 5 and 6, the theorem holds for the exceptional cases.

4. Proof of theorem for the non-exceptional cases

Throughout this section we assume that the pair (D, p) is not excep-
tional.

Lemma 9. Let (xz,n), (z',n’), (z”",n") be solutions of (1) with n <
n' <n”. Then 24 n" and either n” > 2n’ + max(3,n) or p" > 4p®*'/3 /9.

PROOF. By Lemma 5 of [1], we have 2 { n”, n” > 2n’ +max(3,n) and

pn/ < 2(p(n//_2n/)/2 + 1)3 SinCe pn//_Qn/ Z 337 we get pn// > 4pan//3/9.
The lemma is proved.

Lemma 10 ([1, Theorem 1}). Let (x,n), (z’,n") be two solutions of
(1) with n’ > n. Then p™ < max(2 - 10%,600D?).
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Lemma 11. Let (x,n), (2',n") be two solutions of (1) with n’ > n.
Then p”/ > 4v/D.

PROOF. Since 2/> — 22 = p"(p”/_” — 1), we have ' — (x = 2ap™,
where ( € {—1,1}, a € N. If { =1, then

pn/ = p" 4+ dap™z + 4a?*p*" > 4ap”\/5 > 4pn\/5,
since z > V/D. If ¢ = —1, then
(43) p" =p"(1+4a(ap” — x))

It follows that a > z/p" > v/D/p". Hence, from (43), we get p" > 4v/D.
The lemma is proved.

Lemma 12. Let (z,n), (2/,n') be two solutions of (1) with p" > p" <
D. If D > 25000, then log o < 1.1(log D)?.

PROOF. Under the assuimptions, by Lemma 4 of [4],
(44)  n=Zit, n' = Zit', 2+ 0VD =¢€'g, o +8'VD =¢"5",
5,0 € {—1,1},
where s,t,s’,t" € Z such that
0<s<t 0<s <t 1<t<?, ged(s,t) = gcd(s’,t’) = 1.

If st’ = s’t, then there exists k € N such that s’ = sk and ¢’ = tk. Since
t' >t we get k > 1and 2’ + VD = (z + 6vVD)* by (44). This is
impossible by Lemma 3 of [1]. Hence st’ # s't, and by (44),

(45)

t'log(z + 6V D) —tlog(x'-l—(%/ﬁ)’ = |s't — st'|log 0 > log o.

Since D > p™ > p", we have (14+v2)VD > 2/+v/D > z+vD > 2v/D
and log D/logp** > t' > t. Therefore

t'log(z 4+ 6V D )—tlog(z' + 5’\/5)‘ < t'log(z+VD )+tlog(z'+VD)
log D

—27— (2log(1v2) + log D) < 1.1(log D)?
< fog p2 (2108( Vv2) +log D) < 1.1(log D)?,

since p?* > 3 and D > 25000. On combining this with (45) yields the
lemma.
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Assertion 7. If max(D,p) > 10°°, then N(D,p) < 3.

PRrOOF. By the proof of [1, Theorem 2], it suffices to prove that the
assertion holds for D > 25000, D > 40p? and D is not a sqare. This
implies that max(D,p) = D.

Suppose that N(D,p) > 3. Then (1) has four solutions (x;,n;) (i =
1,...,4) with n; < ng < nz < ng. By Lemma 4 of [4], we have

(46) n; = Ziti, xi +0,VD =¢etigh, 8 € {—1,1}, i=1,....4,
where the s;, t; are integers such that
(47) 0<s; <t;, ged(s;,t;) =1, i=1,...,4,
If p2 > D, by Lemmas 9 and 10, we get
600D% = max(2 - 10°,600D?) > pPs > 4p®"2/3 / 9 > 4D®/3 /9 > 600D?,

a contradiction. Hence p™2 < D.
By Lemma 11, we have p™ > 4v/D. Further, by Lemma 9,

(48) p" > 4p®n2/3 [ 9 > 18DY/3,

Furthermore, we see from the proof of Theorem 2 of [4] that if D > 103,
then

ns \ 1/2
(49) t3+t4>xi\1/0%£):i(l+pp) log o > DY%1og o
by (48).

Let a; = /&, as = o. By (11) and (12), a; and ay satisfy p?ta? —
2(X2+ DY)y +p?t =0 and a2 —2ujaz + 1 = 0 respectively. So we have
h(a1) =loge and h(az2) = 1 log o. Notice that 1 < /& < ¢? by Lemma 1.
We get €2 < e80% = pZip?. So we have ¢ < p?1/2p and h(ag) < log p#1/2p.

By Lemma 7, we get

|tslog ay — 2s4log aa| > exp(—1146h(ar)h(az)(0.52 + logb)?) >

50
(50) > exp(—1146(logpzl/zg)(log 0)(0.52 + log b)?),
where
t4 S4 1 1
ol b= <t .
oy 2h(0z) | hlar) ~ (210g9 " logpzl/zg)
On the other hand, by (31) and (46),

D 4vD

(52) |t4log oy — 2s4log o] = log 24+ VD < vD
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since p™ > p™ > D*/3. The combination of (50) and (52) yields
t
log4v'D + 1146(long1/2Q)(10g 0)(0.52 4+ logb)* > log x4 > 54 log p?*,

whence we get

11
1+1146<§+ 08 e ) >

log p#1
(53) log 4V D 1 1ogg 5 , b
(log 0)(log p71) + 1146 (5 + logpzl) (0.52 4+ logb)= > 3"
We conclude from (53) that
(54) b < 20000(log o)(log log 0)?.
Since b > t4/2log o by (51), we get from (54) that
(55) t4 < 40000(log 0)*(log log o).

Notice that t3 = logp™ /logp?* < log600D? by Lemma 10. From (49)
and (55), we get

(56) log 600.D2 + 40000(log 0)?(log log 0)? > D% log o.
From (56),
(57) 5 + 40000(log 0) log log 0)? > D*/6,

since 0 > v/D. By Lemma 12, we have log o < 1.1(log D)2, since p"2 < D.
On applying this together with (57), we obtain D < 10°. Thus, the
assertion is proved.

The combination of Assertions 5, 6 and 7 yields the theorem.
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