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Some remarks on the geometry of Kropina spaces

By RYOZO YOSHIKAWA (Hachiman) and SORIN V. SABAU (Sapporo)

Abstract. Using the navigation data (h,W ) of a Kropina space (M,α2/β), we

characterize weakly Berwald Kropina spaces and Berwald Kropina spaces by means of

the Killing vector field W and the parallel vector field W , respectively.

Moreover, we show that the local 1-parameter group of local Finslerian isometries

on (M,α2/β) coincides with the local 1-parameter group of local Riemannian isometries

on (M,h).

1. Introduction

Finsler metrics generalize Riemannian metrics. The most natural Finsler

structures are those obtained by deformations of Riemannian metrics. Randers

metrics are the most famous metrics of this type because of their relation with

the Zermelo’s navigation problem. On the other hand, recently it was shown that

Kropina metrics also give solutions to the Zermelo’s navigation problem ([YS] and

references therein). This suggests that Kropina spaces are Finsler spaces with rich

geometrical properties and that their geometry is worth more investigations.

In the present paper we contribute with three remarks to the geometry of

Kropina spaces.

The first remark concerns the relation between weakly Berwald, Berwald and

Kropina spaces. We prove that the set of weakly Berwald Kropina metrics coin-

cides with the set of strong Kropina metrics defined in the paper (Theorem 4.2).

Moreover, a Kropina space is a Berwald space if and only if the wind vector field
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W is parallel with respect to the Riemannian metric h (Theorem 4.3). Neverthe-

less, in the Kropina case, Landsberg and Berwald spaces coincide.

The second remark is about the characterization of Kropina metrics of p-

scalar curvature, i.e., Kropina metrics whose scalar flag curvature is a function of

position alone. We give a characterization of these spaces in terms of navigation

data (Theorem 5.1). Moreover, we show that a Kropina space of p-scalar curvature

is a Berwald space if and only if its flag curvature vanishes (Corollary 5.2).

The third remark is on the isometry group of a Kropina metric. In general,

it is difficult to determine the isometry group of a Finsler structure. However, in

the case of strong Kropina metrics we prove that the 1-parameter group of local

Finslerian isometries on (M,α2/β) coincides with the 1-parameter group of local

Riemannian isometries on (M,h).

2. Preliminaries

Throughout the paper, M will be an n-dimensional (smooth) manifold, where

n ≥ 2. The tangent bundle of M is τ : TM → M , and τ̊ : T̊M → M is the bundle

of nonzero tangent vectors to M . The C∞(M)-module of (smooth) vector fields

on M is denoted by X(M). The dual X∗(M) of X(M) is the module of 1-forms

on M . Any one-form b on M induces a smooth function β on TM given by

β(v) = bτ(v)(v), v ∈ TM. (2.1)

If f is a smooth function on M and f c(v) := v(f) for all v ∈ TM , then f c is a

smooth function on TM , called the complete lift of f . The derivative of a smooth

map ϕ : M → N is denoted by ϕ∗ is a vector bundle homomorphism from TM

to TN .

Suppose (for simplicity) that X is a complete vector field on M , and let

(ϕt)t∈R (or (ϕt) for short) be the one-parameter group generated by X. Then the

derivatives (ϕt)∗ form a one-parameter group on TM , whose generator is called

the complete lift of X and denoted by Xc.

For coordinate descriptions, we choose a chart (U , (ui)ni=1) on M , and cons-

ider the induced chart (τ−1(U), (xi)ni=1, (y
i)ni=1) on TM , where

xi := ui ◦ τ, yi(v) := v(ui) (v ∈ τ−1(U)).
If X ∈ X(M), b ∈ X∗(M) and X =

(U)
Xi ∂

∂ui , b =
(U)

bidu
i, then

Xc =
(U)

(Xi ◦ τ) ∂

∂xi
+ yj

(
∂Xi

∂uj
◦ τ

)
∂

∂yi
, (2.2)
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β =
(U)

(bi ◦ τ)yi. (2.3)

The coordinate expression of the complete lift of a smooth function f on M is

f c =
(U)

(
∂f

∂ui
◦ τ

)
yi. (2.4)

(Here, and throughout the paper, Einstein’s summation convention is applied.)

Observe that yi ∂β
∂yi = β, therefore the function β is positive-homogeneous of

degree 1.

We note finally that

Xc(f ◦ τ) = (Xf) ◦ τ, Xcfc = (Xf)c (2.5)

for all X ∈ X(M), f ∈ C∞(M).

3. The navigation data of a Kropina space

Let a be a Riemannian metric on M , written locally as a = aijdu
i ⊗ duj .

We denote the musical isomorphisms X(M) → X∗(M) and X∗(M) → X(M) by [

and ], respectively. Then

X[ := [(X) =
(U)

aijX
jdui if X =

(U)
Xi ∂

∂ui
, (3.1)

b] := ](b) =
(U)

aijbj
∂

∂ui
, (aij) := (aij)

−1 if b =
(U)

bidu
i. (3.2)

With the help of the metric tensor a, we define a smooth function α2 on

TM by α2(v) := aτ(v)(v, v), v ∈ TM . In terms of the induced coordinates,

α2 =
(U)

(aij ◦τ)yiyj . Obviously, yi ∂α
2

∂yi = 2α2, therefore α2 is positive-homogeneous

of degree 2.

Now let b ∈ X∗(M), and suppose that

bp 6= 0 ∈ T ∗
pM for all p ∈ M. (3.3)

(Clearly, this condition imposes topological restrictions on the manifold M .)

Let A := {v ∈ TM | β(v) > 0}. Then A is a conic domain in TM (see [JS],

Definition 3.1) and

F :=
α2

β
: A ⊂ TM → R
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is a conic Finsler metric, called a Kropina metric for M . A Kropina space is a

manifold M together with a Kropina metric for M .

Define the function

b2 := a(b], b]). (3.4)

Using (3.2) we find that

b2 =
(U)

aijbibj if b =
(U)

bidu
i.

By condition (3.3), b2 never vanishes, so we can introduce a smooth function κ

on M by

eκ := exp ◦κ =
4

b2
. (3.5)

Then

h := (exp ◦κ)a (3.6)

is a new Riemannian metric on M , obtained by a conformal change of a. Let,

finally,

W :=
1

2
b]. (3.7)

Then the pair (h,W ) is called the navigation data of the Kropina metric α2

β .

We note that W is a unit vector field with respect to the Riemannian metric h.

Indeed,

h(W,W )
(3.7)
=

1

4
h(b], b])

(3.6)
=

1

4
(exp ◦κ)a(b], b]) (3.4)

=
1

4
(exp ◦κ)b2 (3.5)

= 1.

Concerning the flag curvature of a Kropina space, we have the following

important result.

Theorem 3.1 ([YO2], [YO3]). A Kropina space
(
M, α2

β

)
with navigation

data (h,W ) is of constant flag curvature K if and only if the following two con-

ditions hold:

(a) W is a Killing vector field on (M,h),

(b) the Riemannian space (M,h) is of constant sectional curvature K. 4

This motivates the following definition.

Definition 3.1. A Kropina space
(
M, α2

β

)
with navigation data (h,W ) is

called a strong Kropina space if W is a Killing vector field on (M,h).
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4. Berwald and weakly Berwald Kropina spaces

In this section, we will consider Kropina spaces which are Berwald spaces or

weakly Berwald spaces.

Following the general practice, we denote by Gi (i ∈ {1, . . . , n}) the coef-

ficients of the canonical spray of any Finsler space (M,F ) (with respect to the

chosen chart). We put

Gi
j :=

∂Gi

∂yj
, Gj

i
k :=

∂Gi
j

∂yk
, Gj

i
kl :=

∂Gj
i
k

∂yl
.

We recall that the functions Gj
i
k are the Christoffel symbols of the Berwald de-

rivative, while the functions Gj
i
kl are the components of the Berwald curvature B

of (M,F ). A Finsler space is a Berwald space if B = 0, and it is a weakly Berwald

space, if trB = 0, i.e.,

Gij := Gi
r
jr = 0 for all i, j ∈ {1, . . . , n}.

Thus every Berwald space is a weakly Berwald space as well. S. Bácsó and

the first author investigated the relation between the concept of weakly Berwald

spaces and some other concepts in [BY]. Furthermore, K. Okubo, M. Matsumoto

and the first author again have obtained a necessary and sufficient condition for

a Kropina space to be a weakly Berwald space, resp. a Berwald space:

Theorem 4.1 ([YOM]). With the same notation as above, let
(
M, α2

β

)
be

a Kropina space. Let

rij :=
1

2
(bi;j + bj;i), sij :=

1

2
(bi;j − bj;i), si = ajkbjski,

where the semicolon ; denotes covariant derivative with respect to the Levi–Civita

connection of (M,a). Then

(1)
(
M, α2

β

)
is a weakly Berwald space if and only if

(wB) rij = γ aij , γ ∈ C∞(M);

(2)
(
M, α2

β

)
is a Berwald space if and only if

(B) rij = γ aij (γ ∈ C∞(M)) and sjbi − sibj = b2sij . 4

Remark 4.1. Let
a

∇ denote the Levi–Civita connection of (M,a). The func-

tions rij are just the components of the symmetric part Sym
a

∇b of the covariant

differential
a

∇b given by

Sym
a

∇b(X,Y ) :=
1

2

(( a

∇Xb
)
(Y ) +

( a

∇Y b
)
(X)

)
.
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Similarly, the functions sij are the components of the skew-symmetric part Alt
a

∇b

of
a

∇b, defined analogously. Thus condition (wB) can be reformulated as follows:

Sym
a

∇b = γ a, γ ∈ C∞(M).

Next, we characterize the weakly Berwald and Berwald Kropina spaces by

means of their navigation data.

Theorem 4.2. Let
(
M, α2

β

)
be a Kropina space with navigation data (h,W ).

Then
(
M, α2

β

)
is a weakly Berwald space if and only if it is a strong Kropina space.

Proof. Let h =
(U)

hijdu
i ⊗ duj and (hij) := (hij)

−1. Denote by
h

∇ the

Levi–Civita connection of (M,h), and let
(h
Γj

i
k

)
be the family of the Christoffel

symbols of
h

∇ with respect to the chart (U , (ui)ni=1). In coordinate calculations

below, we shall write ‖ for the covariant derivatives with respect to
h

∇.

Suppose first that
(
M, α2

β

)
is a weakly Berwald space. Then from (wB) and

(3.6) we obtain that

rij = γ e−κhij . (4.1)

On the other hand, from Section 2 in [YO2] we have

rij = 2e−κ

(
Rij − 1

2
Wrκ

rhij

)
, (4.2)

where Wr := W ihir, Rij := 1
2 (Wi‖j +Wj‖i), κr := hrs ∂κ

∂us . Comparing (4.1) and

(4.2), we get

Rij =
1

2
(γ +Wrκ

r)hij . (4.3)

Since W =
(U)

W i ∂
∂ui is a unit vector field on (M,h), we have

1 = ‖W‖2h = h(W,W ) =
(U)

W iW jhij = W iWi,

whence
Wi‖kW i = 0 (4.4)

for all k ∈ {1, . . . , n}. So, transvecting (4.3) with W iW j , we get

0 = RijW
iW j =

1

2
(γ +Wrκ

r)‖W‖2h =
1

2
(γ +Wrκ

r),
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and hence (4.3) reduces to

Rij = 0. (4.5)

Observe that the functions Rij are just the components of the symmetric part of
h

∇W [ (where the flat operator [ is taken with respect to the Riemannian metric

h). Thus (4.5) implies (e.g., by Proposition 27 in Chapter 7 of [Pet]) that W is a

Killing vector field on (M,h).

Conversely, suppose that W is a Killing field. Then we have (4.5), and so

from (4.2) we get

rij = −e−κWrκ
rhij

(3.6)
= −Wrκ

raij .

Thus, by Theorem 4.1(1),
(
M, α2

β

)
is a weakly Berwald space. ¤

Remark 4.2. Suppose that
(
M, α2

β

)
is a strong Kropina space. Then, by

Theorem 5 in [YO2], the spray coefficients Gi of the canonical spray of
(
M, α2

β

)

can be expressed as

2Gi =
(h
Γj

i
k ◦ τ)yjyk − 2

α2

β
(Sij ◦ τ)yj , (4.6)

where Sij := hirSrj , and the functions Sij are the components of the skew-

symmetric part Alt
( h

∇W [
)
of

h

∇W [, i.e.,

Sij =
1

2
(Wi‖j −Wj‖i). (4.7)

From (4.6), the Christoffel symbols of the Berwald derivative of
(
M, α2

β

)
are

Gj
i
k =

h

Γj
i
k ◦ τ − 1

W0
(hjk ◦ τ)Si0 + h0j

(W0)2
(Wk ◦ τ)Si0 + h0k

(W0)2
(Wj ◦ τ)Si0

− h00

(W0)3
((WjWk) ◦ τ)Si0 − h0j

W0
(Sik ◦ τ)− h0k

W0
(Sij ◦ τ)

+
1

2

h00

(W0)2
(WjS

i
k) ◦ τ +

1

2

h00

(W0)2
(WkS

i
j) ◦ τ, (4.8)

where we used the following abbreviations:

h0i := (hij ◦ τ)yj , h00 := (hij ◦ τ)yiyj , Si
0 := (Si

j ◦ τ)yj , W0 := (Wi ◦ τ)yi.

Putting here i = k := r, after some calculations we find that Gj
r
r =

h

Γj
r
r ◦ τ ,

whence

Gij := Gi
r
jr =

∂

∂yi
(h
Γj

r
r ◦ τ

)
= 0.

Thus we proved again that a strong Kropina space is a weakly Berwald space.
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Theorem 4.3. Let
(
M, α2

β

)
be a Kropina space with navigation data (h,W ).

Then
(
M, α2

β

)
is a Berwald space if and only if the vector field W is parallel

with respect to the Levi–Civita connection of (M,h). In this case the Christoffel

symbols of the Berwald derivative of
(
M, α2

β

)
are the vertical lifts of the Christoffel

symbols of
h

∇, i.e., Gj
i
k =

h

Γj
i
k ◦ τ , for any indices i, j, k. In other words, the

geodesics of
(
M, α2

β

)
coincide with the geodesics of (M,h).

Proof. Suppose first that
(
M, α2

β

)
is a Berwald space. Then, by the se-

cond relation of condition (B) in Theorem 4.1, sjbi − sibj = b2sij . This can be

manipulated to obtain

Sij = WiSj −WjSi, (4.9)

where Si := W rSri
(4.7)
= 1

2W
r(Wr‖i − Wi‖r). Since, in particular, (M, α2

β ) is a

weakly Berwald space, W is a Killing vector field by Theorem 4.2. Thus

Rij :=
1

2
(Wi‖j +Wj‖i) = 0,

whence

Sij :=
1

2
(Wi‖j −Wj‖i) = Wi‖j .

So it follows that Si = W rWr‖i
(4.4)
= 0, and from (4.9) we obtain that Sij = 0.

Relations Rij = 0 and Sij = 0 imply that Wi‖j = 0, as we claimed.

Conversely, suppose that W is a parallel vector field on the Riemannian space

(M,h). Then Rij = 0, so W is a Killing vector field, and from Theorem 4.2 we

conclude that (M, α2

β ) is a weakly Berwald space. Since (4.9) holds automatically,

the second relation in condition (B) is also valid, therefore (M, α2

β ) is actually a

Berwald space. We have, in fact, Sij = 0, whence Sij = 0. Thus (4.8) reduces to

Gj
i
k =

h

Γj
i
k ◦ τ , which concludes the proof. ¤

Remark 4.3. Let (M, α2

β ) be a Kropina space with navigation data (h,W ).

If (M, α2

β ) is a Berwald space, then by the preceding theorem, Wi‖j = 0. This

implies that (M, α2

β ) is a strong Kropina space. Thus the set of Berwaldian

Kropina spaces is contained in the set of strong Kropina spaces.

5. Kropina spaces of p-scalar flag curvature

In this section we consider Kropina spaces whose scalar flag curvature de-

pends only on the position.
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Definition 5.1. Let A ⊂ TM be a conic domain and (M,F ) a conic Finsler

space, with fundamental function F : A → R, of scalar flag curvature K : A → R.
If K ‘depends only on the position’, i.e., it is of the form K = k ◦ τ ¹ A, k ∈
C∞(M), then (M,F ), with fundamental function F : A → R, is called to be of

p-scalar flag curvature.

It turns out from the proof of Theorem 4 in [YO2] that its conclusion remains

true if the assumption that ‘
(
M, α2

β

)
is of constant flag curvature K’ is replaced

by ‘
(
M, α2

β

)
is of p-scalar flag curvature K = k ◦ τ ¹ A’. Thus we obtain

Theorem 5.1. A Kropina space
(
M, α2

β

)
with navigation data (h,W ) is of

p-scalar flag curvature K = k ◦ τ ¹ A if and only if the following two conditions

hold:

(a) The vector field W is a Killing field.

(b) The Riemannian space (M,h) is of sectional curvature k.

In this case, k(p) ≥ 0 for all p ∈ M .

Proof. We have only to show the last assertion. From (4.4) we get

Wr‖iW r‖j +Wr‖i‖jW r = 0. (5.1)

Since W is a Killing vector field, we have

Wi‖j‖k = Wr

h

Rk
r
ij , (5.2)

where the functions
h

Rk
r
ij are the components of the curvature tensor of (M,h)

(see, e.g., [Ha], (10.2) or [YO2], Lemma 4). They can be written in the form

h

Rk
r
ji = k(hkjδ

r
i − hkiδ

r
j), (5.3)

because (M,h) is of scalar sectional curvature k. From (5.1)–(5.3) we obtain

Wr‖iW r‖j = −Wr‖i‖jW r = −Ws

h

Rj
s
riW

r = −kWs(hjrδ
s
i − hjiδ

s
r)W

r

= k(hji −WjWi),

whence

hrsW
s‖iW r‖j = k(hij −WiWj). (5.4)

Composing both sides of (5.4) with τ and transvecting by yiyj , we find that

(hrs ◦ τ)W r‖0W s‖0 = (k ◦ τ)(h00 − (W0)
2), (5.5)
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where W r‖0 := (W r‖i ◦ τ)yi.
Let p ∈ U and v ∈ TpM \ {0}. Then

(
(hrs ◦ τ)W r‖0W s‖0

)
(v) = hrs(p)W

r‖0(v)W s‖0(v)

= hp

( h

∇vW,
h

∇vW
)
= ‖

h

∇vW‖2h > 0

if
h

∇vW 6= 0. Similarly, if v and W (p) are linearly independent,

h00(v) = ((hij ◦ τ)yiyj)(v) = hij(p)y
i(v)yj(v) = hp(v, v) = ‖v‖2h,

(W0)
2(v) = ((Wi ◦ τ)(yi))2(v) = (Wi(p)y

i(v))2 = (hir(p)y
i(v)W r(p))2

= (hp(v,W (p)))2 < ‖v‖2h‖W (p)‖2h = ‖v‖2h = h00(v),

therefore the function h00 − (W0)
2 is positive outside span(W ). If

( h

∇W
)
p
6= 0,

its kernel is a proper subspace of TpM , hence we can choose a vector v ∈ TpM so

that ‖
h

∇vW‖ and (h00 − (W0)
2)(v) are both positive. Thus it follows from (5.5)

that

k = 0 if
h

∇W = 0; k > 0 if
h

∇W 6= 0.

This concludes the proof. ¤

Corollary 5.2. Let
(
M, α2

β

)
be a Kropina space of p-scalar flag curvature

K with navigation data (h,W ). Then
(
M, α2

β

)
is a Berwald space, i.e.,

h

∇W = 0,

if and only if K = 0. ¤

Remark 5.1. (a) If in Theorem 5.1 M is connected and dimM > 2, then it

follows from Schur’s lemma that the function k is constant.

(b) By a theorem of M. Berger, every Killing vector field on a compact even-

dimensional Riemannian space of positive sectional curvature has a zero (see,

e.g., [Pet], p. 169). From this and from Theorem 5.1 we conclude that there exists

no Kropina metric of p-scalar flag curvature for an even-dimensional compact

manifold of positive sectional curvature.

6. Isometries of a Kropina space

We continue to assume that
(
M, α2

β

)
is a Kropina space with navigation data

(h,W ). In this section we consider the local one-parameter group (ϕt) of W and

discuss the relations between the following properties:
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(1) The transformations ϕt are local Riemannian isometries on (M,h).

(2) The transformations ϕt are local Finslerian isometries on
(
M, α2

β

)
.

First we recall what we mean by a Finslerian isometry.

Definition 6.1. Let (M,F ) be a Finsler space. A smooth transformation ϕ

of M is called a local Finslerian isometry if its derivative preserves the Finslerian

norms of the tangent vectors, i.e., F (v) = F ((ϕ∗)p(v)) for all p ∈ M , v ∈ TpM .

A local Finslerian isometry is a Finslerian isometry (or an isometry for short) if

it is a diffeomorphism.

Remark 6.1. It is easy to see that if ϕ is a local Finslerian isometry of (M,F ),

then for each point p in M there is a neighborhood U of p and a neighborhood V
of ϕ(p) such that ϕ ¹ U : U → V is a Finslerian isometry. This justifies the term

‘local’.

Lemma 6.1. Given a Finsler space (M,F ), consider the vector fieldX onM ,

and let (ϕt) be the local one-parameter group of X. Then the following assertions

are equivalent:

(i) The transformations ϕt are Finslerian isometries on their domains.

(ii) XcF = 0.

(iii) ∂F
∂xi (X

i ◦ τ) + ∂F
∂yi

(
∂Xi

∂uj ◦ τ)yj = 0.

Proof. Since Xc is generated by ((ϕt)∗), we have

XcF = LXcF = lim
t→0

1

t
(F ◦ (ϕt)∗ − F ),

whence the equivalence of (i) and (ii). The equivalence of (ii) and (iii) is clear

from (2.2). ¤

Definition 6.2. Let (M,F ) be a Finsler space. A vector field X on M is called

a Killing vector field of (M,F ) if it satisfies one (and hence all) of the conditions

(i)–(iii) in Lemma 6.1.

Corollary 6.2. Let
(
M, α2

β

)
be a Kropina space with navigation data (h,W ).

Then W is a Killing vector field of
(
M, α2

β

)
if and only if

2βW cα− αW cβ = 0. (6.1)

Proof. W c α2

β = 2α
β W cα − α2

β2W
cβ, so W c α2

β = 0 if and only if (6.1) is

satisfied. ¤
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Lemma 6.3 (cf. formulae (26) and (27) in [LCM]). Let
(
M, α2

β

)
be a Kropina

space. Then for any vector field X on M ,

Xcα =
(U)

1

2α
(Xi;j +Xj;i) ◦ τ yiyj , Xcβ =

(U)
(bi;jX

j + bjXj;i) ◦ τ yi, (6.2)

where the semicolon means covariant derivative with respect the Levi–Civita con-

nection
a

∇ of (M,a), and

Xi = aikX
k if X ¹ U = Xk ∂

∂uk
; bi = ailbl if b ¹ U = bldu

l.

Proof. We verify the second equality in (6.2), the first can be checked

similarly. We have

Xcβ
(2.3)
=
(U)

Xc((bi ◦ τ)yi) (2.5)
= (Xbi) ◦ τ yi + (bi ◦ τ)(Xui)c

=

(
∂bi
∂uj

Xj

)
◦ τ yi + (bj ◦ τ)(Xj)c

(2.4)
=

(
∂bi
∂uj

Xj + bj
∂Xj

∂ui

)
◦ τ yi.

Now let
a

Γj
i
k be the Christoffel symbols of

a

∇. Then

∂bi
∂uj

Xj = bi;jX
j +

a

Γi
k
jX

jbk,

bj
∂Xj

∂ui
= Xj

;ibj −
a

Γi
j
lX

lbj = (ajkXk);ibj −
a

Γi
j
lX

lbj

= ajkXk;ibj −
a

Γi
j
lX

lbj = Xk;ib
k −

a

Γi
j
lX

lbj = bjXj;i −
a

Γi
k
jX

jbk,

so we obtain the desired equality. ¤

Proposition 6.4. Let
(
M, α2

β

)
be a Kropina space with navigation data

(h,W ). Then W is a Killing vector field of
(
M, α2

β

)
if and only if

Sym
a

∇b =
1

2
λa, λ ∈ C∞(M).

Proof. Let, as above,

a =
(U)

aijdu
i ⊗ duj , W =

(U)
W i ∂

∂ui
, b =

(U)
bidu

i.

Since W = 1
2b

], we have

W i =
1

2
bi =

1

2
aijbj , Wi =

1

2
bi =

1

2
aijb

j .
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Thus, by (6.1) and (6.2), it follows that W is a Killing vector field of
(
M, α2

β

)
if

and only if
β(bi;j + bj;i) ◦ τ yiyj − α2(bi;jb

j + bjbj;i) ◦ τ yi = 0. (6.3)

The function α2 comes from the positive definite metric tensor a, so there is no

one form c ∈ X∗(M) with induced function γ ∈ C∞(TM) such that α2 = βγ.

Hence (6.3) holds if and only if there exists a smooth function λ on M such that

(bi;jb
j + bjbj;i) ◦ τ yi = λβ and (bi;j + bj;i) ◦ τ yiyj = (λ ◦ τ)α2.

Equivalently,

bi;jb
j + bjbj;i = λbi and bi;j + bj;i = λaij . (6.4)

Now it can be readily seen that if b =
(U)

bidu
i satisfies the second equation in (6.4)

then it satisfies the first one. Since the functions bi;j + bj;i are the components of

2 Sym
a

∇b, this concludes the proof. ¤

From Theorem 4.1, Theorem 4.2 and Proposition 6.4 we obtain the following

result:

Theorem 6.5. Let
(
M, α2

β

)
be a Kropina space with navigation data (h,W ).

Then W is a Killing vector field of
(
M, α2

β

)
if and only if

(
M, α2

β

)
is a strong

Kropina space. ¤

Remark 6.2. Let
(
M, α2

β

)
be a strong Kropina space. If M is a 3-dimensional

compact manifold or a compact Lie-group, then the vector field W is complete,

therefore the local Finslerian isometries of
(
M, α2

β

)
are actually Finslerian isom-

etries. However, as we have already indicated, the existence of a strong Kropina

structure on a compact manifold M implies topological restrictions on M ; for

details we refer to [YS].
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