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On Einstein Matsumoto metrics

By XIAOLING ZHANG (Urumqi) and YIBING SHEN (Hangzhou)

Abstract. This paper contributes to the study of Matsumoto metrics F = α2

α−β

with β of constant length related to α, where the α is a Riemannian metric and the β

is a one form. It is shown that such a Matsumoto metric F is an Einstein metric if and

only if α is Ricci-flat and β is parallel with respect to α. A nontrivial example of Ricci

flat Matsumoto metrics is given.

1. Introduction

Let F = F (x, y) be a Finsler metric on an n-dimensional manifold M . F is

called an Einstein metric with Einstein scalar σ if its Ricci curvature Ric satisfies

Ric = σF 2, (1.1)

where σ = σ(x) is a scalar function on M . In particular, F is said to be Ricci

constant (resp. Ricci flat) if σ = const. (resp. σ = 0) in (1.1). ([2], [4]).

An important class of Finsler metrics is so called (α, β)-metrics, which are

iteratively appearing in physical studies, and are expressed in the form of F =

αφ(s), s = β
α , where α =

√
aij(x)yiyj is a Riemannian metric and β = bi(x)y

i is

a 1-form. (α, β)-metrics with φ = 1 + s are called Randers metrics. D. Bao and

C. Robles have characterized Einstein Randers metrics, and shown that every

Einstein Randers metric is necessarily Ricci constant in dimension n ≥ 3. When

n = 3, a Randers metric is Einstein if and only if it is of constant flag curvature,

see [4].
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For a non-Randers (α, β)-metric F with a polynomial function φ(s) of degree

greater than 2, it was proved that F is an Einstein metric if and only if it is

Ricci-flat ([5]). An (α, β)-metric with φ = s−1 is called a Kropina metric. It was

shown that a Kropina metric F = α2

β is an Einstein metric if and only if h is an

Einstein metric and W is a unit Killing form with respect to h, where (h,W ) is

the navigation data of F ([13]).

The Matsumoto metric is an interesting (α, β)-metric with φ = 1/(1−s), int-

roduced by using gradient of slope, speed and gravity in [7]. This metric formula-

tes the model of a Finsler space. Many authors ([1], [7], [8], etc.) have studied this

metric by different perspectives. M. Rafie-Rad, etc., discussed Einstein Matsu-

moto metrics recently. However they treated b := ‖βx‖α, in ai for i = 0, . . . , 14,

as constant (see [10]). In [11] B. Rezaei, etc. discussed the Einstein Matsumoto

metric under the assumption that β is a constant Killing form with respect to α,

i.e., β satisfies the Killing equation and has constant length with respect to α.

While the results of [11] are not true. Here we generalize their study.

The purpose of the present paper is to study Einstein Matsumoto metrics

F = α2

α−β , where β has constant length with respect to α. And main results are

as follows.

Theorem 1.1. Let F = α2

α−β be a non-Riemannian Matsumoto metric on

an n-dimensional manifold M , n ≥ 3. Suppose that the length of β with respect

to α is constant. Then F is an Einstein metric if and only if α is Ricci-flat and β

is parallel with respect to α. In this case, F is Ricci-flat.

Theorem 1.2. Let F = α2

α−β be a non-Riemannian Matsumoto metric on

an n-dimensional manifold M , n ≥ 3. Suppose that β] dual to β is a homothetic

vector field related to α, i.e., r00 = cα2, where c = constant. Then F is an

Einstein metric if and only if α is Ricci-flat and β is parallel with respect to α.

In this case, F is Ricci-flat.

For the S-curvature of the Matsumoto metric with respect to the Busemann–

Hausdorff volume form ([3]), we have following

Theorem 1.3. Let F = α2

α−β be a non-Riemannian Matsumoto metric on

an n-dimensional manifold M , n ≥ 2. Then S-curvature vanishes if and only if β

is a constant Killing form.

From above theorems, we can easily get the following

Corollary 1.1. Let F = α2

α−β be a non-Riemannian Matsumoto metric on

an n-dimensional manifold M , n ≥ 3. Suppose F is an Einstein metric. Then
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S-curvature vanishes if and only if α is Ricci-flat and β is parallel with respect

to α. In this case, F is Ricci-flat.

The content of this paper is arranged as follows. In §2 we introduce notations

and conventions, and give the formula of the spray coefficients of Matsumoto

metrics. The necessary conditions for Matsumoto metrics to be Einstein are given

in §3. In §4, we first give the necessary and sufficient conditions for Matsumoto

metrics to be Einstein under the hypothesis that β is a constant Killing form

with respect to α. Then, by using it, Theorem 1.1 and Theorem 1.2 are proved.

A nontrivial example of Ricci flat Matsumoto metrics is shown. By the way,

we characterize Matsumoto metrics F with constant Killing form β, which are

of constant flag curvature. In §5 we investigate the S-curvature of Matsumoto

metrics and Theorem 1.3 is proved.

2. Preliminaries

Let F be a Finsler metric on an n-dimensional manifold M and Gi the

geodesic coefficients of F , which are defined by

Gi :=
1

4
gil{[F 2]xkylyk − [F 2]xl}.

For any x ∈ M and y ∈ TxM \ {0}, the Riemann curvature Ry := Ri
k

∂
∂xi

⊗
dxk

is defined by

Ri
k := 2

∂Gi

∂xk
− ∂2Gi

∂xj∂yk
yj + 2Gj ∂2Gi

∂yj∂yk
− ∂Gi

∂yj
∂Gj

∂yk
. (2.1)

Ricci curvature is the trace of the Riemann curvature, which is defined by

Ric := Rk
k. (2.2)

A Finsler metric F is called an Einstein metric with Einstein scalar σ if

Ric = σF 2, (2.3)

where σ = σ(x) is a scalar function on M . In particular, F is said to be Ricci

constant (resp. Ricci flat) if F satisfies (2.3) where σ = const. (resp. σ = 0).

By definition, an (α, β)-metric on M is expressed in the form F = αφ(s), s =
β
α , where α =

√
aij(x)yiyj is a positive definite Riemannian metric and β =
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bi(x)y
i is a 1-form. It is known that (α, β)-metric with b := ‖βx‖α < b0 is a

Finsler metric if and only if φ = φ(s) is a positive smooth function on an open

interval (−b0, b0) satisfying the following condition

φ(s)− sφ′(s) + (b2 − s2)φ′′(s) > 0, ∀|s| ≤ b < b0.

Let

rij =
1

2
(bi|j + bj|i), sij =

1

2
(bi|j − bj|i), (2.4)

where ”|” denotes the horizontal covariant derivative with respect to α. Denote

rij := aikrkj , rj := birij , r := rijb
ibj = bjrj , ri := aijrj

sij := aikskj , sj := bisij , si := aijsj ,

ri0 := rijy
j , r00 := rijy

iyj , r0 := riy
i,

si0 := sijy
j , si0 := sijy

j , s0 := siy
i, (2.5)

where (aij) := (aij)
−1 and bi := aijbj .

Let Gi and Ḡi be the geodesic coefficients of F and α, respectively. Then we

have the following

Lemma 2.1 ([5]). For an (α, β)-metric F = αφ(s), s = β
α , the geodesic

coefficients Gi are given by

Gi = Ḡi + αQsi0 +Ψ(r00 − 2αQs0)b
i +

1

α
Θ(r00 − 2αQs0)y

i, (2.6)

where

Q :=
φ′

φ− sφ′ ,

Ψ :=
φ′′

2[φ− sφ′ + (b2 − s2)φ′′]
,

Θ :=
φφ′ − s(φφ′′ + φ′φ′)

2φ[φ− sφ′ + (b2 − s2)φ′′]
.

From now on, we consider a special kind of (α, β)-metrics which is called

Matsumoto-metrics with the form

F = αφ(s), φ(s) :=
1

1− s
, s =

β

α
.

Let b0 be the largest number such that for any s with |s| ≤ b < b0. From

Lemma 3.1 in [6], we have known that F is a Finsler metric if and only if b <

b0 = 1
2 . So we always assume that φ satisfies this condition.

Now we get the spray coefficients of Matsumoto metrics by using Lemma 2.1.
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Proposition 2.1. For the Matsumoto metric F = α2

α−β , its geodesic coeffi-

cients are

Gi = Ḡi − α

2s− 1
si0 −

1

3s− 2b2 − 1

(
2α

2s− 1
s0 + r00

)
bi

+
4s− 1

2(3s− 2b2 − 1)

(
2α

2s− 1
s0 + r00

)
yi

α
. (2.7)

Proof. For φ(s) = 1
1−s and by a direct computation, we can obtain (2.7)

from (2.6). ¤

For an (α, β)-metric, the form β is said to be a Killing (resp. closed) form if

rij = 0 (resp. sij = 0). β is said to be a constant Killing form if it is a Killing

form and has constant length with respect to α, equivalently rij = 0 and si = 0.

3. Einstein Matsumoto metrics

By Proposition 2.1, we can obtain following proposition.

Proposition 3.1. Let F = α2

α−β be a non-Riemannian Matsumoto metric

on an n-dimensional manifold M , n ≥ 2. If F is an Einstein metric, then the

followings hold

1) α is an Einstein metric, i.e., Ric = λα2,

2) β is a conformal form with respect to α, i.e., r00 = cα2,

where λ = λ(x) and c = c(x) are functions on M . And in this case,

T i = − α

2s− 1
si0 −

1

3s− 2b2 − 1

(
2α

2s− 1
s0 + cα2

)
bi

+
4s− 1

2(3s− 2b2 − 1)

(
2α

2s− 1
s0 + cα2

)
yi

α
.

Proof. Let

Gi = Ḡi + T i,

where

T i = − α

2s− 1
si0 −

1

3s− 2b2 − 1
(

2α

2s− 1
s0 + r00)b

i

+
4s− 1

2(3s− 2b2 − 1)

(
2α

2s− 1
s0 + r00

)
yi

α
.
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Thus by (2.1), (2.2) and (2.6), the Ricci curvature of F is related to the Ricci

curvature of α by

Ric = Ric + 2T k
|k − yjT k

. k|j + 2T jT k
. j . k − T k

. jT
j
. k, (3.1)

where Ric denotes the Ricci curvature of α, ”|” and ”.” denote the horizontal

covariant derivative and vertical covariant derivative with respect to α, respecti-

vely(see Lemma 8.1.4 in [12]).

So the necessary and sufficient condition for the Matsumoto metric to be an

Einstein metric is

0 = Ric−σ(x)F 2

= Ric + 2T k
|k − yjT k

. k|j + 2T jT k
. j . k − T k

. jT
j
. k − σ(x)

α2

(1− s)2
. (3.2)

Multiplying both sides of (3.2) by α12(s− 1)2(2s− 1)4(3s− 2b2 − 1)4 and by

a quite long computational procedure using Maple program, we obtain

0 =

14∑

i=0

ti α
i, (3.3)

where

t0 = 144(8n− 11)β10r200,

t1 = −96{61n− 82 + (20n− 26)b2}β9r200 − 432(2n− 3)β10r00|0,

t2 = 12{1085n− 1439 + (792n− 1032)b2 + 64(n− 1)b4}β8r200 + 1296β10Ric

− 288(8n− 14)β9r0r00 + 864β9s0r00 + 72{63n− 91 + (24n− 32)b2}β9r00|0,

t3 = −864(2n−1)β9r0ks
k
0−24{697n−926+(852n−1144)b2+(152n−144)b4}β7r200

− 3456(2+ b2)β9Ric+96{118n− 205+(32n− 44)b2}β8r00r0 − 864β9r00r
k
k

− 48{−16n+ 97 + 16(n− 1)b2}β8r00s0 − 864β9bkr00|k

− 24{435n− 602 + (354n− 440)b2 + (48n− 56)b4}β8r00|0

+ 864β9r0|0 − 432(2n− 5)β9s0|0,

t4 = 144{57n− 22 + (24n− 8)b2}β8r0ks
k
0 + 864(5 + 2b2)β8(r00r

k
k + bkr00|k)

− 576β8rr00+3{4606n−6255+(8400n−12080)b2+(2480n− 2272)b4}β6r200

+ 216(15 + 4b2)(5 + 4b2)β8Ric− 32{752n− 1301 + (440n− 566)b2

+ 32(n−1)b4}β7r00r0+8{−413n+1322+(376n−664)b2+64(n−1)b4}β7r00s0
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+ 4{3473n−4583+(4512n−5136)b2+(1320n−1368)b4+64(n−1)b6}β7r00|0

− 864(5 + 2b2)β8r0|0 + 576β8r20 − 1152(2n− 3)β8r0s0

+ 72{57n− 142 + (24n− 56)b2}β8s0|0 − 144(8n− 21)β8s20 − 1296β9sk0|k

and other coefficients of α are tedious, listed in [14].

If we replace y by −y, then t2i(−y) = t2i(y) and t2j̄+1(−y) = −t2j̄+1(y) for

i = 0, . . . , 7 and j̄ = 0, . . . , 6. Hence (3.3) is equivalent to the following
{
0 = t0 + t2α

2 + t4α
4 + t6α

6 + t8α
8 + t10α

10 + t12α
12 + t14α

14,

0 = t1 + t3α
2 + t5α

4 + t7α
6 + t9α

8 + t11α
10 + t13α

12.
(3.4)

From the first equation of (3.4), we know that α2 divides t0. Since α2 is an

irreducible polynomial of y and β10 factors into ten linear terms, it must be the

case that α2 divides r200. Thus r00 = cα2 for some function c = c(x), i.e., β is a

conformal form with respect to α. So it is easy to get



r00 = cα2, rij = caij , r0j = cyj , ri = cbi, r = cb2, ri j = cδij ,

r0ks
k
0 = 0, r0ks

k = cs0, r0 = cβ, sk0rk = cs0,

r00|k = ckα
2, r00|0 = c0α

2, rkk = nc, r0|0 = c0β + c2α2,

(3.5)

where yi := aijy
j , ck := ∂c

∂xk and c0 := cky
k.

Plugging (3.5) into the first equation of (3.4) and removing the common

factor α2, we obtain

0 = t̄0 + t̄2α
2 + · · ·+ t̄12α

12,

where



t̄0 = 1296Ricβ10,

t̄2 = 72(225 + 240b2 + 48b4)β8Ric + 72(−151− 56b2 + 63n+ 24nb2)β9c0

−72(142 + 56b2 − 57n− 24nb2)β8s0|0 − 144(8n− 21)β8s20

−288(8n− 15)β9s0c− 1296β9sk0|k − 144(−21 + 8n)β10c2.

Due to the irreducibility of α, we have α2 divides Ric, i.e., there exists some

function λ = λ(x) such that

Ric = λα2. (3.6)

It implies that α is an Einstein metric. It completes the proof of Proposition 3.1.

¤
Remark. For Riemann curvature and Ricci curvature of (α, β)-metrics,

L. Zhou gave some formulas in [15]. However, Cheng has corrected some errors

of his formulas in [5]. To avoid making such mistakes, we use the definitions (2.1)

and (2.2) of Riemann curvature and Ricci curvatures to compute them.
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4. The proofs of Theorem 1.1 and Theorem 1.2

Lemma 4.1. Let F = α2

α−β be a non-Riemannian Matsumoto metric on an

n-dimensional manifold M , n ≥ 3. Suppose β is a constant Killing form, i.e.,

rij = 0, si = 0. Then F is an Einstein metric if and only if α is Ricci-flat and β

is parallel with respect to α. In this case, F is Ricci-flat.

Proof. If F is an Einstein metric, then (3.3) holds by Theorem 3.1. Re-

moving the common factor α2(α− 2β)(3β − 2b2α− α)4 from (3.3), we obtain

0 = −8Ricβ5 + 28Ricβ4α+ 2(−19Ric + 4sk0|kβ)β
3α2

+ (−24sk0|kβ + 25Ric + 2s0ks
k
0)β

2α3

+ 2(−4Ric + 13sk0|kβ − 2s0ks
k
0 + sjks

k
jβ

2 + 4σβ2)βα4

+ (Ric− 12sk0|kβ + 2s0ks
k
0 − 5sjks

k
jβ

2 − 12σβ2)α5

+ 2(2sjks
k
jβ + sk0|k + 3σβ)α6 − (sjks

k
j + σ)α7.

Obviously, the equation above is equivalent to





0 = −4Ricβ5 + (−19Ric + 4sk0|kβ)β
3α2

+(−4Ric + 13sk0|kβ − 2s0ks
k
0 + sjks

k
jβ

2 + 4σβ2)βα4

+(2sjks
k
jβ + sk0|k + 3σβ)α6,

0 = 28Ricβ4 + (−24sk0|kβ + 25Ric + 2s0ks
k
0)β

2α2 + (Ric

−12sk0|kβ + 2s0ks
k
0 − 5sjks

k
jβ

2 − 12σβ2)α4 − (sjks
k
j + σ)α6.

(4.1)

From the first equation of (4.1), we have Ric = λα2 for some function λ =

λ(x) on M . Using the Bianchi identity, i.e., bj|k|l − bj|l|k = bsR̄jskl, we obtain

sl k|l = λbk. (4.2)

Contracting both sides of (4.2) with bk and yk, respectively, we have

{
skjs

j
k = −λb2,

sk0|k = λβ.
(4.3)

Substituting (4.3) into (4.1) yields

0 = (−4σβ2 + λb2β2 + 6λβ2 + 2s0ks
k
0) + (−3σ + 3λ+ 2λb2)α2, (4.4)
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and

0 = 2(2λβ2 + s0ks
k
0)β

2 + (−12σβ2 + 2s0ks
k
0 + 5λb2β2 + 13λβ2)α2

+ {−σ + (1 + b2)λ}α4. (4.5)

3× (4.5)− (4.4)× α2 yields

0 = 6(2λβ2+s0ks
k
0)β

2+(−32σβ2+4s0ks
k
0+14λb2β2+33λβ2)α2+λb2α4. (4.6)

Since α2 is irreducible polynomial of y, we assume that

2λβ2 + s0ks
k
0 = hα2 (4.7)

holds for some function h = h(x) on M . Differentiating both sides of (4.7) with

respect to yiyj yields 4λbibj + siks
k
j + sjks

k
i = 2haij . Then contracting it with

bibj gives h = 2λb2. Thus s0ks
k
0 = hα2− 2λβ2 = 2λ(b2α2−β2). Plugging it into

(4.6), we get

0 = (−32σ + 28λb2 + 25λ)β2 + 9λb2α2. (4.8)

Hence (4.8) is equivalent to
{
0 = −32σ + 28λb2 + 25λ,

0 = 9λb2.
(4.9)

From the second equation of (4.9), we have λ = 0. Plugging it into the first

equation of (4.9) gives σ = 0, i.e., F is Ricci-flat.

Moreover, substituting λ = 0 into (4.3) yields sij = 0. Together with rij = 0,

we have bi|j = 0, i.e., β is parallel with respect to α.

Converse is obvious. It completes the proof of Lemma 4.1. ¤

It is found that if β satisfies si = 0 or r00 = cα2, where c = constant, then β

is a constant Killing form when F is Einstein. Firstly, we prove the following

Theorem 4.1. Let F = α2

α−β be a non-Riemannian Matsumoto metric on

an n-dimensional manifold M , n ≥ 3. Suppose β satisfies si = 0. Then F is an

Einstein metric if and only if α is Ricci-flat and β is parallel with respect to α.

In this case, F is Ricci-flat.

Proof. If F is an Einstein metric, then r00 = cα2 and Ric = λα2 hold by

Theorem 3.1. Plugging si = 0, r00 = cα2 and Ric = λα2 into the second equation

of (3.4) yields

0 = 432(5− 2n)β10c0

+ {96[48n− 123 + (12n− 18)b2]c2β9 − 3456(2 + b2)λβ9 − 864bkckβ
9
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− 24[435n− 602 + (354n− 440)b2 + (48n− 56)b4]c0β
8}α2 + . . . . (4.10)

From (4.10), we have that α2 divides β9c0. Since α
2 is irreducible polynomial

of y, we have c0 = 0, i.e., c = constant Plugging it into the first equation of (3.4)

yields

0 = 144(21− 8n)β10c2

− 8β6(4832β2c2 − 81β2sjks
k
j − 568nb2β2c2 + 702λβ2 + 128b4β2c2

− 1177nβ2c2 − 324σβ2 − 64nb4β2c2 + 432λb2β2 + 1376b2β2c2

+ 270s0ks
k
0 + 216b2s0ks

k
0)α

2 + . . . . (4.11)

From (4.11), we get c = 0 for the division reason again. So β is a constant Killing

form. Thus by Lemma 4.1, we get the necessary conditions.

Sufficiency is obvious. It completes the proof of Theorem 4.1. ¤

Proof of Theorem 1.1. If F is an Einstein metric, then r00 = cα2 by

Theorem 3.1. Thus rk = cbk. Since the length of β with respect to α is constant,

we have 0 = b2|k = 2(rk + sk), i.e., rk + sk = 0. Hence we get cbk + sk = 0.

Contracting both sides of it with bk yields that c = 0. Above all, r00 = 0 and

sk = 0, i.e., β is a constant Killing form. Thus by Lemma 4.1, we obtain that α

is Ricci-flat and β is parallel with respect to α.

Conversely, if α is Ricci-flat and β is parallel with respect to α, then the

length of β with respect to α is constant. Hence by Lemma 4.1, we get F is

Einstein. It completes the proof of Theorem 1.1. ¤

Note that the condition that sk = 0 in Theorem 4.1 is weaker than one that

the length of β is constant (with respect to α) in Theorem 1.1.

Proof of Theorem 1.2. Assume that F is an Einstein metric and β is a

homothetic form, i.e., r00 = cα2, where c = constant. Then (3.4) holds, i.e.,

{
0 = t0 + t2α

2 + t4α
4 + t6α

6 + t8α
8 + t10α

10 + t12α
12 + t14α

14,

0 = t1 + t3α
2 + t5α

4 + t7α
6 + t9α

8 + t11α
10 + t13α

12,
(4.12)

where

t0 = 144(8n− 11)c2β10α4,

and

t2 = 12{1085n− 1439 + (792n− 1032)b2 + 64(n− 1)b4}c2β8α4

+ 1296λβ10α2 − 288(8n− 14)c2β10α2 + 864cβ9s0α
2.
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For division reason again, we have α2 can divide β(fβ + gs0), where f :=

144(8n − 11)c2 + 1296λ − 288(8n − 14)c2, g := 864c. So we have fβ + gs0 = 0.

Differentiating both sides of it by yi and contracting it with bi yields f = 0. So

g = 0 or s0 = 0.

g = 0 implies that c = 0. Plugging it into f = 0 yields λ = 0 and sk0|k = 0.

Substituting all these into (4.12) yields

t1 = 0, t3 = −432(2n− 5)β9s0|0, (4.13)

and

t0 = t2 = 0, t4 = 72{57n− 142+ (24n− 56)b2}β8s0|0 − 144(8n− 21)β8s20. (4.14)

From (4.13), we know that α2 can divide s0|0. Plugging it into (4.14) yields

that α2 can divide s20. That is s
2
0 = k(x)α2, which is a contraction unless k(x) = 0,

i.e., s0 = 0.

Above all, s0 = 0. This is the just case in Theorem 4.1. It completes the

proof of Theorem 1.2. ¤

Example. Let (M,α) be a 5-dimensional Riemanian manifold. Consider the

Riemannian metric α =
√
aij(x)yiyj , (1 ≤ i, j ≤ 5), which, in local coordinate

(xi), can be described as follows

(aij) =




(x4)2 0 0 0 0

0 (x4)2 0 0 0

0 0 (x4)−1 0 0

0 0 0 x4 0

0 0 0 0 1




where x4 > 0. A direct computation shows that α is a non-Euclidean Ricci flat

metric. And let β = cy5, where c is a nonzero constant and c2 < 1
2 . It is easy to

check that such a β is parallel with respect to α, i.e., bi|j = 0. Define F = α2

α−β .

Thus by Theorem 1.1, we conclude that F = α2

α−β is a Ricci-flat Matsumoto

metric.

Theorem 4.2. Let F = α2

α−β be a non-Riemannian Matsumoto metric on

an n-dimensional manifold M , n ≥ 3. Suppose the length of β with respect to α

is constant. Then F is of constant flag curvature K if and only if the following

conditions hold:

(1) α is a flat metric;

(2) β is parallel with respect to α.
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In this case, K = 0 and F is locally Minkowskian.

Proof. Suppose that F is of constant flag curvature K, i.e.,

Ri
k = K(F 2δik − gijy

jyk).

Then we have

Ric = σF 2, σ := (n− 1)K, (4.15)

which means that F is Einstein. Since the length of β with respect to α is

constant, by Theorem 1.1, we get α is Ricci-flat and β is parallel with respect

to α. In this case, F is Ricci-flat, which means that K = 0. So Gi = Ḡi and

Ri
k = R̄i

k
= 0, i.e., α is flat.

Conversely, if α is flat and β is parallel with respect to α, then Ri
k = 0, i.e.,

K = 0. It completes the proof of Theorem 4.2. ¤

Remark. In literature [9], the proof of Theorem 1 depends on Theorem 3, of

which the proof includes the hypothesis that the length of β with respect to α is

constant, see the step 1 in the proof of Theorem 3 (A and Ai (i= 0,1,2,. . . ) are

some constants) in [9]. So, Theorem 4.2 here is the correct version of Theorem 1

in [9]. We do not know what happened to the case that the above hypothesis is

canceled?

5. S-curvature of Matsumoto metrics

The S-curvature is an important geometric quantity. In this section, we

investigate the S-curvature of Matsumoto metrics.

For a Finsler metric F and a volume form dV = σF (x) dx on an n-dimensional

manifold M , the S-curvature S is given by

S(x, y) =
∂Gi

∂yi
− yi

∂ lnσF

∂xi
. (5.1)

The volume form can be the Busemann–Hausdorff volume form dVBH = σBHdx

or the Holmes–Thompson volume form dVHT = σHT dx.

To compute the S-curvature, one should first find a formula for the Buse-

mann–Hausdorff volume form dVBH and the Holmes–Thompson dVHT .
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Proposition 5.1 (Proposion 4.1 in [3]). Let F = αφ(s), s = β
α , be an

(α, β)-metric on an n−dimensional manifold M . Denote

f(b) :=





∫ π

0
sinn−2(t)dt

∫ π

0
sinn−2(t)
φ(b cos t)n dt

if dV = dVBH ,

∫ π

0
sinn−2(t)T (b cos t)dt∫ π

0
sinn−2(t)dt

if dV = dVHT .

(5.2)

Then the volume form dV is given by dV = f(b)dVα, where dVα =
√
det(aij)dx

denotes the Riemannian volume form of α, T (s) := φ(φ− sφ′)n−2[φ− sφ′ +(b2 −
s2)φ′′].

By Proposition 2.1 and Proposition 5.1, we have

∂Gi

∂yi
=

∂Ḡi

∂yi
+

2s0
(2s− 1)2

+
6(b2 − s2)

(2s− 1)(3s− 2b2 − 1)2
s0 − 2s

(2s− 1)(3s− 2b2 − 1)
s0

+
4(b2 − s2)

(2s− 1)2(3s− 2b2 − 1)
s0 + (n+ 1)

4s− 1

(2s− 1)(3s− 2b2 − 1)
s0

+
3(b2−s2)

α(3s−2b2−1)2
r00 + (n+1)

4s−1

2α(3s−2b2−1)
r00− 2

(3s− 2b2−1)2
r0; (5.3)

and

yi
∂ lnσF

∂xi
= yi

∂ lnσα

∂xi
+ Λ(r0 + s0), (5.4)

where Λ := f ′(b)
bf(b) .

Plugging (5.3) and (5.4) into (5.1), we obtain

S =
2s0

(2s− 1)2
+

6(b2 − s2)

(2s− 1)(3s− 2b2 − 1)2
s0 − 2s

(2s− 1)(3s− 2b2 − 1)
s0

+
4(b2 − s2)

(2s− 1)2(3s− 2b2 − 1)
s0 + (n+ 1)

4s− 1

(2s− 1)(3s− 2b2 − 1)
s0

+
3(b2 − s2)

α(3s− 2b2 − 1)2
r00 + (n+ 1)

4s− 1

2α(3s− 2b2 − 1)
r00 − 2

(3s− 2b2 − 1)2
r0

+ Λ(r0 + s0). (5.5)

Proof of Theorem 1.3. Assume that S = 0. Multiplying both sides of

(5.5) by 2α5(2s− 1)2(3s− 2b2 − 1)2, we obtain

0 = 24(2n+1)β4r00 + {−4(13+8b2 +19n+ 8nb2)β3r00 + 72Λβ4r0 + 72Λβ4s0}α



28 Xiaoling Zhang and Yibing Shen

+ {2(19 + 32b2 + 22n+ 20nb2)β2r00 − 2(60 + 48b2)Λβ3r0

− 24(1− 2n+ 5Λ + 4Λb2)β3s0}α2

+ {−(11+40b2 +11n+16nb2)βr00 +2(−8 + 37Λ + 64Λb2 + 16Λb4)β2r0

+ 2(12− 26n− 16nb2 + 37Λ + 64Λb2 + 16Λb4)β2s0}α3

+ {(1 + 8b2 + n+ 2nb2)r00 + 4(4− 5Λ− 14Λb2 − 8Λb4)βr0

− 2(5− 8b2 − 9n− 12nb2 + 10Λ + 28Λb2 + 16Λb4)βs0}α4

+ {−(4− 2Λ− 8Λb2 − 8Λb4)r0

+ 2(1− 4b2 − n− 2nb2 + Λ+ 4Λb2 + 4Λb4)s0}α5. (5.6)

(5.6) is equivalent to the following





0 = 24(2n+ 1)β4r00 + {2(19 + 32b2 + 22n+ 20nb2)β2r00

−2(60 + 48b2)Λβ3r0 − 24(1− 2n+ 5Λ + 4Λb2)β3s0}α2

+{(1 + 8b2 + n+ 2nb2)r00 + 4(4− 5Λ− 14Λb2 − 8Λb4)βr0

−2(5− 8b2 − 9n− 12nb2 + 10Λ + 28Λb2 + 16Λb4)βs0}α4,

0 = {−4(13 + 8b2 + 19n+ 8nb2)β3r00 + 72Λβ4r0 + 72Λβ4s0}
+{−(11 + 40b2 + 11n+ 16nb2)βr00

+2(−8 + 37Λ + 64Λb2 + 16Λb4)β2r0

+2(12− 26n− 16nb2 + 37Λ + 64Λb2 + 16Λb4)β2s0}α2

+{−(4− 2Λ− 8Λb2 − 8Λb4)r0

+2(1− 4b2 − n− 2nb2 + Λ+ 4Λb2 + 4Λb4)s0}α4.

(5.7)

From the first equation of (5.7), we have

r00 = cα2 (5.8)

for some function c = c(x) on M . So r0 = cβ.

Plugging (5.8) and r0 = cβ into (5.7), we obtain





0 = 24c(1 + 2n− 5Λ− 4Λb2)β4 − 24(1− 2n+ 5Λ + 4Λb2)β3s0

+{2c(27 + 32b2 + 22n+ 20nb2 − 10Λ− 28Λb2 − 16Λb4)β2

−2(5− 8b2 − 9n− 12nb2 + 10Λ + 28Λb2 + 16Λb4)βs0}α2

+c(1 + 8b2 + n+ 2nb2)α4,

0 = 72Λβ4(cβ + s0).

(5.9)
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From the second equation of (5.9), we have cβ+ s0 = 0 for n ≥ 2. Differentiating

both sides of it with respect to yi yields cbi + si = 0. Contracting it with bi gives

cb2 = 0. So c = 0 and s0 = 0. Thus r00 = 0, s0 = 0, i.e., β is a constant Killing

form.

Conversely, if β is a constant Killing form, then S = 0 by (5.5). Thus we

have completed the proof of Theorem 1.3. ¤

By Theorem 1.3 and Theorem 1.1, we can directly get Corollary 1.1.
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