
Publ. Math. Debrecen

85/1-2 (2014), 73–91

DOI: 10.5486/PMD.2014.5813

On some applications of Eisenstein series

By ICK SUN EUM (Seoul), JA KYUNG KOO (Daejeon) and DONG HWA SHIN (Yongin-si)

Abstract. We derive the uniqueness of the theta functions associated with certain

quadratic forms. Furthermore, we show some partially multiplicative relations between

the representation numbers of such quadratic forms. To this end we apply Fricke invo-

lutions and Hecke operators to Eisenstein series.

1. Introduction

For positive integers k and N let Mat(k,N) be the set of 2k × 2k integral

positive definite symmetric matrices A with det(A) = N for which both A and

NA−1 have even diagonal entries. For such a matrix A in Mat(k,N) let Q be

its associated quadratic form and rQ(n) be the representation number by Q for

a nonnegative integer n, namely

Q(x) =
1

2
xTAx for x = (x1, x2, . . . , x2k) ∈ Z2k

and rQ(n) = #{x ∈ Z2k; Q(x) = n}.
We consider the theta function

ΘQ(τ) =

∞∑
n=0

rQ(n)e
2πiτn,
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which belongs to the space Mk(N,χ(−1)kN ) of weight k modular forms for Γ0(N)

associated with the character χ(−1)kN (·) = ( (−1)kN
·

)
[7, Corollary 4.9.5(3)].

In particular, when (k,N) = (2, 13) and A =

[
2 0 1 1
0 4 0 1
1 0 2 0
1 1 0 2

]
, we have Q = x2

1 +

2x2
2 + x2

3 + x2
4 + x1x3 + x1x4 + x2x4, and ΘQ(τ) lies in M2(13, χ13). Eum et al.

[2, Example 3.4] provided a basis of the space M2(Γ1(13)) of modular forms of

weight 2 for Γ1(13) in terms of Klein forms, and expressed ΘQ(τ) as a linear

combination of such basis elements. In the process they found the interesting

identity

rQ(1)rQ(p
2n) = rQ(p

2)rQ(n) for any prime p - 13
and any positive integer n such that p - n. (1)

Recently they proved (1) in [3], by combining dimCM2(13, χ13) = 2 withHecke’s

two Eisenstein series [4].

In this paper we shall further develop the above result as follows. Let k ≥ 2

andN be any positive integers such that (−1)kN is the discriminant of a quadratic

field. Let A be a matrix in Mat(k,N) and let Q be its associated quadratic form.

Suppose that

dimCMk(N,χ(−1)kN ) = 2. (2)

Then we shall first show that there are only finitely many pairs (k,N) that sa-

tisfy (2) (Corollary 2.4(iii)). We shall also prove that the theta series ΘQ(τ)

depends only on (k,N) (Theorem 6.2 and Corollary 6.3); hence, the representa-

tion numbers rQ(n) can be written in terms of a generalized Bernoulli number

(Remark 6.5). For this, we shall investigate the action of the Fricke involution

·|kωN on Hecke’s two Eisenstein series (Corollary 4.4). On the other hand, let

Sk(N,χ(−1)kN ) be the subspace of Mk(N,χ(−1)kN ) consisting of cusp forms. If

we further assume that dimC Sk(N,χ(−1)kN ) = 0, which is weaker than (2) (Co-

rollary 2.4(ii),(iii)), then we are able to claim the relation (1) for these finitely

many pairs (k,N) (Theorem 6.4 and Example 7.2) by applying Hecke operators

to these Eisenstein series ($5).

2. Modular forms

We denote by H the complex upper half-plane. Let k be an integer and

α =
[
a b
c d

]
be an element of GL+

2 (R). We define the slash operator ·|kα on the
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functions f(τ) on H by

f(τ)|kα := det(α)k/2(cτ + d)−k(f(τ) ◦ α),

where α acts on H as the fractional linear transformation τ 7→ (aτ + b)/(cτ + d).

Note that

(f(τ)|kα)|kβ = f(τ)|kαβ (α, β ∈ GL+
2 (R)). (3)

Let N be a positive integer and let Γ be one of the following congruence subgroups

of SL2(Z):

Γ1(N) :=

{
α ∈ SL2(Z); α ≡

[
1 ∗
0 1

]
(mod N)

}
,

Γ0(N) :=

{
α ∈ SL2(Z); α ≡

[
∗ ∗
0 ∗

]
(mod N)

}
.

A holomorphic function f(τ) on H is called a modular form of weight k for Γ if

(i) f(τ)|kα = f(τ) for all α ∈ Γ,

(ii) f(τ) is holomorphic at every cusp (∈ Q ∪ {∞}). In particular, since

f(τ)|k [ 1 1
0 1 ] = f(τ + 1) = f(τ) by (i), f(τ) has a Laurent series expansion

with respect to

q := e2πiτ

of the form

f(τ) =

∞∑
n=0

a(n)qn (a(n) ∈ C),

which is called the Fourier expansion of f(τ) (at the cusp ∞).

Moreover, if a modular form vanishes at every cusp, then it is called a cusp form.

We denote the space of all modular forms (respectively, cusp forms) of weight k

for Γ by Mk(Γ) (respectively, Sk(Γ)).

For a Dirichlet character χ modulo N we define a character χ of Γ0(N) by

χ(α) := χ(d) for α =

[
a b

c d

]
∈ Γ0(N).

We let

Mk(N,χ) := {f(τ) ∈ Mk(Γ1(N)); f(τ)|kα = χ(α)f(τ) for all α ∈ Γ0(N)},
Sk(N,χ) := Mk(N,χ) ∩ Sk(Γ1(N)),
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which are subspaces of Mk(Γ1(N)) and Sk(Γ1(N)), respectively. Then we have

the decomposition

Mk(Γ1(N)) =
⊕
χ

Mk(N,χ),

where χ runs over all Dirichlet characters modulo N [7, Lemma 4.3.1]. Here we

observe that if χ(−1) 6= (−1)k, then the space Mk(N,χ) is known to be {0} [7,

Lemma 4.3.2(1)].

Proposition 2.1. Let N be a positive integer.

(i) dimCMk(Γ1(N)) = 0 for any negative integer k.

(ii) dimCM0(Γ1(N)) = 1, and hence dimCM0(N,χ) = 0 if χ is nontrivial.

Proof. See [7, Theorems 2.5.2 and 2.5.3]. ¤

Proposition 2.2. For an integer m, let

νm:=





0 if m is odd,

−1/4 if m ≡ 2 (mod 4),

1/4 if m ≡ 0 (mod 4),

and µm:=





0 if m ≡ 1 (mod 3),

−1/3 if m ≡ 2 (mod 3),

1/3 if m ≡ 0 (mod 3).

Let k be an integer and χ be a primitive Dirichlet character modulo N such that

χ(−1) = (−1)k. Then we have the dimension formula

dimCMk(N,χ)− dimC S2−k(N,χ) =
(k − 1)N

12

∏

p|N
(1 + p−1)

+
1

2

∏

p|N
2− ν2−kα(χ)− µ2−kβ(χ), (4)

where

α(χ) :=
∑

x (mod N)

x2+1≡0 (mod N)

χ(x) and β(χ) :=
∑

x (mod N)

x2+x+1≡0 (mod N)

χ(x).

Proof. See [1, Théorèm 1] or [8, Theorem 1.34]. ¤

Remark 2.3. (i) If we replace k by 2− k in the formula (4), then we obtain

dimCM2−k(N,χ)− dimC Sk(N,χ) =
(1− k)N

12

∏

p|N
(1 + p−1)

+
1

2

∏

p|N
2− νkα(χ)− µkβ(χ). (5)
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Suppose k ≥ 2 and χ is nontrivial. Then

dimCM2−k(N,χ) = dimC S2−k(N,χ) = 0 by Proposition 2.1. And, we see

that ν2−k + νk = µ2−k + µk = 0. Thus we derive by adding (4) and (5)

dimCMk(N,χ)− dimC Sk(N,χ) =
∏

p|N
2. (6)

(ii) If N is the product of ` distinct prime numbers, then the equation x2 + 1 ≡
0 (mod N) has at most 2` solutions in Z/NZ by the Chinese remainder

theorem. Hence we get |α(χ)| ≤ 2`. Similarly, |β(χ)| ≤ 2`.

(iii) The equations x2 + 1 ≡ 0 (mod 4) and x2 + x + 1 ≡ 0 (mod 4) are not

solvable. So, if 4|N , then α(χ) = β(χ) = 0.

For a nonzero integer N with N ≡ 0 or 1 (mod 4), by χN we mean the

Dirichlet character modulo |N | which is defined by

χN (d) := the Kronecker symbol

(
N

d

)
for d ∈ (Z/|N |Z)×.

Observe that (
N

−1

)
:=

{
1 if N > 0,

−1 if N < 0.
(7)

In particular, if N is the discriminant of a quadratic field, namely

N =

{
m if m ≡ 1 (mod 4)

4m if m 6≡ 1 (mod 4)
for a square-free integer m ( 6= 1),

then χN becomes a primitive Dirichlet character modulo |N | [7, pp. 82–84].
Corollary 2.4. Let k (≥ 2) and N be positive integers such that (−1)kN is

the discriminant of a quadratic field.

(i) dimCMk(N,χ(−1)kN )− dimC Sk(N,χ(−1)kN ) = 2 if and only if





k(≥ 3) is odd and N = 4,

k ≥ 2 and N = 8,

k ≥ 2 and N is a prime such that N ≡ (−1)k (mod 4).

(ii) dimC Sk(N,χ(−1)kN ) = 0 if and only if

(k,N) = (2, 5), (2, 8), (2, 12), (2, 13), (2, 17), (2, 21), (3, 3), (3, 4), (4, 5), (5, 3).
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(iii) dimCMk(N,χ(−1)kN ) = 2 if and only if

(k,N) = (2, 5), (2, 8), (2, 13), (2, 17), (3, 3), (3, 4), (4, 5), (5, 3).

Proof. (i) We deduce from (6) that

dimCMk(N,χ(−1)kN)−dimC Sk(N,χ(−1)kN)=2 ⇐⇒ N has only one prime factor.

Since (−1)kN is the discriminant of a quadratic field, we get the assertion (i).

(ii) Since k ≥ 2 and χ(−1)kN is nontrivial, dimCM2−k(N,χ(−1)kN ) = 0 by

Proposition 2.1. It then follows from (5) that

dimC Sk(N,χ(−1)kN ) =
(k − 1)N

12

∏

p|N
(1 + p−1)− 1

2

∏

p|N
2

+ νkα(χ(−1)kN ) + µkβ(χ(−1)kN ). (8)

First, we consider the case where N has the prime factorization N =
∏`

j=1 pj
with pj odd and pj < pj+1. Now we see that

dimC Sk(N,χ(−1)kN ) ≥ k − 1

12

∏̀

j=1

(pj + 1)− 1

2
2` − 1

4
2` − 1

3
2`

by (8) and Remark 2.3(ii)

≥





(k − 1)(p1 + 1)

12
− 13

6
if ` = 1,

(k − 1)(p1 + 1)(p2 + 1)`−1

12
− 13 · 2`−1

6
if ` ≥ 2,

=





(k − 1)(p1 + 1)− 26

12
if ` = 1,

13 · 2`−1

6

(
(k − 1)(p1 + 1)

26

(
p2 + 1

2

)̀ −1

−1

)
if ` ≥ 2.

If ` ≥ 3, then the above inequality yields

dimC Sk(N,χ(−1)kN ) ≥ 13 · 22
6

(
(k − 1)(3 + 1)

26

(
5 + 1

2

)2

− 1

)
> 0,

because p1 ≥ 3 and p2 ≥ 5. Thus we again achieve from the above inequality that

dimC Sk(N,χ(−1)kN ) = 0 implies

(k,N)∈
{
{(2, 5), (2, 13), (2, 17), (3, 3), (3, 7), (3, 11), (4, 5), (5, 3), (7, 3)} if ` = 1,

{(2, 21), (2, 33), (3, 15)} if ` = 2.
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And, the formula (8) leads us to the fact

dimC Sk(N,χ(−1)kN ) = 0 ⇐⇒ (k,N)

= (2, 5), (2, 13), (2, 17), (3, 3), (4, 5), (5, 3), (2, 21).

Next, suppose that N = 4 · 2m ∏`
j=1 pj with m ∈ {0, 1}, ` ≥ 1, pj odd and

pj < pj+1. Then we have that

dimC Sk(N,χ(−1)kN ) =
2m(k − 1)

2

∏̀

j=1

(pj + 1)− 1

2
2`+1

by (8) and Remark 2.3(iii)

≥





2m(k − 1)(p1 + 1)

2
− 2 if ` = 1,

2m(k − 1)(p1 + 1)(p2 + 1)`−1

2
− 2` if ` ≥ 2,

=





2m(k − 1)(p1 + 1)− 4

2
if ` = 1,

2`
(
2m(k − 1)(p1 + 1)

4

(
p2 + 1

2

)`−1

− 1

)
if ` ≥ 2.

(9)

One can then readily show that if m = 1 or ` ≥ 2, dimC Sk(N,χ(−1)kN ) > 0.

And, (9) implies

dimC Sk(N,χ(−1)kN ) = 0 ⇐⇒ (k,N) = (2, 12).

Lastly, let N = 4 or 8. We get by (8) and Remark 2.3(iii)

dimC Sk(N,χ(−1)kN ) =





k − 1

2
− 1 if N = 4,

(k − 1)− 1 if N = 8.

Hence it follows that

dimC Sk(N,χ(−1)kN ) = 0 ⇐⇒ (k,N) = (3, 4), (2, 8).

This completes the proof of (ii).

(iii) By (6) we deduce

dimCMk(N,χ(−1)kN ) = dimC Sk(N,χ(−1)kN ) +
∏

p|N
2,
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from which we conclude that

dimCMk(N,χ(−1)kN ) = 2 ⇐⇒ dimC Sk(N,χ(−1)kN ) = 0,

and N has only one prime factor

⇐⇒ (k,N) = (2, 5), (2, 8), (2, 13), (2, 17), (3, 3), (3, 4), (4, 5), (5, 3) by (ii). ¤

Remark 2.5. If (k,N) = (2, 12) or (2, 21), then dimCMk(N,χ(−1)kN ) = 4

by (6).

3. Eisenstein series

Let χ be a nontrivial primitive Dirichlet character modulo N . The Dirichlet

L-function for χ is defined by

L(s, χ) :=

∞∑
n=1

χ(n)

ns
(s ∈ C),

where we set χ(n) = 0 if gcd(n,N) 6= 1. This series converges for Re(s) > 1 and

extends to an entire function [6, Chapter XIV, Theorem 2.2(ii)].

Lemma 3.1. Let k be a positive integer.

(i) L(1− k, χ) 6= 0 if and only if χ(−1) = (−1)k.

(ii) We have

L(1− k, χ) = −Bk,χ

k
,

where Bk,χ is a generalized Bernoulli number defined by

N−1∑
a=1

χ(a)
teat

eNt − 1
=

∞∑

k=0

Bk,χ
tk

k!
.

Proof. (i) See [6, Chapter XIV, Corollary of Theorem 2.2].

(ii) See [6, Chapter XIV, Theorem 2.3]. ¤

Proposition 3.2. Let k be a positive integer, and let ψ1 and ψ2 be Dirichlet

characters modulo N1 and N2, respectively, such that ψ1(−1)ψ2(−1) = (−1)k.

Suppose that ψ1 and ψ2 satisfy the following condition:




if k = 2 and both ψ1 and ψ2 are trivial,

then N1 = 1 and N2 is a prime,

otherwise, ψ1 and ψ2 are primitive characters.

(10)
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Let N = N1N2 and χ = ψ1ψ2. Define

Ek,ψ1,ψ2
(τ) := a0 +

∞∑
n=1

( ∑

d>0,d|n
ψ1(n/d)ψ2(d)d

k−1

)
qn, (11)

where

a0 =





0 if k 6= 1 and ψ1 is nontrivial,

or if both ψ1 and ψ2 are nontrivial,

(N − 1)/24 if k = 2, and both ψ1 and ψ2 are trivial,

−Bk,χ/2k otherwise.

Then Ek,ψ1,ψ2(τ) defines an element of Mk(N,χ), which is called an Eisenstein

series.

Proof. See [7, Theorem 4.7.1]. ¤

Proposition 3.3. Let k be a positive integer and χ be a Dirichlet character

modulo N such that χ(−1) = (−1)k. Set

Ek(N,χ) := SpanC{Ek,ψ1,ψ2(`τ) | ψ1ψ2 = χ, ψ1

and ψ2 satisfy the condition (10), ` > 0, `N1N2|N}.

Then we have the decomposition

Mk(N,χ) = Ek(N,χ)⊕ Sk(N,χ).

Proof. See [7, Theorems 2.1.7(1) and 4.7.2]. ¤

Corollary 3.4. Let k (≥ 2) and N be positive integers such that (−1)kN is

the discriminant of a quadratic field. Then the Eisenstein series

Gk,N (τ) := Ek,χ0,χ(−1)kN
(τ) = −

Bk,χ
(−1)kN

2k

+

∞∑
n=1

( ∑

d>0,d|n
χ(−1)kN (d)dk−1

)
qn, (12)

Hk,N (τ) := Ek,χ
(−1)kN

,χ0(τ) =

∞∑
n=1

( ∑

d>0,d|n
χ(−1)kN (n/d)dk−1

)
qn, (13)

with χ0 the principal character, are linearly independent elements of

Ek(N,χ(−1)kN ).
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Proof. See [3, Corollary 2.7]. ¤

Remark 3.5. The constant term of Gk,N (τ) does not vanish by Lemma 3.1.

For a positive integer k, let ψ1 and ψ2 be Dirichlet characters modulo N1

and N2, respectively, such that ψ1(−1)ψ2(−1) = (−1)k. We define a function

Ek(τ, s;ψ1, ψ2) :=
∑

(m,n)∈Z2−{(0,0)}
ψ1(m)ψ2(n)(mτ + n)−k|mτ + n|−2s

(τ ∈ H, s ∈ C). (14)

Then the right-hand side is uniformly and absolutely convergent for k+2Re(s) ≥
2 + ε (ε > 0), and so it is holomorphic on k + 2Re(s) > 2. Furthermore, it is

analytically continued to a holomorphic function

Hk(τ, s;ψ1, ψ2) for





the whole s-plane if ψ2 is nontrivial,

Re(s) > (1− k)/2 if ψ2 is trivial and k ≥ 2,

Re(s) > −1/2 if ψ2 is trivial and k = 1

(15)

[7, Theorem 7.2.9 and Corollary 7.2.10]. Since Hk(τ, s;ψ1, ψ2) is holomorphic at

s = 0, we set

Ek(τ ;ψ1, ψ2) := Hk(τ, 0;ψ1, ψ2). (16)

Then Ek(τ ;ψ1, ψ2) becomes a holomorphic function of τ on H except for the case

where k = 2 and both ψ1 and ψ2 are trivial [7, Corollary 7.2.14].

Proposition 3.6. Let ψ1 and ψ2 be primitive Dirichlet characters modulo

N1 and N2, respectively, such that ψ1(−1)ψ2(−1) = (−1)k. Except for the case

where k = 2 and N1 = N2 = 1 we get the relation

Ek(N2τ ;ψ1, ψ2) = Ak,ψ2Ek,ψ1,ψ2
(τ),

where

Ak,ψ2 :=
2(−2πi)kW (ψ2)

Nk
2 (k − 1)!

and W (ψ2) :=

N2−1∑
a=0

ψ2(a)e
2πia/N2 .

Proof. See [7, (7.1.13) and Lemma 7.2.19]. ¤

Remark 3.7. It is well-known that |W (ψ2)| =
√
N2 [7, Lemma 3.1.1(4)].
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4. Fricke involutions

Let k and N be positive integers. The slash operator

·|kωN with ωN :=

[
0 −1

N 0

]

on the functions f(τ) (τ ∈ H) is called the Fricke involution of weight k and

level N . We derive by the property (3) that

(f(τ)|kωN )|kωN = f(τ)|kω2
N = f(τ)|k

[
−N 0

0 −N

]
= (−1)kf(τ). (17)

Proposition 4.1. Let k be an integer and χ be a Dirichlet character modulo

N such that χ(−1) = (−1)k. Then the correspondence f(τ) 7→ f(τ)|kωN induces

isomorphisms

Mk(N,χ) ' Mk(N,χ), Sk(N,χ) ' Sk(N,χ) and Ek(N,χ) ' Ek(N,χ).

Proof. See [7, Lemma 4.3.2(2)]. ¤

Proposition 4.2. Let ψ1 and ψ2 be Dirichlet characters modulo N1 and N2,

respectively, such that ψ1(−1)ψ2(−1) = (−1)k. Then we have the property

Ek(τ ;ψ1, ψ2)|kωN = Nk/2ψ1(−1)Ek(Nτ ;ψ2, ψ1). (18)

Proof. By Definition of ·|kωN we obtain

Ek(τ ;ψ1, ψ2)|kωN = Nk/2(Nτ)−kEk(−1/Nτ ;ψ1, ψ2). (19)

On the other hand, we derive that

Hk(−1/Nτ, s;ψ1, ψ2) = Ek(−1/Nτ, s;ψ1, ψ2) for Re(s) > 1− k/2

=
∑

(m,n)∈Z2−{(0,0)}
ψ1(m)ψ2(n)(−m/Nτ + n)−k| −m/Nτ + n|−2s by Definition (14)

= (Nτ)k|Nτ |2sψ1(−1)
∑

(m,n)∈Z2−{(0,0)}
ψ1(−m)ψ2(n)(nNτ −m)−k|nNτ −m|−2s

= (Nτ)k|Nτ |2sψ1(−1)Ek(Nτ, s;ψ2, ψ1) by Definition (14)

= (Nτ)k|Nτ |2sψ1(−1)Hk(Nτ, s;ψ2, ψ1).
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It then follows that

Hk(−1/Nτ, s;ψ1, ψ2) = (Nτ)k|Nτ |2sψ1(−1)Hk(Nτ, s;ψ2, ψ1)

on the domain in (15),

because the analytic continuation is unique. Setting s = 0 we get by Defini-

tion (16)

Ek(−1/Nτ ;ψ1, ψ2) = (Nτ)kψ1(−1)Ek(Nτ ;ψ2, ψ1). (20)

Therefore (19) and (20) give rise to the relation (18). ¤
Lemma 4.3. Let k and N be positive integers such that (−1)kN is the

discriminant of a quadratic field. Then W (χ(−1)kN ) = ik
2√

N .

Proof. See [7, Lemma 4.8.1]. ¤
Corollary 4.4. Let k ≥ 2 and N be positive integers such that (−1)kN is

the discriminant of a quadratic field. Then we have

Gk,N (τ)|kωN = i−k2

N (k−1)/2Hk,N (τ) and Hk,N |kωN = ik
2

N (1−k)/2(−1)kGk,N (τ).

Proof. Since χ(−1)kN is a real-valued primitive character modulo N , we

have

Hk,N (τ)|kωN = Ek,χ
(−1)kN

,χ0(τ)|kωN by Definition (13)

= A−1
k,χ0

Ek(τ ;χ(−1)kN , χ0)|kωN by Proposition 3.6

= A−1
k,χ0

Nk/2χ(−1)kN (−1)Ek(Nτ ;χ0, χ(−1)kN ) by Proposition 4.2

= A−1
k,χ0

Nk/2(−1)kEk(Nτ ;χ0, χ(−1)kN ) because χ(−1)kN (−1) = (−1)k

= A−1
k,χ0

Nk/2(−1)kAk,χ
(−1)kN

Ek,χ0,χ(−1)kN
(τ) by Proposition 3.6

= ik
2

N (1−k)/2(−1)kGk,N (τ) by Lemma 4.3 and Definition (12).

Thus

(Hk,N (τ)|kωN )|kωN = (−1)kHk,N (τ) by (17)

= ik
2

N (1−k)/2(−1)kGk,N (τ)|kωN by the first part of the proof,

from which we conclude

Gk,N (τ)|kωN = i−k2

N (k−1)/2Hk,N (τ). ¤

5. Hecke operators

Let k be an integer and χ be a Dirichlet character modulo N such that

χ(−1) = (−1)k. For a positive integer m, the Hecke operator ·|Tk,χ(m) is defined
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on the functions f(τ) =
∑∞

n=0 a(n)q
n ∈ Mk(N,χ) by the rule

f(τ)|Tk,χ(m) :=

∞∑
n=0

( ∑

d>0,d| gcd(m,n)

χ(d)dk−1a(mn/d2)

)
qn. (21)

Here we set χ(d) = 0 if gcd(N, d) 6= 1. Then the operator ·|Tk,χ(m) preserves the

space Mk(N,χ) [5, Chapter 3, Propositions 36 and 39].

Lemma 5.1. Letm be a positive integer. Suppose that f(τ)=
∑∞

n=0 a(n)q
n∈

Mk(N,χ) is an eigenfunction of ·|Tk,χ(m) with eigenvalue t(m), that is,

f(τ)|Tk,χ(m) = t(m)f(τ).

(i) a(m) = t(m)a(1).

(ii) If n is a nonnegative integer such that gcd(m,n) = 1, then a(1)a(mn) =

a(m)a(n).

Proof. Let f(τ)|Tk,χ(m) =
∑∞

n=0 b(n)q
n.

(i) We see that

b(1) = a(m) by Definition (21) = t(m)a(1) by the assumption

f(τ)|Tk,χ(m) = t(m)f(τ) = t(m)a(0) + t(m)a(1)q + . . . .

(ii) We achieve that

a(1)b(n) = a(1)
∑

d>0,d| gcd(m,n)

χ(d)dk−1a(mn/d2) by Definition (21)

= a(1)a(mn) since gcd(m,n) = 1

= a(1)t(m)a(n) by the assumption f(τ)|Tk,χ(m) = t(m)f(τ)

= a(m)a(n) by (i),

which proves (ii). ¤

Proposition 5.2. For a positive integer k, let ψ1 and ψ2 be Dirichlet cha-

racters modulo N1 and N2, respectively, that satisfy ψ1(−1)ψ2(−1) = (−1)k and

the condition (10). Let N = N1N2 and χ = ψ1ψ2. Then Ek,ψ1,ψ2(τ) is a common

eigenfunction of ·|Tk,χ(m) for all positive integers m such that gcd(N,m) = 1.

Proof. See [7, (4.7.16)]. ¤

Remark 5.3. Suppose that ψ1 and ψ2 are real valued characters, in other

words their values are 1, −1 or 0. Let p be a prime such that p - N . Then

Ek,ψ1,ψ2(τ) is an eigenfunction of ·|Tk,χ(p
2) with eigenvalue 1+χ(p)pk−1+p2(k−1)

by Lemma 5.1(i) and Definition (11).
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Corollary 5.4. Let k (≥ 2) and N be positive integers such that (−1)kN is

the discriminant of a quadratic field. Let p be a prime such that p - N . Then any

linear combination of Gk,N (τ) andHk,N (τ) is an eigenfunction of ·|Tk,χ
(−1)kN

(p2).

Proof. Both Gk,N (τ) = Ek,χ0,χ(−1)kN
(τ) and Hk,N (τ) = Ek,χ

(−1)kN
,χ0

(τ)

are eigenfunctions of ·|Tk,χ
(−1)kN

(p2) with the same eigenvalue by Proposition 5.2

and Remark 5.3. This implies that any linear combination of Gk,N (τ) andHk,N (τ)

is again an eigenfunction of ·|Tk,χ
(−1)kN

(p2). ¤

6. Application to quadratic forms

Let A be an r×r positive definite symmetric matrix over Z with even diagonal

entries. Let Q be its associated quadratic form, namely

Q(x) =
1

2
xTAx for x =



x1

...

xr


 ∈ Zr.

We define on H the theta function ΘQ(τ) associated with Q by

ΘQ(τ) :=
∑

x∈Zr
e2πiQ(x)τ =

∞∑
n=0

rQ(n)q
n,

where

rQ(n) := #{x ∈ Zr; Q(x) = n}
is the representation number of n by Q.

Proposition 6.1. With the notations as above we further assume that r =

2k is even. Let N be a positive integer such that NA−1 is an integral matrix with

even diagonal entries.

(i) ΘQ(τ) belongs to Mk(N,χ(−1)k det(A)).

(ii) ΘQ(τ)|kωN = Nk/2 det(A)−1/2ik(−1)kΘQ∗(τ), where Q∗ is the quadratic

form associated with NA−1.

Proof. See [7, Corollary 4.9.5(3)]. ¤

Let k and N be positive integer. We let Mat(k,N) be the set of 2k × 2k

integral positive definite symmetric matrices with det(A) = N such that both A

and NA−1 have even diagonal entries.
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Theorem 6.2. Let k ≥ 2 and N be positive integers such that (−1)kN is

the discriminant of a quadratic field. Assume that

dimCMk(N,χ(−1)kN )− dimC Sk(N,χ(−1)kN ) = 2. (22)

(Such pairs (k,N) are given in Corollary 2.4(i).) Let A be a matrix in Mat(k,N)

and Q be its associated quadratic form. Then the Eisenstein series part of ΘQ(τ)

depends only on k and N .

Proof. We have the decomposition

Mk(N,χ(−1)kN ) = SpanC{Gk,N (τ),Hk,N (τ)} ⊕ Sk(N,χ(−1)kN )

by the assumption (22), Proposition 3.3 and Corollary 3.4. Since ΘQ(τ) belongs

to Mk(N,χ(−1)kN ) by Proposition 6.1(i), we can write it as

ΘQ(τ) = c1Gk,N (τ) + c2Hk,N (τ) + a cusp form (23)

for some c1, c2 ∈ C. Comparing the constant terms of both sides we obtain

rQ(0) = 1 = c1

(
−

Bk,χ
(−1)kN

2k

)
.

Now, applying the Fricke involution ·|kωN on both sides of (23) we get by Propo-

sition 6.1(ii), Corollary 4.4 and Proposition 4.1

N (k−1)/2ik(−1)kΘQ∗(τ) = c1i
−k2

N (k−1)/2Hk,N (τ)

+ c2i
k2

N (1−k)/2(−1)kGk,N (τ) + a cusp form,

whereQ∗ is the quadratic form associated withNA−1. By comparing the constant

terms of both sides we derive

N (k−1)/2ik(−1)krQ∗(0)=N (k−1)/2ik(−1)k = c2i
k2

N (1−k)/2(−1)k
(
−
Bk,χ

(−1)kN

2k

)
.

Therefore we obtain

c1 = − 2k

Bk,χ
(−1)kN

and c2 = Nk−1i−k2+k

(
− 2k

Bk,χ
(−1)kN

)
, (24)

which depend only on k and N . This prove the theorem. ¤
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As a direct consequence of Theorem 6.2 we have the following corollary.

Corollary 6.3. Let k ≥ 2 and N be positive integers such that (−1)kN

is the discriminant of a quadratic field. Assume that dimCMk(N,χ(−1)kN ) = 2.

(Such pairs (k,N) are given in Corollary 2.4(iii).) Let A be a matrix in Mat(k,N)

and Q be its associated quadratic form. Then ΘQ(τ) depends only on k and N .

Theorem 6.4. With the same notations and assumptions as Corollary 6.3,

let ΘQ(τ) =
∑∞

n=0 rQ(n)q
n. If p is a prime such that p - N , then rQ(1) 6= 0 and

rQ(p
2n)

rQ(1)
=

rQ(p
2)

rQ(1)
· rQ(n)
rQ(1)

for all positive integers n such that p - n. (25)

Proof. By the assumption dimCMk(N,χ(−1)kN ) = 2 one can derive in a

similar way as in the proof of Theorem 6.2 that

ΘQ(τ) = c1Gk,N (τ) + c2Hk,N (τ) (26)

with c1 and c2 described in (24). If we compare the Fourier coefficients of the

term q, we see that rQ(1) = c1 + c2 = (1 +Nk−1i−k2+k)(−2k/Bk,χ
(−1)kN

), which

is nonzero due to the fact N ≥ 2.

On the other hand, if p is a prime such that p - N , then ΘQ(τ) is an eigen-

function of ·|Tk,χ
(−1)kN

(p2) by Corollary 5.4. Hence it follows from Lemma 5.1(ii)

that

rQ(1)rQ(p
2n) = rQ(p

2)rQ(n) for all positive integers n such that p - n.

Now, dividing both sides by rQ(1)
2 we have the relation (25). ¤

Remark 6.5. We obtain by (26) that rQ(0) = 1 and for n ≥ 1

rQ(n) = − 2k

Bk,χ
(−1)kN

∑

d>0,d|n

(
χ(−1)kN (d) +Nk−1i−k2+kχ(−1)kN (n/d)

)
dk−1.

7. Examples

We shall give some examples of matrices in Mat(k,N) for (k,N) stated in

Corollary 2.4(ii).
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Example 7.1. Let (k,N) = (2, 8) or (3, 4). Take

A =





[
2 1 1 0
1 2 1 0
1 1 2 0
0 0 0 2

]
if (k,N) = (2, 8),




4 2 0 0 0 0
2 2 1 0 0 0
0 1 2 1 0 0
0 0 1 2 1 0
0 0 0 1 2 1
0 0 0 0 1 2


 if (k,N) = (3, 4),

whose associated quadratic form is

Q =





x2
1 + x2

2 + x2
3 + x2

4 + x1x2 + x1x3 + x2x3 if (k,N) = (2, 8),

2x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6 + 2x1x2 + x2x3

+x3x4 + x4x5 + x5x6 if (k,N) = (3, 4).

Since dimCMk(N,χ(−1)kN ) = 2 and dimC Sk(N,χ(−1)kN ) = 0, we obtain by the

proof of Theorem 6.2 that

ΘQ(τ) =

{
−2G2,8(τ) + 16H2,8(τ) if (k,N) = (2, 8),

−4G3,4(τ) + 64H3,4(τ) if (k,N) = (3, 4).

For the cases where (k,N) = (2, 5), (2, 13), (2, 17), (3, 3), (4, 5), (5, 3) one can refer

to [3, Table 1].

Example 7.2. Let (k,N) = (2, 12) or (2, 21). Since

dimCMk(N,χ(−1)kN ) = 4 and dimC Sk(N,χ(−1)kN ) = 0,

we get by Proposition 3.3 that

Mk(N,χ(−1)kN ) = Ek(N,χ(−1)kN )

=

{
SpanC{G2,12(τ), H2,12(τ), E2,χ−3,χ−4(τ), E2,χ−4,χ−3(τ)} if (k,N) = (2, 12),

SpanC{G2,21(τ), H2,21(τ), E2,χ−3,χ−7(τ), E2,χ−7,χ−3(τ)} if (k,N) = (2, 21).

Now, consider a matrix

A =





[
2 0 0 0
0 2 0 0
0 0 2 1
0 0 1 2

]
if (k,N) = (2, 12),

[
6 5 5 5
5 6 5 5
5 5 6 5
5 5 5 6

]
if (k,N) = (2, 21),



90 Ick Sun Eum, Ja Kyung Koo and Dong Hwa Shin

whose associated quadratic form is

Q =





x2
1 + x2

2 + x2
3 + x2

4 + x3x4 if (k,N) = (2, 12),

3x2
1 + 3x2

2 + 3x2
3 + 3x2

4 + 5x1x2 + 5x1x3 + 5x1x4

+5x2x3 + 5x2x4 + 5x3x4 if (k,N) = (2, 21).

Then we deduce that

ΘQ(τ) =

∞∑
n=0

rQ(n)q
n

=





1 + 10q + 28q2 + 30q3 + . . . if (k,N) = (2, 12),

= −G2,12(τ) + 12H2,12(τ)

−4E2,χ−3,χ−4(τ) + 3E2,χ−4,χ−3(τ)

1 + 12q + 6q2 + 32q3 + . . . if (k,N) = (2, 21).

= −1

2
G2,21(τ) +

21

2
H2,21(τ)

−3

2
E2,χ−3,χ−7(τ) +

7

2
E2,χ−7,χ−3(τ)

Let p be a prime such that p - N . Note that all the generators of Mk(N,χ(−1)kN )

belong to the same eigenspace of ·|Tk,χ
(−1)kN

(p2) by Proposition 5.2 and Re-

mark 5.3. Hence Lemma 5.1(ii) leads to the relation

rQ(1)rQ(p
2n) = rQ(p

2)rQ(n) for all positive integers n such that p - n.
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