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On the Diophantine equation (x − 1)k + xk + (x + 1)k = yn

By ZHONGFENG ZHANG (Zhaoqing)

Abstract. In this paper, we study the Diophantine equation (x − 1)k + xk+

(x+ 1)k = yn, n > 1, and completely solve it for k = 2, 3, 4.

1. Introduction

The Diophantine equation

1k + 2k + · · ·+ xk = yn

was studied by Lucas [9] for (k, n) = (2, 2) and Schäffer [12] for the general

situation. There are many results on this equation, for example, see [1], [8], [11].

A generalization is to consider the equation

(x+ 1)k + (x+ 2)k + · · ·+ (x+m)k = yn.

When m = 3, redefining variables, we will consider the equation (x− 1)k + xk +

(x+1)k = yn. Cassels [6] proved that x = 0, 1, 2, 24 are the only integer solutions

to this equation for k = 3, n = 2.

Our result in this paper is the following.

Theorem 1.1. Let k = 2, 3, 4, then the equation

(x− 1)k + xk + (x+ 1)k = yn (1)

has no integer solutions (x, y) with n > 1, unless (x, y, k, n) = (1,±3, 3, 2),

(2,±6, 3, 2), (24,±204, 3, 2), (±4,±6, 3, 3) or (x, y, k) = (0, 0, 3).
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2. Some preliminary results

In this section, we present some lemmas which will help us to prove The-

orem 1.1. The first lemma is due to Nagell [10] and the second one is just

Theorem 0.1 of [6].

Lemma 2.1. If 2 - D and D ≥ 3, then the equation

2 +Dx2 = yn, n > 2

has no integer solutions (x, y, n) with n - h(−2D), where h(−2D) is the class

number of Q(
√−2D ).

Lemma 2.2. The equation

3x(x2 + 2) = y2

has only the integer solutions (x, y) = (0, 0), (1,±3), (2,±6), (24,±204).

A special case of Theorem 1.5 in [4] which we need in this paper is the

following result.

Lemma 2.3. Let p ≥ 5 be a prime, α ≥ 2 be an integer, then the equation

xp + 3αyp = 2z3

has no solutions in coprime integers with |xy| > 1.

In order to discuss the small exponents for k = 4 we also need the following

result.

Lemma 2.4. Let p ≥ 3 be a prime and (x, y) be an integer solution to

equation

3x2 − 10 = yp, (2)

then

(
√
3x+

√
10 )2 = (11 + 2

√
30 )i(a+ b

√
30 )p

for some integers a, b, i with −p−1
2 ≤ i ≤ p−1

2 .

Proof. From equation (2) one has (3x2 − 10)2 = y2p, that is

(3x2 + 10)2 − 30(2x)2 = (y2)p.
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It is easy to see 2 - x, 5 - x, then gcd(3x2 + 10, 2x) = 1, together with the fact

that the class number of Q(
√
30 ) is 2 and 11 + 2

√
30 be the fundamental unit of

this field, we have

3x2 + 10 + 2x
√
30 = (11 + 2

√
30 )i(a+ b

√
30 )p

with −p−1
2 ≤ i ≤ p−1

2 , that is

(11 + 2
√
30 )i(a+ b

√
30 )p = 3x2 + 10 + 2x

√
30

= (
√
3x+

√
10 )2,−p− 1

2
≤ i ≤ p− 1

2
. ¤

3. The modular approach

Let E be an elliptic curve over Q of conductor N . For a prime of good

reduction l we write #E(Fl) for the number of points on E over the finite field Fl,
and let al(E) = l+1−#E(Fl). By a newform f , we will always mean a cuspidal

newform of weight 2 with respect to Γ0(N0) for some positive integer N0, and

N0 will be called the level of f . Write f = q +
∑

i≥2 ciq
i the q-expansion of f ,

then cn will be called the Fourier coefficients of f . Let K = Q(c2, c3, . . . ) be the

field obtained by adjoining to Q the Fourier coefficients of f , then K is a finite

and totally real extension of Q (see e.g. [7], Chapter 15).

We shall say that the curve E arises modulo p from the newform f (and

write E ∼p f) if there is a prime ideal p of K above p such that for all but finitely

many primes l we have al(E) ≡ cl (mod p) (see [7], Definition 15.2.1).

We have the following result, which is just Lemma 2.1 of [5].

Proposition 3.1. Assume that E ∼p f . There exists a prime ideal p of K
above p such that for all primes l,

(i) if l - pNN0 then al(E) ≡ cl (mod p),

(ii) if l‖N but l - pN0 then ±(l + 1) ≡ cl (mod p).

Moreover, if f is rational, then the above can be relaxed slightly as follows: for

all primes l,

(i) if l - NN0 then al(E) ≡ cl (mod p),

(ii) if l ||N but l - N0 then ±(l + 1) ≡ cl (mod p).
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4. Proof of Theorem 1.1

Proof of Theorem 1.1. Without loss of generality, we assume n = p

and p is a prime. Expanding the left hand side of equation (1), one has

(i) 3x2 + 2 = yp when k = 2;

(ii) 3x(x2 + 2) = yp when k = 3;

(iii) 3x4 + 12x2 + 2 = yp when k = 4.

We will discuss them separately.

(1) k = 2

Applying Lemma 2.1, we conclude that there are no integer solutions for

p ≥ 3 since h(−6) = 2. When p = 2, the equation 3x2 + 2 = y2 modulo 3 yields

a contradiction.

(2) k = 3

From the result of Cassels, that is Lemma 2.2, one has (x, y) = (0, 0), (1,±3),

(2,±6), (24,±204) for p = 2.

When p ≥ 3 we obtain (x, y) = (0, 0) if xy = 0. Now we assume xy 6= 0.

Since gcd(x, x2 + 2) = gcd(x, 2) ∈ {1, 2}, then equation

3x(x2 + 2) = yp (3)

implies one of following cases:

(a) x = 3p−1up, x2 + 2 = vp, 2 - v; (b) x = up, x2 + 2 = 3p−1vp, 2 - v;

(c) x = 2p−1 × 3p−1up, x2 + 2 = 2vp; (d) x = 2p−1up, x2+2 = 2× 3p−1vp.

Firstly, in case (a), we can write equation (3) as 3p−2(−3u2)p + vp = 2 and

find it has no integer solutions when p ≥ 5 by Lemma 2.3. When p = 3, one has

(32u3)2 = v3 − 2, modulo 9 yields a contradiction.

In case (b), equation (3) turns into (−u2)p + 3p−1vp = 2 and applying Lem-

ma 2.3 we know it has no integer solutions when p ≥ 5. The left equation for p = 3

can be written as u6 +2 = 9v3, and no integer solutions exists since u6 +2 ≡ 2, 3

(mod 9).

In case (c), equation (3) becomes vp − 22p−3 × 32p−2u2p = 1, applying The-

orem 1.1 of [2], we find that the equation has no nonzero integer solutions (u, v)

for p ≥ 3.

Finally, in case (d), one has 3p−1vp − 22p−3u2p = 1, also from Theorem 1.1

of [2], we know (u, v, p) = (±4, 1, 3), which yields (x, y) = (±4,±6).

(3) k = 4
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From the equation 3(x2+2)2−10 = y2 we know 2 - x, then 3(x2+2)2−10 ≡
±3 6≡ y2 (mod 10), that is there are no integer solutions for p = 2. When p = 3,

one has 3(x2+2)2− 10 = y3, that is (9x2+18)2− 270 = (3y)3. Applying Magma

to calculate the integer points on the elliptic curve y2 = x3 − 270, we conclude

that it has no integer solutions in this case.

We proceed to prove the equation

3x4 + 12x2 + 2 = yp (4)

has no integer solutions for prime p ≥ 11. The remaining cases p = 5, 7 will be

treated at the end of the paper.

Let u = x2 + 2, v = y, and write equation (4) as

3u2 − 10 = vp.

It is easy to see gcd(u, v) = 1 and uv 6= 0. Suppose p ≥ 7. To a possible solution

(u, v), we associate the Frey curve (see [3])

Eu : Y 2 = X3 + 6uX2 + 30X,

with conductor N = 26 × 32 rad(10v) = 27 × 32 × 5 rad{2,5}(v) where

rad{2,5}(v) =
∏

p|v, p 6=2,5

p.

Then, by the result of Bennett and Skinner [3], there is a newform of level

N(Eu)p = 27 × 32 × 5 = 5760 such that Eu ∼p f .

Let l be a prime and u ≡ r (mod l). Since u = x2 + 2, one has the following

table:

l r

7 2, 3, 4, 6

11 0, 2, 3, 5, 6, 7

13 1, 2, 3, 5, 6, 11, 12

17 0, 1, 2, 3, 4, 6, 10, 11, 15

19 0, 2, 3, 6, 7, 8, 9, 11, 13, 18

Recall the definition of al and cl in Section 3, that is al = al(E) = l + 1 −
#E(Fl), and cl = cl(f) the Fourier coefficient of f . Therefore, calculating by Pari

we obtain

(i) 7|N or a7(Eu) ∈ {0,−4}; (ii) a11(Eu) ∈ {0,±2,−4,±6}; (iii) 13|N or

a13(Eu) ∈ {±2,−6}; (iv) 17|N or a17(Eu) ∈ {2,±6}; (v) a19(Eu) ∈ {±6}.
For rational newforms at level 5760 numbered in Stein’s Table [13] , we get

a bound for p by Proposition 3.1, that is from p|al(Eu) − cl(f) when l - N or

p| ± (l + 1)− cl(f) when l|N . We list these bounds in the following table.
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l f p

7 f2+i, f16+j , f26+k, f40+m, 1 ≤ i, k ≤ 6, 1 ≤ j,m ≤ 8 ≤ 5

11 f15, f16, f39, f40, ≤ 5

13 f1, f2, f9, f10, f12, f14, f26, f33, f34, f35, f37 ≤ 7

17 f25 ≤ 3

19 f11, f13, f36, f38 ≤ 7

For the nonrational newforms f49, f50, . . . , f64, we using p = l or p|NK/Q
(al(Eu)− cl(f)) or p|NK/Q(±(l + 1)− cl(f)) to bound p.

For f = f49, one has c213(f) − 20 = 0, c217(f) − 20 = 0. Take l = 13, then

NK/Q(al(Eu)−cl(f)) = ±16, NK/Q(±(l+1)−cl(f)) = 24×11, which implies p ≤ 5

or p = 11, 13. Take l = 17, then NK/Q(al(Eu) − cl(f)) = ±16, NK/Q(±(l + 1)−
cl(f)) = 24 × 19, which implies p ≤ 5 or p = 17, 19. Combining these two bounds

yields p ≤ 5.

For f = f56, f60, f61, take l = 13, 17, and for the left 12 nonrational newforms

take l = 7, 13, then the same argument as f49, we get p ≤ 5.

From the discussion above, we know there is no newform of level 5760 cor-

responding to Eu when p ≥ 11. It remains to deal with the prime p = 5, 7. We

prove that there are no integer solutions to equation

3x2 − 10 = yp

for p = 5, 7.

We discuss the case p = 5 in detail. By Lemma 2.4 we get

(
√
3x+

√
10 )2 = (11 + 2

√
30 )i(a+ b

√
30 )5 (5)

for some integers a, b, i with −2 ≤ i ≤ 2. Replacing x by −x, we only need to

consider the cases 0 ≤ i ≤ 2.

If i = 0, expanding both sides of equation (5) we obtain

2x = 5a4b+ 300a2b3 + 900b5,

so that 5|x, an impossibility.

If i = 1, equation (5) can be written as

(
√
3x+

√
10 )2 = (11 + 2

√
30 )(a+ b

√
30 )(a+ b

√
30 )4,

thus

(11 + 2
√
30 )(a+ b

√
30 ) = (

√
3u+

√
10v)2

for some integers u, v. Expanding this equality we get
{
11a+ 60b = 3u2 + 10v2

2a+ 11b = 2uv,
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that is {
a = 33u2 + 110v2 − 120uv

b = −6u2 − 20v2 + 22uv.

Substitution into

√
3x+

√
10 = (

√
3u+

√
10v)(a+ b

√
30 )2

yields the Thue equation

−1188u5 + 10845u4v − 39600u3v2 + 72300u2v3 − 66000uv4 + 24100v5 = 1.

According to Magma one obtains no integer solutions.

If i = 2, we write equation (5) as

(
√
3x+

√
10 )2 = (11 + 2

√
30 )2(a+ b

√
30 )(a+ b

√
30 )4,

and then

a+ b
√
30 = (

√
3u+

√
10v)2

for some integers u, v, therefore

√
3x+

√
10 = (11 + 2

√
30 )(

√
3u+

√
10v)5.

Expanding the right hand side of the equation yields the Thue equation

54u5 + 495u4v + 1800u3v2 + 3300u2v3 + 3000uv4 + 1100v5 = 1

and again we find no integer solutions after appealing to Magma.

For the case p = 7, the same argument as in case p = 5, solving the cor-

responding Thue equations, we know the equation 3x2 − 10 = y7 has no integer

solutions. From the discussion above, this completes the proof of Theorem 1.1. ¤
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