Publ. Math. Debrecen
85/1-2 (2014), 113-122
DOI: 10.5486/PMD. 2014.5827

On the restricted summability of two-dimensional Walsh-Fejér means

By KÁROLY NAGY (Nyíregyháza)

Abstract

The main aim of this paper is to discuss the properties of the maximal operator of two-dimensional Walsh-Fejér means, where the set of indices is inside a cone-like set L. We show that the maximal operator σ_{L}^{*} is not bounded from the Hardy space $H_{1 / 2}^{\alpha}$ to the space $L_{1 / 2}$. For $p>1 / 2$ WeIsz [14] showed that the maximal operator σ_{L}^{*} is bounded from the Hardy space H_{p}^{α} to the space L_{p}. That is, we show that the assumption $p>1 / 2$ is essential in the theorem of Weisz.

1. Definitions and notation

Now, we give a brief introduction to the theory of dyadic analysis [1], [10].
Denote G the Walsh group, and μ the normalized Haar measure on G. Dyadic intervalls are defined by

$$
I_{0}(x):=G, \quad I_{n}(x):=\left\{y \in G: y=\left(x_{0}, x_{1}, \ldots, x_{n-1}, y_{n}, y_{n+1}, \ldots\right)\right\}
$$

for $x \in G, n \in \mathbf{P}$. Let $0:=\left(x_{0}=0, x_{1}=0, \ldots\right)$ be the nullelement of G and $I_{n}:=I_{n}(0)$ for $n \in \mathbf{N}$.

The Rademacher functions are defined by

$$
r_{k}(x):=(-1)^{x_{k}} \quad(x \in G, k \in \mathbf{N})
$$

Each natural number n can be uniquely expressed as $n=\sum_{i=0}^{\infty} n_{i} 2^{i}$, where $n_{i} \in\{0,1\}(i \in \mathbf{N})$. Define the order $|n|$ of n by $|n|:=\max \left\{j \in \mathbf{N}: n_{j} \neq 0\right\}$, that

Mathematics Subject Classification: 42C10.
Key words and phrases: Walsh system, maximal operator, two-dimensional system, Fejér means, restricted summability, a.e. convergence.
Research supported by project TÁMOP-4.2.2.A-11/1/KONV-2012-0051.
is $2^{|n|} \leq n<2^{|n|+1}$.
Define the Walsh-Paley functions by

$$
w_{n}(x):=\prod_{k=0}^{\infty}\left(r_{k}(x)\right)^{n_{k}}
$$

Let us consider the Dirichlet and Fejér kernel functions

$$
D_{n}:=\sum_{k=0}^{n-1} w_{k}, \quad K_{n}:=\frac{1}{n} \sum_{k=1}^{n} D_{k}, \quad D_{0}=K_{0}:=0
$$

The Fourier coefficients, the nth partial sum of Fourier series and the Fejér means are defined in the usual way for $f \in L^{1}(G)$.

The norm (or quasinorm) of the space L_{p} is defined by

$$
\|f\|_{p}:=\left(\int_{K^{2}}\left|f\left(x^{1}, x^{2}\right)\right|^{p} d \mu\left(x^{1}, x^{2}\right)\right)^{1 / p} \quad(0<p<+\infty)
$$

For $x=\left(x^{1}, x^{2}\right) \in G^{2}$ and $n=\left(n_{1}, n_{2}\right) \in \mathbf{N}^{2}$ the 2-dimensional rectangles $I_{n}(x):=I_{n_{1}}\left(x^{1}\right) \times I_{n_{2}}\left(x^{2}\right)$ have got measure $2^{-\left(n_{1}+n_{2}\right)}$. For $n=\left(n_{1}, n_{2}\right)$ the σ-algebra generated by the rectangles $\left\{I_{n}(x), x \in G^{2}\right\}$ is denoted by \mathcal{F}_{n}. The conditional expectation operators relative to \mathcal{F}_{n} are denoted by E_{n}.

Suppose that $\alpha:[1,+\infty) \rightarrow[1,+\infty)$ be a strictly monotone increasing continuous function with property $\lim _{+\infty} \alpha=+\infty, \alpha(1)=1$. Moreover, suppose that there exist $\zeta, \gamma_{1}, \gamma_{2}>1$ such that the inequality

$$
\begin{equation*}
\gamma_{1} \alpha(x) \leq \alpha(\zeta x) \leq \gamma_{2} \alpha(x) \tag{1}
\end{equation*}
$$

holds for each $x \geq 1$. In this case the function α is called CRF (cone-like restriction function). Let $\beta \geq 1$ be fixed. We will investigate the maximal operator of the two-dimensional Fejér means and the convergence over a cone-like set L (with respect to the first dimension), where

$$
L:=\left\{n \in \mathbf{N}^{2}: \beta^{-1} \alpha\left(n_{1}\right) \leq n_{2} \leq \beta \alpha\left(n_{1}\right)\right\}
$$

The cone-like sets was introduced by GÁT in [4]. The condition (1) on the function α is natural, because GÁt [4] proved that to each cone-like set with respect to the first dimension there exists a larger cone-like set with respect to the second dimension and reversely, if and only if the inequality (1) holds.

Weisz defined a new type martingale Hardy space depending on the function α (see [14]). For a given $n_{1} \in \mathbf{N}$ set $n_{2}:=\left|\alpha\left(2^{n_{1}}\right)\right|$, that is the order of $\alpha\left(2^{n_{1}}\right)$
(this means that $\left.2^{n_{2}} \leq \alpha\left(2^{n_{1}}\right)<2^{n_{2}+1}\right)$. Let $\bar{n}_{1}:=\left(n_{1}, n_{2}\right)$. Since, the function α is increasing, the sequence ($\bar{n}_{1}, n_{1} \in \mathbf{N}$) is increasing, too. We investigate the class of one-parameter martingales $f=\left(f_{\bar{n}_{1}}, n_{1} \in \mathbf{N}\right)$ with respect to the σ-algebras $\left(\mathcal{F}_{\overline{n_{1}}}, n_{1} \in \mathbf{N}\right)$. The maximal function of a martingale f is defined by $f^{*}=\sup _{n_{1} \in \mathbf{N}}\left|f_{\bar{n}_{1}}\right|$. For $0<p<\infty$ the martingale Hardy space $H_{p}^{\alpha}\left(G^{2}\right)$ consists of all martingales for which

$$
\|f\|_{H_{p}^{\alpha}}:=\left\|f^{*}\right\|_{p}<\infty
$$

It is known (see [13]) that $H_{p}^{\alpha} \sim L_{p}$ for $1<p \leq \infty$, where \sim denotes the equivalence of the norms and spaces.

The Kronecker product ($w_{n, m}: n, m \in \mathbf{N}$) of two Walsh system is said to be the two-dimensional Walsh system. That is, $w_{n, m}\left(x^{1}, x^{2}\right)=w_{n}\left(x^{1}\right) w_{m}\left(x^{2}\right)$.

If $f \in L\left(G^{2}\right)$, then the number $\widehat{f}(n, m):=\int_{G^{2}} f w_{n, m} \quad(n, m \in \mathbf{N})$ is said to be the (n, m)-th Walsh-Fourier coefficient of f. We can extend this definition to martingales in the usual way (see Weisz [12], [13]). Denote by $S_{n, m}$ the (n, m)th rectangular partial sum of the Walsh-Fourier series of a martingale f. Namely,

$$
S_{n, m}\left(f ; x^{1}, x^{2}\right):=\sum_{k=0}^{n-1} \sum_{i=0}^{m-1} \widehat{f}(k, i) w_{k, i}\left(x^{1}, x^{2}\right) .
$$

The $n=\left(n_{1}, n_{2}\right)$-th Fejér mean is defined by

$$
\sigma_{n} f\left(x^{1}, x^{2}\right):=\frac{1}{n_{1} n_{2}} \sum_{k=0}^{n_{1}} \sum_{l=0}^{n_{2}} S_{k, l}\left(f ; x^{1}, x^{2}\right)
$$

It is known that

$$
K_{n_{1}, n_{2}}\left(x^{1}, x^{2}\right)=K_{n_{1}}\left(x^{1}\right) K_{n_{2}}\left(x^{2}\right) .
$$

Define the maximal operator σ_{L}^{*} by

$$
\sigma_{L}^{*} f\left(x^{1}, x^{2}\right):=\sup _{n \in L}\left|\sigma_{n} f\left(x^{1}, x^{2}\right)\right|
$$

For double Walsh-Fourier series, Móricz, Schipp and Wade [7] proved that $\sigma_{n} f$ converge to f a.e. in the Pringsheim sense (that is, no restriction on the indices other than $\left.\min \left(n_{1}, n_{2}\right) \rightarrow \infty\right)$ for all functions $f \in L \log ^{+} L$. In the paper [3] GÁT proved that the theorem of Móricz, Schipp and Wade can not be sharpened. Namely, the following was proved. Let $\delta:[0,+\infty) \rightarrow[0,+\infty)$ be a measurable function with property $\lim _{+\infty} \delta=0$, then there exists a function $f \in L \log ^{+} L \delta(L)$ such that $\sigma_{n} f$ does not converge to f a.e. as $\min \left(n_{1}, n_{2}\right) \rightarrow \infty$.

The a.e. convergence of Fejér means $\sigma_{n} f$ of integrable functions, where the set of indices is inside a positive cone around the identical function, that is $\beta^{-1} \leq$ $n_{1} / n_{2} \leq \beta$ is provided with some fixed parameter $\beta \geq 1$, was proved by GÁT [5] and Weisz [15]. Moreover, in the paper of Weisz [14] the properties of the maximal operator was treated. That is, he proved that the maximal operator of Walsh-Fejér means is of type $\left(H_{p}, L_{p}\right)$ for all $p>1 / 2$ and of weak type $(1,1)$, provided that the supremum in the maximal operator is taken over a positive cone.

A common generalization of results of Móricz, Schipp, Wade [7] and Gát [5], Weisz [15] for cone-like set was given by the author and Gát in [6]. That is, a necessary and sufficient condition for cone-like sets in order to preserve the convergence property, was given. Recently, the properties of the maximal operator of the Walsh-Fejér means provided that the supremum in the maximal operator is taken over a cone-like set, was discussed by Weisz [14]. Namely, it was proved that the maximal operator is bounded from H_{p}^{α} to L_{p} for $1 / 2<p<\infty$ and is of weak type $(1,1)$. Moreover, the theorem of GÁT and the author was reached as a corollary, that is, the a.e. convergence of the Walsh-Fejér means of integrable functions provided that the set of the indices is inside a cone-like set, was proved. The endpoint case $p=1 / 2$ was not treated. The main aim of this paper is to discuss what does happen at the endpoint $p=1 / 2$. We show that the maximal operator σ_{L}^{*} is not bounded from the Hardy space $H_{1 / 2}^{\alpha}$ to the space $L_{1 / 2}$.

It is important to note that, the a.e. convergence two-dimensional Fejér means of integrable functions, provided that the set of the indices is inside a cone-like set, was generalized by the author for representative product systems [9] and for Vilenkin-like systems [8].

2. Auxiliary propositions and main result

To prove our Theorem we need the following definition of Weisz [14] and Lemma of GÁt [2]:

A bounded measurable function a is a p-atom, if there exists a dyadic twodimensional rectangle $I \in \mathcal{F}_{\bar{n}_{1}}$, such that
a) $\int_{I} a d \mu=0$,
b) $\|a\|_{\infty} \leq \mu(I)^{-1 / p}$,
c) $\operatorname{supp} a \subseteq I$.

Lemma 1 (GÁt [2]). Let $A, t \in \mathbf{N}, A>t$. Suppose that $x \in I_{t} \backslash I_{t+1}$. Then

$$
K_{2^{A}}(x)= \begin{cases}0, & \text { if } x-e_{t} \notin I_{A} \\ 2^{t-1}, & \text { if } x-e_{t} \in I_{A}\end{cases}
$$

If $x \in I_{A}$ then $K_{2^{A}}(x)=2^{A-1}+1 / 2$.
Now, we formulate our main theorem.
Theorem 1. Let α be CRF. The maximal operator σ_{L}^{*} is not bounded from the Hardy space $H_{1 / 2}^{\alpha}$ to the space $L_{1 / 2}$.

Proof. Let

$$
f_{\overline{n_{1}}}\left(x^{1}, x^{2}\right):=\left(D_{2^{n_{1}+1}}\left(x^{1}\right)-D_{2^{n_{1}}}\left(x^{1}\right)\right)\left(D_{2^{n_{2}+1}}\left(x^{2}\right)-D_{2^{n_{2}}}\left(x^{2}\right)\right) .
$$

It is a one-parameter martingale, where n_{2} is defined to n_{1}, earlier by Weisz. $\operatorname{supp} f_{\overline{n_{1}}}=I_{n_{1}} \times I_{n_{2}} \in \mathcal{F}_{\overline{n_{1}}}, \int_{I_{n_{1}} \times I_{n_{2}}} f_{\overline{n_{1}}} d \mu=0$ and $\left\|f_{\overline{n_{1}}}\right\|_{\infty} \leq \mu\left(I_{n_{1}} \times I_{n_{2}}\right)^{-2}$, That is, $f_{\overline{n_{1}}}$ is an $1 / 2$-atom in $H_{1 / 2}^{\alpha}$ and

$$
\begin{equation*}
\left\|f_{\overline{n_{1}}}\right\|_{H_{1 / 2}^{\alpha}}=\left\|D_{2^{n_{1}}}\right\|_{1 / 2}\left\|D_{2^{n_{2}}}\right\|_{1 / 2}=2^{-\left(n_{1}+n_{2}\right)} \tag{2}
\end{equation*}
$$

It is simple to calculate the Fourier coefficients and partial sums. That is,

$$
\hat{f}_{\overline{n_{1}}}(i, k)= \begin{cases}1, & \text { if } i=2^{n_{1}}, \ldots, 2^{n_{1}+1}-1, k=2^{n_{2}}, \ldots, 2^{n_{2}+1}-1 \\ 0, & \text { otherwise },\end{cases}
$$

and

\[

\]

We can write the nth Dirichlet kernel with respect to the Walsh system in the following form:

$$
\begin{equation*}
D_{n}(x)=D_{2^{|n|}}(x)+r_{|n|}(x) D_{n-2^{|n|}}(x) \tag{3}
\end{equation*}
$$

First, we calculate $\sigma_{N_{1}, N_{2}} f_{\overline{n_{1}}}$ for special indices. Set $N_{1}:=2^{n_{1}}+2^{s}\left(0<s<n_{1}\right)$
and $N_{2}:=\left[\alpha\left(2^{n_{1}}+2^{s}\right)\right]+1$, (where $[x]$ denotes the integer part of x). Taking account that $\beta>1$ we could see easily that $\left(N_{1}, N_{2}\right) \in L$. We have two cases, $N_{2}<2^{n_{2}+1}$ and $N_{2} \geq 2^{n_{2}+1}$.

First, we set $N_{2}<2^{n_{2}+1}$. By the equality (3) we immediately have that

$$
\begin{aligned}
& \left|\sigma_{N_{1}, N_{2}} f_{\overline{n_{1}}}\left(x^{1}, x^{2}\right)\right|=\frac{1}{N_{1} N_{2}}\left|\sum_{k=0}^{N_{1}} \sum_{l=0}^{N_{2}} S_{k, l}\left(f_{\overline{n_{1}}} ; x^{1}, x^{2}\right)\right| \\
& \quad=\frac{1}{N_{1} N_{2}}\left|\sum_{k=2^{n_{1}}+1}^{N_{1}} \sum_{l=2^{n_{2}}+1}^{N_{2}}\left(D_{k}\left(x^{1}\right)-D_{2^{n_{1}}}\left(x^{1}\right)\right)\left(D_{l}\left(x^{2}\right)-D_{2^{n_{2}}}\left(x^{2}\right)\right)\right| \\
& \quad=\frac{1}{N_{1} N_{2}}\left|\sum_{k=2^{n_{1}+1}}^{N_{1}} \sum_{l=2^{n_{2}+1}}^{N_{2}} r_{n_{1}}\left(x^{1}\right) D_{k-2^{n_{1}}}\left(x^{1}\right) r_{n_{2}}\left(x^{2}\right) D_{l-2^{n_{2}}}\left(x^{2}\right)\right| \\
& \quad=\frac{1}{N_{1} N_{2}}\left|\sum_{k=1}^{2^{s}} \sum_{l=1}^{N_{2}-2^{n_{2}}} D_{k}\left(x^{1}\right) D_{l}\left(x^{2}\right)\right| \\
& \quad \geq \frac{1}{2^{n_{1}+1} 2^{n_{2}+1}}\left|2^{s} K_{2^{s}}\left(x^{1}\right)\left(N_{2}-2^{n_{2}}\right) K_{N_{2}-2^{n_{2}}}\left(x^{2}\right)\right| .
\end{aligned}
$$

Now, we set $N_{2} \geq 2^{n_{2}+1}$. By equality (3) we have again that

$$
\begin{aligned}
& \left|\sigma_{N_{1}, N_{2}} f_{\overline{n_{1}}}\left(x^{1}, x^{2}\right)\right|=\frac{1}{N_{1} N_{2}}\left|\sum_{k=0}^{N_{1}} \sum_{l=0}^{N_{2}} S_{k, l}\left(f_{\overline{n_{1}}} ; x^{1}, x^{2}\right)\right| \\
& \quad=\frac{1}{N_{1} N_{2}}\left|2^{s} K_{2^{s}}\left(x^{1}\right)\right|\left|r_{n_{2}}\left(x^{2}\right) \sum_{l=2^{n_{2}}+1}^{2^{n_{2}+1}-1} D_{l-2^{n_{2}}}\left(x^{2}\right)+\sum_{l=2^{n_{2}+1}}^{N_{2}}\left(D_{2^{n_{2}+1}}\left(x^{2}\right)-D_{2^{n_{2}}}\left(x^{2}\right)\right)\right| \\
& \quad \geq \frac{1}{2^{n_{1}+1} N_{2}}\left|2^{s} K_{2^{s}}\left(x^{1}\right)\right| \\
& \quad \times\left|r_{n_{2}}\left(x^{2}\right)\left(2^{n_{2}}-1\right) K_{2^{n_{2}-1}}\left(x^{2}\right)+\left(N_{2}-2^{n_{2}+1}+1\right)\left(D_{2^{n_{2}+1}}\left(x^{2}\right)-D_{2^{n_{2}}}\left(x^{2}\right)\right)\right| \\
& \quad=\frac{1}{2^{n_{1}+1} N_{2}}\left|2^{s} K_{2^{s}}\left(x^{1}\right)\right|\left|\left(2^{n_{2}}-1\right) K_{2^{n_{2}-1}}\left(x^{2}\right)+\left(N_{2}-2^{n_{2}+1}+1\right) D_{2^{n_{2}}}\left(x^{2}\right)\right|
\end{aligned}
$$

By inequality (2) we write that
$\sigma_{L}^{*} f_{\overline{n_{1}}}\left(x^{1}, x^{2}\right)=\sup _{n \in L}\left|\sigma_{n} f_{\overline{n_{1}}}\left(x^{1}, x^{2}\right)\right| \geq \max _{1 \leq 2^{s}<2^{n_{1}}}\left|\sigma_{\left(2^{n_{1}}+2^{s},\left[\alpha\left(2^{n_{1}}+2^{s}\right)\right]+1\right)} f_{\overline{n_{1}}}\left(x^{1}, x^{2}\right)\right|$
and

$$
\geq \frac{1}{2^{-\left(n_{1}+n_{2}\right)}}\left(\int_{G^{2}} \max _{1 \leq 2^{s}<2^{n_{1}}}\left|\sigma_{\left(2^{n_{1}}+2^{s},\left[\alpha\left(2^{n_{1}}+2^{s}\right)\right]+1\right)} f_{\overline{n_{1}}}\left(x^{1}, x^{2}\right)\right|^{1 / 2} d \mu\left(x^{1}, x^{2}\right)\right)^{2}
$$

Now, we investigate the integral
$I:=\int_{G^{2}} \max _{1 \leq 2^{s}<2^{n_{1}}}\left|\sigma_{\left(2^{n_{1}}+2^{s},\left[\alpha\left(2^{n_{1}}+2^{s}\right)\right]\right)} f_{\overline{n_{1}}}\left(x^{1}, x^{2}\right)\right|^{1 / 2} d \mu\left(x^{1}, x^{2}\right)$, we decompose the set G as the following disjoint union

$$
G=I_{A} \cup \bigcup_{t=0}^{A-1}\left(I_{t} \backslash I_{t+1}\right)
$$

Since, α is strictly monotone increasing function we have that
$K_{\left[\alpha\left(2^{n_{1}}+2^{t}\right)\right]+1-2^{n_{2}}} \neq K_{0}=0$ for all $t\left(0<t<n_{1}\right)$.
We set $k \in \mathbf{P}$ and we fix it. We choose a big number n_{1}^{k}, such that $\left(N_{1}^{k, s}, N_{2}^{k, s}\right) \in L$ for all s with the condition $n_{1}^{k}-1 \geq s \geq n_{1}^{k}-k>0$, where $N_{1}^{k, s}:=2^{n_{1}^{k}}+2^{s}$ and $N_{2}^{k, s}:=\left[\alpha\left(2^{n_{1}^{k}}+2^{s}\right)\right]+1$. We note that if $\beta>1$ is small, then n_{1}^{k} have to be large enough.

If there exists a number s such that $n_{1}^{k}-1 \geq s \geq n_{1}^{k}-k$ and $N_{2}^{k, s} \geq 2^{n_{2}^{k}+1}$ holds, then we set $s^{*}:=\min \left\{s: N_{2}^{k, s} \geq 2^{n_{2}^{k}+1}, n_{1}^{k}-1 \geq s \geq n_{1}^{k}-k\right\}$. We set $s *:=n_{1}^{k}$ if for all s (with $n_{1}^{k}-1 \geq s \geq n_{1}^{k}-k$) the inequality $N_{2}^{k, s}<2^{n_{2}^{k}+1}$ holds.

Therefore,

$$
\begin{aligned}
I= & \int_{G^{2}} \max _{1 \leq 2^{s}<2^{n_{1}^{k}}}\left|\sigma_{\left(2^{n_{1}^{k}}+2^{s},\left[\alpha\left(2^{n_{1}^{k}}+2^{s}\right)\right]+1\right)} f_{\overline{n_{1}^{k}}}\left(x^{1}, x^{2}\right)\right|^{1 / 2} d \mu\left(x^{1}, x^{2}\right) \\
\geq & \sum_{t=1}^{n_{1}^{k}-1} \int_{\left(I_{t} \backslash I_{t+1}\right) \times G} \max _{1 \leq 2^{s}<2^{n_{1}^{k}}}\left|\sigma_{\left(2^{n_{1}^{k}}+2^{s},\left[\alpha\left(2^{n_{1}^{k}}+2^{s}\right)\right]+1\right)} f_{\overline{n_{1}^{k}}}\left(x^{1}, x^{2}\right)\right|^{1 / 2} d \mu\left(x^{1}, x^{2}\right) \\
= & \sum_{t=1}^{s^{*}-1} \int_{\left(I_{t} \backslash I_{t+1}\right) \times G} \max _{1 \leq 2^{s}<2^{n_{1}^{k}}}\left|\sigma_{\left(2^{n_{1}^{k}}+2^{s},\left[\alpha\left(2^{n_{1}^{k}}+2^{s}\right)\right]+1\right)} f_{\overline{n_{1}^{k}}}\left(x^{1}, x^{2}\right)\right|^{1 / 2} d \mu\left(x^{1}, x^{2}\right) \\
= & +\sum_{t=s^{*}}^{n_{1}^{k}-1} \int_{\left(I_{t} \backslash I_{t+1}\right) \times G} \max _{1 \leq 2^{s}<2^{n_{1}^{k}}} \mid \sigma_{\left(2^{n_{1}^{k}}+2^{s},\left[\alpha\left(2^{n_{1}^{k}}+2^{s}\right)\right]+1\right)} f \\
& \left.f_{\overline{n_{1}^{k}}}\left(x^{1}, x^{2}\right)\right|^{1 / 2} d \mu\left(x^{1}, x^{2}\right) \\
&
\end{aligned}
$$

Now, we discuss \sum_{1}.
$\sum_{1} \geq \sum_{t=1}^{s^{*}-1} \frac{1}{2^{\left(n_{1}^{k}+n_{2}^{k}+2\right) / 2}}$
$\times \int_{\left(I_{t} \backslash I_{t+1}\right) \times G} \max _{1 \leq 2^{s}<2^{n_{1}^{k}}}\left|2^{s} K_{2^{s}}\left(x^{1}\right)\left(N_{2}^{k, s}-2^{n_{2}^{k}}\right) K_{N_{2}^{k, s}-2^{n_{2}^{k}}}\left(x^{2}\right)\right|^{1 / 2} d \mu\left(x^{1}, x^{2}\right)$

$$
\begin{aligned}
& \geq \sum_{t=1}^{s^{*}-1} \frac{1}{2^{\left(n_{1}^{k}+n_{2}^{k}+2\right) / 2}} \int_{\left(I_{t} \backslash I_{t+1}\right) \times G}\left|2^{t} K_{2^{t}}\left(x^{1}\right)\left(N_{2}^{k, t}-2^{k_{2}^{k}}\right) K_{N_{2}^{k, t}-2^{n_{2}^{k}}}\left(x^{2}\right)\right|^{1 / 2} d \mu\left(x^{1}, x^{2}\right) \\
& \geq \sum_{t=n_{1}^{k}-k}^{s^{*}-1} \frac{1}{2^{\left(n_{1}^{k}+n_{2}^{k}+2\right) / 2}} \\
& \quad \times \int_{\left(I_{t} \backslash I_{t+1}\right) \times\left(I_{t^{*}} \backslash I_{t^{*}+1}\right)}\left|2^{t} K_{2^{t}}\left(x^{1}\right)\left(N_{2}^{k, t}-2^{n_{2}^{k}}\right) K_{N_{2}^{k, t}-2^{n_{2}^{k}}}\left(x^{2}\right)\right|^{1 / 2} d \mu\left(x^{1}, x^{2}\right) \\
& =\sum_{t=n_{1}^{k}-k}^{s^{*}-1} \frac{1}{2^{\left(n_{1}^{k}+n_{2}^{k}+2\right) / 2}} \\
& \quad \times \int_{\left(I_{t} \backslash I_{t+1}\right) \times\left(I_{t^{*}} \backslash I_{\left.t^{*}+1\right)}\right.}\left|\frac{2^{t}\left(2^{t}+1\right)}{2}\left(N_{2}^{k, t}-2^{n_{2}^{k}}\right) K_{N_{2}^{k, t}-2^{n / 2}}\left(x^{2}\right)\right|^{1 / 2} d \mu\left(x^{1}, x^{2}\right) \\
& \geq \frac{1}{2^{\left(n_{1}^{k}+n_{2}^{k}+2\right) / 2}} \frac{1}{4} \sum_{t=n_{1}^{k}-k_{L^{*}}}^{s^{*}-1} \int I_{t^{*}+1}\left|\left(N_{2}^{k, t}-2^{n_{2}^{k}}\right) K_{N_{2}^{k, t}-2^{n_{2}^{k}}}\left(x^{2}\right)\right|^{1 / 2} d \mu\left(x^{2}\right) \\
& \geq \frac{1}{2^{\left(n_{1}^{k}+n_{2}^{k}+2\right) / 2}} \sum_{t=n_{1}^{k}-k}^{s^{*}-1} \frac{1}{16} \geq \frac{1}{2^{\left(n_{1}^{k}+n_{2}^{k}+2\right) / 2}} \frac{s^{*}-n_{1}^{k}+k}{16},
\end{aligned}
$$

where $t^{*}:=\left|N_{2}^{k, t}-2^{n_{2}^{k}}\right|=\left|\left[\alpha\left(2^{n_{1}^{k}}+2^{t}\right)\right]+1-2^{n_{2}^{k}}\right|$ (that is, the order of $\left[\alpha\left(2^{n_{1}^{k}}+\right.\right.$ $\left.\left.\left.2^{t}\right)\right]+1-2^{n_{2}^{k}}\right)$.

Now, we discuss \sum_{2}. In this case we have to modify some steps in the estimation of the sum \sum_{1}. Now, we write that

$$
\begin{aligned}
\sum_{2} & \geq \sum_{t=s^{*}}^{n_{1}^{k}-1} \int_{\left(I_{\backslash} \backslash I_{t+1}\right) \times G} \max _{1 \leq 2^{s}<2^{n}{ }_{1}^{k}}\left|\sigma_{\left(2^{n_{1}^{k}}+2^{s}, N_{2}^{k, s}\right)} f_{\overline{n_{1}^{k}}}\left(x^{1}, x^{2}\right)\right|^{1 / 2} d \mu\left(x^{1}, x^{2}\right) \\
\geq & \left.\geq \sum_{t=s^{*}}^{n_{1}^{k}-1} \int_{\left(I_{t} \backslash I_{t+1}\right) \times\left(I_{n_{2}^{k}-1} \backslash I_{n_{2}^{k}}\right)} \mid \sigma_{\left(2^{n_{1}^{k}}\right.}+2^{t}, N_{2}^{k, t)}\right) \\
& \left.f_{\overline{n_{1}^{k}}}\left(x^{1}, x^{2}\right)\right|^{1 / 2} d \mu\left(x^{1}, x^{2}\right) \\
& \left.\left.\frac{1}{4} \sum_{t=s^{k}}^{n_{1}^{k}-1} \frac{1}{} \frac{1}{\left(n_{1}^{\left.n_{1}^{k}+1\right) / 2}\left(N_{2}^{k, t}\right)^{1 / 2}\right.} \int_{I_{n_{2}^{k}-1} \backslash I_{n_{2}^{k}}} \right\rvert\, 2^{n_{2}^{k}}-1\right) K_{2^{n_{2}^{k}}-1}\left(x^{2}\right) \\
& +\left.\left(N_{2}^{k, t}-2^{n_{2}^{k}+1}+1\right) D_{2^{n_{2}^{k}}}\left(x^{2}\right)\right|^{1 / 2} d \mu\left(x^{2}\right) .
\end{aligned}
$$ $D_{2^{n}}\left(x^{2}\right)=0$ for all $x^{2} \in I_{n_{2}^{k}-1} \backslash I_{n_{2}^{k}}$. Lemma 1 of Gát immediately gives that

$$
\begin{aligned}
\int_{I_{n_{2}^{k}-1} \backslash I_{n_{2}^{k}}}|\ldots|^{1 / 2} d \mu\left(x^{2}\right) & \geq \int_{I_{n_{2}^{k}-1} \backslash I_{n_{2}^{k}}}\left|\left(2^{n_{2}^{k}}-1\right) K_{2^{n_{2}^{k}}-1}\left(x^{2}\right)\right|^{1 / 2} d \mu\left(x^{2}\right) \\
& \geq \int_{I_{n_{2}^{k}-1} \backslash I_{n_{2}^{k}}}\left|2^{n_{2}^{k}} K_{2^{n_{2}^{k}}}\left(x^{2}\right)-D_{2^{n_{2}^{k}}}\left(x^{2}\right)\right|^{1 / 2} d \mu\left(x^{2}\right) \\
& =\int_{I_{n_{2}^{k}-1} \backslash I_{n_{2}^{k}}}\left|2^{n_{2}^{k}} K_{2^{n_{2}^{k}}}\left(x^{2}\right)\right|^{1 / 2} d \mu\left(x^{2}\right) \\
& \geq \int_{I_{n_{2}^{k}-1} \backslash I_{n_{2}^{k}}}\left|2^{n_{2}^{k}} 2^{n_{2}^{k}-2}\right|^{1 / 2} d \mu\left(x^{2}\right) \geq \frac{1}{4}
\end{aligned}
$$

That is, we showed that

$$
\begin{gathered}
\frac{\left\|\sigma_{L}^{*} f_{\overline{n_{1}}}\right\|_{1 / 2}}{\left\|f_{\overline{n_{1}}}\right\|_{H_{1 / 2}^{\alpha}}^{\alpha}} \geq 2^{n_{1}^{k}+n_{2}^{k}}\left(\sum_{1}+\sum_{2}\right)^{2} \\
\geq 2^{n_{1}^{k}+n_{2}^{k}}\left(\frac{1}{2^{\left(n_{1}^{k}+n_{2}^{k}+2\right) / 2}} \frac{s^{*}-n_{1}^{k}+k}{16}+\frac{1}{2^{\left(n_{1}^{k}+1\right) / 2}\left(N_{2}^{k, n_{1}^{k}-1}\right)^{1 / 2}} \frac{n_{1}^{k}-s^{*}}{16}\right)^{2} .
\end{gathered}
$$

For $N_{2}^{k, n_{1}^{k}-1}$ we write that
$N_{2}^{k, n_{1}^{k}-1}=\left[\alpha\left(2^{n_{1}^{k}}+2^{n_{1}^{k}-1}\right)\right]+1 \leq\left[\alpha\left(2 \cdot 2^{n_{1}^{k}}\right)\right]+1 \leq\left[\gamma_{2}^{\left.\log _{\zeta}{ }^{2} \alpha\left(2^{n_{1}^{k}}\right)\right]+1 \leq \gamma_{2}^{\log _{\varsigma} 2} 2^{n_{2}^{k}+1}, ~, ~, ~}\right.$
where $\gamma_{2}^{\log _{\zeta} 2}>1$. From this we have that

$$
\frac{\left\|\sigma_{L}^{*} f_{\overline{n_{1}^{k}}}\right\|_{1 / 2}}{\left\|f_{\overline{n_{1}^{k}}}\right\|_{H_{1 / 2}}^{\alpha}} \geq c k^{2},
$$

where $c=\frac{1}{2^{10} \gamma_{2}^{2 \log _{\zeta}{ }^{2}}}$. This completes the proof of our main Theorem.

References

[1] G. N. Agajev, N. Ya. Vilenkin, G. M. Dzhafarli and A. I. Rubinstein, Multiplicative systems of functions and harmonic analysis on 0-dimensional groups, "ELM" (Baku, USSR) (1981) (in Russian).
[2] G. GÁt, On $(C, 1)$ summability of integrable functions with respect to the Walsh-Kaczmarz system, Studia Math. 130 (1998), 135-148.
K. Nagy: On the restricted summability of two-dimensional...
[3] G. GÁt, On the divergence of the $(C, 1)$ means of double Walsh series, Proc. Amer. Math. Soc. 128 (1996), 1711-1720.
[4] G. GÁt, Pointwise convergence of cone-like restricted two-dimensional $(C, 1)$ means of trigonometric Fourier series, J. Approx. Theory 149 (2007), 74-102.
[5] G. GÁt, Pointwise convergence of the Cesàro means of double Walsh series, Annales Univ. Sci. Budapest., Sect. Comp. 16 (1996), 173-184.
[6] G. GÁt and K. NAGY, Pointwise convergence of cone-like restricted two-dimensional Fejér means of Walsh-Fourier series, Acta Math. Sinica, English Series 26 (2010), 295-2304.
[7] F. Móricz, F. Schipp and W. R. Wade, Cesàro summability of double Walsh-Fourier series, Trans. Amer. Math. Soc. 329 (1992), 131-140.
[8] K. Nagy, Almost everywhere convergence of cone-like restricted two-dimensional Fejér means with respect to Vilenkin-like systems, Algebra i Analiz 25 (2013), 125-138.
[9] K. Nagy, Almost everywhere convergence of cone-like restricted double Fejér means on compact totally disconnected groups, Acta Math. Acad. Paed. Nyíregyház. 27 (2011), 267-277.
[10] F. Schipp, W. R. Wade, P. Simon and J. Pál, Walsh Series. An Introduction to Dyadic Harmonic Analysis, Adam Hilger, Bristol - New York, 1990.
[11] F. Schipp, Pointwise convergence of expansions with respect to certain product systems, Anal. Math. 2 (1976), 63-75.
[12] F. Weisz, Martingale Hardy spaces and their applications in Fourier analysis, SpringerVerlang, Berlin, 1994.
[13] F. Weisz, Summability of multi-dimensional Fourier series and Hardy space, Kluwer Academic, Dordrecht, 2002.
[14] F. Weisz, Restricted summability of multi-dimensional Vilenkin-Fourier series, Annales Univ. Sci. Budapest., Sect. Comp. 35 (2011), 305-317.
[15] F.Weisz, Cesàro summability of two-dimensional Walsh-Fourier series, Trans. Amer. Math. Soc. 348 (1996), 2169-2181.

KÁROLY NAGY
INSTITUTE OF MATHEMATICS
AND COMPUTER SCIENCES
COLLEGE OF NYÍREGYHÁZA
H-4400 NYÍREGYHÁZA, P.O. BOX 166
HUNGARY
E-mail: nkaroly@nyf.hu
(Received March 28, 2013; revised November 20, 2013)

