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Products of three factorials

By ANDREJ DUJELLA (Zagreb), FILIP NAJMAN (Zagreb), N. SARADHA (Mumbai)
and TARLOK N. SHOREY (Mumbai)

Abstract. We study a question of Erdős and Graham on products of three facto-

rials being a square.

1. Introduction

For any integer n > 1 denote by P (n) and Q(n) the greatest prime factor

and the square free part of n and put P (1) = Q(1) = 1. For any prime p, let

ordp(n) denote the largest exponent of p dividing n. For any set A of positive

integers let

m(A) =
∏

a∈A

a!

and M(A) denote the largest integer in A. In 1975, Erdős and Selfridge [7]

proved a remarkable result that a product of two or more consecutive positive

integers is never a square or a higher power. Continuing this line of investigation,

Erdős and Graham [9] asked if a product of two or more disjoint blocks of

consecutive integers can be a square or a higher power. It was noted by Ulas

[19] that if all the blocks are of length exactly 4 and if the number of such blocks

is large enough, then the product takes on square values infinitely often. In

subsequent papers Bauer and Bennett [1] and Bennett and Luijk [2] gave

further possibilities when such a product is a square infinitely often. SkaÃlba [17]

obtained bounds for the number of solutions and the smallest solution. Luca and
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Walsh [13] studied a special case of this problem where products of two blocks

of length 4 led to quartic Diophantine equations.

In this paper, we consider a product of factorials being a square i.e., we search

for positive rational integral solutions to the Diophantine equation

t∏

k=1

ak! = y2 (1)

with a1 ≥ a2 ≥ · · · ≥ at > 1 and y > 1. By canceling out an even number of

equal factorials on the left hand side, we may assume that

a1 > a2 > · · · > at > 1.

In [8], the above equation was studied when a1 is given and t is minimal such

that (1) has a solution. It was shown in [8] that the set of possible values of the

left hand side of (1) is sparse. Hence it may very well be that (1) has no or very

few solutions. Define F0 = ∅ and for k ≥ 1, let

Fk = {n : there exists some set A with |A| ≤ k,

M(A) = n and m(A) is a square}
and

Dk = Fk \ Fk−1.

If the equation has a solution a1, . . . , at then a1 ∈ Ft. Thus in order to study the

equation (1) Erdős and Graham investigated the sets Fk and Dk.

1.1. Properties of the sets Fk and Dk.

(i) No prime belongs to any Fk.

(ii) D1 = F1 = {1} since n! for n ≥ 2 is never a square.

(iii) Let A = {a2, a2− 1} with a > 1. Then t = 2, a1 = a2, a2 = a1− 1 and m(A)

is a square. Hence a2 ∈ F2. By [7], it follows that D2 = {a2, a > 1}.
(iv) Let a > 1, b > 1 and A = {a2Q(b!), a2Q(b!)−1, b}. Then t = 3, a1 = a2Q(b!),

a2 = a1 − 1, a3 = b and m(A) is a square. Hence a2Q(b!) ∈ D3.

(v) Let x, y be solutions of the Pell’s equation

ux2 − vy2 = 1

where uv = Q(a!) for some a > 1 and gcd(u, v) = 1. LetA = {ux2, vy2−1, a}.
Then t = 3, a1 = ux2, a2 = a1 − 2, a3 = a and m(A) is a square. Hence

ux2 ∈ D3 when u is not a square. This example is slightly different from the

one given in [7] where uv is taken to be equal to a!.
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Erdős and Graham predict that there are perhaps only finitely many elements

of D3 apart from the two classes of integers given in (iv) and (v). This problem

is still open. On the other hand, they showed that D3 is sparse by proving

D3(X) = o(X)

where D3(X) denotes the number of elements of D3 which do not exceed X. The

above result was improved by Luca, Saradha and Shorey [12] to

D3(X) = O

(
X

exp(c0(logX)1/4(log logX)1/2)

)

for some constant c0 > 0. Their work depends on an application of Jutila’s

result on exponential sums and known estimates for the Dickman’s function which

counts integers with small prime factors.

1.2. About D3. In the two classes of examples in (iv) and (v) we have a2 ≥
a1 − 2. There are examples where a2 = a1 − 3. For instance,

10!7!6!; 50!47!3!; 50!47!4! (2)

are all squares. Erdős and Graham asked if there are other examples, i.e., does

the equation

a1!(a1 − 3)!a3! = y2 (3)

have any other solution apart from the three examples given above? We prove

Theorem 1.1. Let a3 ≤ 100. Then all the solutions of (3) are given by

(a1, a3) ∈ {(10, 6), (50, 3), (50, 4), (324, 26), (352, 13), (442, 18), (2738, 26)}.

Note that (3) can be re-written as

a1(a1 − 1)(a1 − 2)a3! = y2. (4)

The left hand side of (4) is a product of two non-overlapping blocks, one of

length 3 and the length of the other is not fixed. These cases are not covered in

[1] and [2]. For x ∈ R, by dxe we denote the ceiling function of x, i.e. the smallest

integer not less than x. By π(x) we denote the number of prime numbers not

greater than x. We show
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Theorem 1.2. Let h = π(a3)− π(a3/2). Then

(a) a1 > (a3/2)
dh/3e.

(b) No term N ∈ {a1, a1−1, a1−2} is of the form αN1 where N1 = P θ1
1 . . . P θs

s >

1 with Pi’s primes, θi odd, Ω(N1) ≤ dh/3e and α ≤ a
dh/3e−Ω(N1)
3

2dk/3e − 2

a
Ω(N1)
3

,

where Ω(N1) denotes the number of prime factors of N1 counted with mul-

tiplicity.

(c) No term N is of the form αN1 where N1 = P1, P
3
1 , P1P2, P1P2P3 and α ≤

64393, 6, 637, 6, respectively, except when

(a1, a3) ∈ {(10, 6), (50, 3), (50, 4), (324, 26), (352, 13), (442, 18), (2738, 26)}.

2. Proof of Theorem 1.1

Equation (3) can be re-written as

a1(a1 − 1)(a1 − 2) = Q(a3!)Y
2. (5)

Putting a1 − 1 = X ′ and multiplying by (Q(a3!))
3 the equation is transformed to

the elliptic equation

X(X2 − b2) = Y 2 (6)

where X = Q(a3!)X
′, Y = (Q(a3!))

2Y ′ and b = Q(a3!). Actually, (6) is the so

called congruent number elliptic curve. For a3 ≤ 53, a3 6∈ {32, 38, 40, 47, 51},
we were able to find all integral points (X,Y ) on the elliptic curve (6) by using

the function IntegralPoints in Magma [3]. Integral points on elliptic curves

are computed by first computing the generators of the Mordell–Weil group, and

after that by using linear forms in elliptic logarithms to bound the sizes of the

coordinates of integral points [10], [18].

However, we are interested only in those integer points for which X is divi-

sible by b. The integer points satisfying this additional condition give exactly the

solutions given in Theorem 1.1.

For the remaining values of a3 we were not able to find all integral points on

(6), mainly because we were unable to find the generators of the Mordell–Weil

group of the curve (6). Therefore, in these cases we take a different approach by

transforming our problem into a family of systems of Pellian equations. Since,

gcd(a1, a1 − 1) = gcd(a1 − 1, a2 − 1) = 1 and gcd(a1, a1 − 2) ∈ {1, 2}, from (5) we

get:

a1 = b1x
2, a1 − 1 = b2y

2, a1 − 2 = b3z
2,
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or

a1 = 2b1x
2, a1 − 1 = b2y

2, a1 − 2 = 2b3z
2,

where b1b2b3 = b. These relations induce the system of Pellian equations

b1x
2 − b2y

2 = 1, b1x
2 − b3z

2 = 2,

and

2b1x
2 − b2y

2 = 1, b1x
2 − b3z

2 = 1,

respectively.

The number of such systems can be very large (3ω(b), where ω(b) denotes the

number of prime factors of b). However, we expect that most of them have no

solutions. We will follow an approach from [5], [6]. So we start by eliminating

those systems which are not locally solvable. Indeed, almost all system can be

shown to be non-solvable by considering solvability modulo 8 and modulo p for

primes p dividing b (the solvability conditions can be written in terms of Legendre

symbols, e.g. for the first system we have
(−b2

p1

)
= 1 and

(−2b3
p1

)
= 1 for all primes

p1 dividing b1, and similar conditions for primes dividing b2 and b3). For each

value of a3 in the considered range, there remains only a few locally solvable

systems. Note that we always have the system

2x2 − y2 = 1, x2 − b3z
2 = 1, y2 − 2b3z

2 = 1, (7)

in which each particular equation is certainly solvable in positive integers. Howe-

ver, from the system (7) we get y2 + 1 = 2x2, y2 − 1 = 2b3z
2 and hence

y4 − b3(2xz)
2 = 1. (8)

Now we can apply a result due to Cohn [4] which says that the only possible

solutions of the equation X4 −DY 2 = 1 in positive integers are given by X2 =

u0 and X2 = 2u2
0 − 1, where u0 + v0

√
D is the fundamental solution of Pell’s

equation u2 −Dv2 = 1. For a3 ≤ 88, we were able to compute the fundamental

solution by using the function quadunit in Pari [15]. For 89 ≤ a3 ≤ 100, the

fundamental units become too large to be computed by standard methods, as they

grow exponentially in the size of the discriminant of the quadratic field. Because

of this, we used compact representations of fundamental units and the algorithm

for modular arithmetic on such representations described in [14].

We find that for a3 ≤ 100 the equation (8) has a solution in positive integers

only for a3 = 3, 4, 18, and these cases were already handled by the elliptic curve

approach.
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The remaining Pellian equations, not eliminated by the previously explained

methods, have the shape αx2 − βy2 = 1 or 2, where α > 1, β > 0. The criteria

for solvability of such equations were given by Grelak and Grytczuk [11] in

terms of the fundamental solution (u0, v0) of the equation u2−αβv2 = 1. For the

equation αx2 − βy2 = 1, the criterion is that 2α|(u0 + 1) and 2β|(u0 − 1), while

for αx2 − βy2 = 2, α|(u0 + 1) and β|(u0 − 1).

After an application of these criteria, only three systems remain unsolved.

We list them explicitly. Each of them can be solved by using some divisibility

properties of the corresponding fundamental units.

For a3 = 32, we have to consider the system

x2 − 1964315y2 = 1, x2 − 34z2 = 2.

The second equation clearly implies that 3|x. Since the fundamental solution

(x0, y0) of the first equation has the property 3|y0, we conclude that also 3|y. But
it is clear that there is no solution of the first equation such that both x and y

are divisible by 3.

For a3 = 54, the remaining system is

63017x2 − y2 = 1, 63017x2 − 39407479z2 = 2.

From the fundamental solution of the first equation we get that 37|x. But this

contradicts the second equation since also 37|39407479.
For a3 = 84, the remaining system is

163373405489x2 − 17755y2 = 1, 17755y2 − 16077666z2 = 1.

Now we get contradiction since 7|163373405489, while from the fundamental so-

lution of the second equation it follows that also 7|y. ¤

3. Proof of Theorem 1.2

We make the following observations:

Let S = {a1, a1 − 1, a1 − 2}.
1) None of the elements of S is a prime since a1 − 3 = a2 > a3.

2) The gcd of any two of the elements of S is either 1 or 2.

3) a3 ≥ 101 by Theorem 1.1. Then k ≥ 11. This can be checked for a3 ≥ 250

by estimates for π(X) (see [16]) and for 101 ≤ a3 < 250 by the exact values

of π(X).
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Proof of (a).

All the primes dividing a3! to an odd power must divide the terms in S.

This is true in particular for the primes in the range (a3/2, a3]. Since there are

k primes in (a3/2, a3], there is a term N ∈ S which is divisible by at least dh/3e
primes. Thus

a1 ≥ N > (a3/2)
dh/3e. (9)

Proof of (b).

Suppose a term N ∈ S satisfies the given conditions of (b). By (4), each of

the primes occurring in N is ≤ a3, so we get

a1 ≤ N + 2 ≤ (a3/2)
dh/3e.

This is a contradiction to (9), proving (b).

Proof of (c).

By Theorem 1.1 we may assume that a3 ≥ 101. Then h ≥ 11. It follows by

(9) that a1 > a43/16. By (b), there is no term N ∈ S of the form αN1 with N1 ∈
S1 = {P1, P

3
1 , P1P2, P1P2P3} and α ≤ a

4−Ω(N1)
3

16 − 2

a
Ω(N1)
3

. Since a3 ≥ 101, it follows

that there is no term N = αN1 with N1 ∈ S1 and α ≤ 1014−Ω(N1)

16 − 2
101Ω(N1) . Thus

we get α ≤ 64393, 6, 637, 6 according as N1 = P1, P
3
1 , P1P2, P1P2P3, respectively.

This proves (c). ¤
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