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Linear functional equations with algebraic parameters

By GERGELY KISS (Budapest)

Abstract. We describe the solutions of linear functional equations with algebraic

parameters.

1. Introduction

Let K be a subfield of the field of complex numbers. We investigate the

functional equation
n∑

i=1

aif(bix+ y) = 0 (1)

where ai ∈ C, bi ∈ K are given and f : C→ C is the unknown function. We shall

also consider the more general equation

n∑

i=1

aif(bix+ ciy) = 0 (2)

where ai ∈ C, bi, ci ∈ K are given and f : C → C is the unknown function. Our

aim is to describe the solutions, at least for some classes of these equations, on

the field K. Note that every solution defined on K can be extended to a solution

on C. Indeed, since C is a linear space over the field K, the identity on K can be

extended to C as a linear function over K. Let φ : C→ K be such an extension.

It is clear that if f satisfies (2) for every x, y ∈ K, then f ◦φ satisfies (2) for every

x, y ∈ C.
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In this paper we shall consider those equations of the form (2) for which the

solutions are generalized polynomials on K.

By a generalized polynomial on an Abelian group A we mean a function

f : A → C such that, for a suitable n, we have

∆h1
. . .∆hn+1

f(x) = 0 (3)

for every h1, . . . , hn+1, x ∈ A. Here ∆h denotes the difference operator,

∆hf(x) = f(x+ h)− f(x).

The smallest n for which there are elements h1, . . . , hn+1 satisfying (3) is called

the degree of f . We shall restrict our attention to those equations (2) whose

parameters satisfy the following condition.

The numbers a1, . . . , an are nonzero, and there is an 1 ≤ i ≤ n

such that bicj 6= bjci holds for any 1 ≤ j ≤ n, j 6= i.
(4)

The following result is an easy consequence of [8] (see also [1], [5] and [9]):

Theorem 1.1. Suppose (4). If

n∑

i=1

aif(bix+ ciy) = 0

is true for every x, y ∈ K, then f is a generalized polynomial on K of degree at

most n− 2.

Note that if ci = 1 for every i = 1, . . . , n, then (4) is satisfied whenever

a1, . . . , an 6= 0 and the numbers b1, . . . , bn are distinct. That is, equation (1)

with different b1, . . . , bn always satisfies condition (4), and thus its solutions are

generalized polynomials.

In Section 2 our aim is to describe the solutions when bi and ci are algebraic

numbers. We show that in this case the space of the solutions of (2) is spanned

by the injective homomorphisms (shortly isomorphisms) of K or the products of

them. (See Theorem 2.3, Theorem 2.7.)

These results make it possible, at least in principle, to find every solution of

a functional equation satisfying condition (4) when bi, ci are algebraic numbers,

since the number of these isomorphisms and of their product is finite.

We say that the equation (2) is trivial if every additive function is a solution

of the functional equation. Examples of trivial equations are

3f
(
x+

√
2y

)− f
(
6x+

(
3
√
2 + 5

√
3
)
y) + 5f

(
x+

√
3y

)
= 0
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and

2f(x+ y)− f(x+ 2y)− 2f(x+ πy) + f(x+ 2πy) = 0.

In Section 3 we prove that the trivial equations also have the property that

the set of their additive solutions is spanned by those solutions which are injective

homomorphisms. This amounts to show that the set of all additive functions is

spanned by injective homomorphisms (3.1).

In Section 4 we show that, in general, the set of additive solutions is not

always spanned by the injective homomorphism solutions. In Theorem 4.3 we

prove that there are equations with this property for every field K containing

transcendental numbers, showing that Theorem 2.3 is best possible.

Note that the set of the solutions of (2) is a linear space over C, but not

necessary translation invariant with respect to the addition. There are important

cases such as (1) with distinct b1, . . . , bn, when the space of solutions is translation

invariant. (In general, if the points (bi, ci) ∈ C2 lie on a line not going through

the origin (0, 0), then the space of solutions is translation invariant.) Translation

invariance sometimes simplifies the description of the space of solutions (see, e.g.

Remark 2.9).

We remark that the results presented here were motivated by the paper [4].

2. Theorems in algebraic case

The proofs of this Section are based on some results of polynomial-exponential

functions on groups.

Let (G, ∗) be an Abelian group, and let CG denote the linear space of all

complex valued functions defined on G equipped with the product topology. By

a variety on G we mean a translation invariant closed linear subspace of CG.

We say that the function f : G → C is additive, if f is a homomorphism of G

into the additive group of C. A function is a polynomial if it belongs to the

algebra generated by the constant functions and the additive functions. A nonzero

functionm∈CG is called an exponential ifm is multiplicative; that is, ifm(x ∗ y)=
m(x) · m(y) for every x, y ∈ G. An exponential monomial is the product of a

polynomial and an exponential, a polynomial-exponential function is a finite sum

of exponential monomials.

Lemma 2.1. Let (G, ∗) be an Abelian group, V be a translation invariant

linear subspace of C(G), and let
∑M

i=1 pi ·mi ∈ V , where p1, . . . , pM are nonzero

generalized polynomials and m1, . . . ,mi are distinct nonzero exponentials on G.

Then (∆h1 . . .∆hk
pi) ·mi ∈ V for every i and for every h1, . . . , hk ∈ G.
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If pi is not constant, then there is a nonzero additive function A : G → C
such that A ·mi ∈ V and mi ∈ V .

Proof. Since mi is a nonzero exponential, mi(x) 6= 0 for any x ∈ G. If

p(x)m(x) ∈ V , then p(x ∗ h)m(x ∗ h) and c · p(x)m(x) is in V for any c 6= 0 ∈ C,
because V is a translation invariant linear space. Thus, the equation

p(x ∗ h)m(x ∗ h)−m(h)p(x)m(x)

= (p(x ∗ h)− p(x))m(x)m(h) = (∆hp(x)) ·m(x)m(h)

shows that ∆hp(x)m(x) ∈ V . The iteration of this process proves the first state-

ment of the lemma. It is well known that for every generalized polynomial p there

exist an integer k and an additive function A such that ∆h1 . . .∆hk
p = A and

∆h1 . . .∆hk
∆hk+1

p is a nonzero constant for some h1, . . . , hk, hk+1 ∈ G. Thus, if

p ·m ∈ V , then A ·m and m are in V , which completes the proof. ¤

The following proposition will be used frequently (see [3, Theorem 14.5.1.]).

Proposition 2.2. Let K ⊂ C be a finitely generated field and φ : K → C
be an injective homomorphism. Then there exists an automorphism ψ of C such

that ψ|K = φ.

Theorem 2.3. Let b1, . . . , bn, c1, . . . , cn be algebraic numbers satisfying (4),

and put K = Q(b1, . . . , bn). Then every additive solution of (2) defined on K is

of the form

d1φ1 + · · ·+ dkφk,

where d1, . . . , dk are complex numbers and φ1, . . . , φk : K → C are injective

homomorphisms satisfying

n∑

i=1

aiφj(bi) = 0 and

n∑

i=1

aiφj(ci) = 0 (5)

for every j ∈ {1, . . . , k}.
Remark 2.4. It is clear that all injective homomorphisms satisfying (5) are

solutions of (2).

Proof. If f is an additive solution of (2) on K, then

0 =

n∑

i=1

aif(bix+ ciy) =

n∑

i=1

aif(bix) +

n∑

i=1

aif(ciy)



Linear functional equations with algebraic parameters 149

for every x, y ∈ K. By substituting x = 0 and y = 0 we get
∑n

i=1 aif(ciy) = 0

and
∑n

i=1 aif(bix) = 0, respectively.

Let V denote the set of additive functions f : K → C satisfying

n∑

i=1

aif(bih) = 0 and

n∑

i=1

aif(cih) = 0 (6)

for every h ∈ K. We denote K∗ = {x ∈ K : x 6= 0}; then K∗ is an Abelian group

under multiplication. Let

V ∗ = {f |K∗ : f ∈ V }.

We prove that V ∗ is a variety on the Abelian group K∗.
It is clear that V ∗ is a linear space and that V ∗ is translation invariant.

Indeed, if f is additive and satisfies (6), then x → f(ax) is also additive, and also

satisfies (6) for every a ∈ K∗. Let g : K∗ → C be a function in the closure of

V ∗. Extend g by g(0) = 0. Let a, b ∈ K? be such that a + b is also in K∗, i.e.
a+ b 6= 0. Since g ∈ clV ∗, for every ε > 0 there exists f ∈ V ∗ such that

|f(a)− g(a)| < ε, |f(b)− g(b)| < ε and |f(a+ b)− g(a+ b)| < ε.

Now, f(a)+f(b) = f(a+ b) because f is additive, so |g(a+ b)−g(a)−g(b)| < 3ε.

This is true for every ε, therefore g(a + b) = g(a) + g(b). This holds for every

a, b ∈ K with a, b, a+ b 6= 0 and then, by g(0) = 0, it follows that g is additive on

K. A similar argument shows that g satisfies (6). This means that V ∗ is closed,

and thus V ∗ is a variety.

Since the b′is are algebraic numbers, the field K is a finite algebraic extension

of the field Q. If β1, . . . , βN is a basis of K as a linear space over Q and if

f : K → C is additive, then

f(r1β1 + . . .+ rNβN ) = r1f(β1) + . . .+ rNf(βN )

for every r1, . . . , rN ∈ Q. Therefore, the values of f at any point of K are

determined by the values f(β1), . . . , f(βN ). Since the set of all functions mapping

{β1, . . . , βN} into C has dimension N it follows that the set A of all additive

functions defined on K forms a finite dimensional vector space over C. This

implies that V , as a linear subspace of A is also finite dimensional. Consequently,

V ∗ is a finite dimensional translation invariant linear space of functions defined on

K∗. By [8] and [2], it follows that every element of V ∗ is a polynomial-exponential

function.
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In other words, every element f ∈ V ∗ can be written as a finite sum f =∑M
j=1 pj · mj , where p1, . . . , pM are nonzero polynomials and m1, . . . ,mM are

distinct exponentials on K∗.
By Lemma 2.1, m1, . . . ,mM ∈ V ∗. Therefore,

mj(xy) = mj(x)mj(y) (7)

for every j and x, y ∈ K∗. If we define mj(0) = 0 then mj becomes additive

on K, and thus mj is a homomorphism of the field K into C. Since mj 6≡ 0, it

must be an injective homomorphism. The condition mj ∈ V ∗ implies that mj is

a solution of (2), and thus satisfies (5).

We prove that each pj is constant.

Suppose that p1 is not constant. Then, by Lemma 2.1, there is a nonzero

additive function A on K∗ such that A · m1 ∈ V ∗. Due to Proposition 2.2, if

K ⊂ C is a finitely generated field and φ : K → C is an injective homomorphism,

then there exists an automorphism ψ of C such that ψ|K = φ. Therefore, m1 can

be extended to C as an automorphism. We shall denote the extension also by m1.

We put d = m−1
1 ◦ (A · m1) and d(0) = 0. We show that d is a derivation

on K. Since m1 is an automorphism, it is an additive function, and then m−1
1 is

also additive. Since A ·m1 ∈ V ∗, thus A ·m1 also additive, and the composition

d is also additive; that is, d(x+ y) = d(x) + d(y). Since A is additive on K∗ with

respect to the multiplication, we have A(xy) = A(x) + A(y) for every x, y ∈ K∗.
Therefore,

d(xy) = (m−1
1 ◦ (A ·m1))(xy) = m−1

1 (A(xy) ·m1(xy))

= m−1
1 ((A(x) +A(y)) ·m1(x)m1(y))

= m−1
1 (A(x) ·m1(x)) · y +m−1

1 (A(y) ·m1(y)) · x = d(x)y + d(y)x (8)

for every x, y ∈ K∗. Clearly, d(xy) = d(x)y + d(y)x holds in the cases x = 0 or

y = 0 as well. Therefore, d is a derivation on K.

On the other hand, it is well known (and it is easy to check) that on algebraic

extensions of Q the only derivation is the identically zero function. However, the

function A is not identically zero and m1 is an automorphism, thus d cannot

be identically zero. This contradiction shows that p1 must be constant, which

completes the proof. ¤

Now we are interested in the solutions of (1) of arbitrary degree. In order to

generalize Theorem 2.3 we need some technical lemmas.

Let K be a subfield of C. A function fk : K → C is called a monomial

of degree k, if there exists a nonzero, symmetric and k-additive function Fk :
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Kk → C such that fk(x) = Fk(x, . . . , x) for every x ∈ C. It is well-known

that if f is a generalized polynomial of degree m, then it can be written of the

form f = f0 +
∑m

k=1 fk, where f0 is constant and fk is a monomial of degree k

(k = 1, . . . ,m) (see [6]).

Lemma 2.5. Suppose that f = f0 +
∑m

k=1 fk is a solution of (2), where

f0 is constant and fk is a monomial of degree k (k = 1, . . . ,m). Then each of

f0, . . . , fm is a solution of (2).

Proof. [4, Lemma 2.1.] ¤

Lemma 2.6. Let f(x) = Fk(x, . . . , x︸ ︷︷ ︸
k

) be a monomial, where Fk is symmetric

and k-additive. In this case

k!Fk(x1, x2, . . . , xk) = ∆x1∆x2 . . .∆xk
f(t)

for every t ∈ C.
Proof. See [3, §9, Lemma 2.] ¤

Theorem 2.7. Let bi, ci (i = 1, . . . , n) be algebraic numbers satisfying (4),

and put K = Q(b1, . . . , bn, c1, . . . , cn). Let f be a solution of (2) defined on K.

If the degree of f is at most k, then f is the linear combination of products of at

most k injective homomorphisms of K which products are also solutions of (2).

Proof. Suppose that there is a solution of (2) of degree k. By Lemma 2.5,

there is a solution which is a monomial of degree k. Let fk(x) = Fk(x, . . . , x)

be a solution, where Fk is nonzero, symmetric and k-additive. Our aim is to

show that Fk is the linear combination of functions of the form φ1 · · ·φk, where

φ1, . . . , φk : K → C are injective homomorphisms such that the terms of the

linear combination are solutions of (2) as well.

Let V be the set of all functions S : Kk → C such that S is k-additive and the

function x 7→ S(s1x, s2x, . . . , skx) (x ∈ K) satisfies (2) for every s1, s2, . . . sk ∈ K.

We prove that Fk ∈ V . By Lemma 2.6,

k! · Fk(s1x, s2x, . . . , skx) = ∆s1x∆s2x . . .∆skxfk(0) =

M∑

j=1

±fk(ejx)

with suitable e1, . . . , eM ∈ K. Thus Fk(s1x, s2x, . . . , skx) is a linear combina-

tion of functions of the form fk(ex), which are also solutions of (2). Therefore,

Fk(s1x, s2x, . . . , skx) is a solution, and thus Fk ∈ V . Let

(K∗)k = {(x1, . . . , xk) : x1, . . . , xk ∈ K \ {0}}.
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Then (K∗)k is an Abelian group under multiplication by coordinates. It is easy

to check that V ∗ = {S|(K∗)k : S ∈ V } is a translation invariant, closed, linear

subspace of C((K∗)k); i.e. it is a variety. Since Fk ∈ V , V ∗ is nonzero.

Since the b′is and c′is are algebraic numbers, the field K is a finite algebraic

extension of the field Q. Let β1, . . . , βN be a basis of K as a linear space over Q.
If Ek : (K∗)k → C is k-additive, then

Ek(x, . . . , x) = Ek(r1β1 + · · ·+ rNβN , . . . , r1β1 + . . .+ rNβN )

= (r1)
kEk(β1, . . . , β1) + · · ·+ (rN )kEk(βN , . . . , βN )

=
∑

(i1,...,ik)∈Ik

(
k∏

s=1

ris

)
Ek(βi1 , . . . , βik)

for every r1, . . . , rN ∈ Q and I = {1, . . . , N}.
Therefore, the values of Ek at any point of (K∗)k are determined by the

values Ek(β1, . . . , β1), . . . , Ek(βN , . . . , βN ). Since the set of all functions mapping

{(β1, . . . , β1), . . . , (βN , . . . , βN )} into C has dimension Nk, it follows that the set

Ek of all k-additive functions defined on (K∗)k forms a finite dimensional vector

space over C. This implies that V ∗, as a linear subspace of Ek is also finite

dimensional.

Consequently, V ∗ is a finite dimensional translation invariant, closed linear

space of functions defined on (K∗)k. By [8] and [2], it follows that every element

of V ∗ is a polynomial-exponential function.

In particular, Fk =
∑L

j=1 Pj ·Mj , where P1, . . . , PL are nonzero polynomials

and M1, . . . ,ML are distinct exponentials on (K∗)k with respect to the multipli-

cation.

We shall prove that every exponential element of V ∗ is of the form

φ1(x1)φ2(x2) . . . φk(xk)|(K∗)k where φj is an injective homomorphism for every

j ∈ {1, . . . , k}. We shall also prove that every exponential monomial element of

V ∗ is a constant multiple of an exponential. This will imply

Fk(x1, . . . , xk) =

L∑

j=1

cj · φ1(x1) . . . φk(xk)

for every x1, . . . , xk ∈ V ∗. Putting x1 = . . . = xk = x we obtain

fk(x) = Fk(x, . . . , x) =

L∑

j=1

cj · φ1(x) . . . φk(x) (9)
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for every x ∈ K∗. Since (9) is also true for x = 0, this will complete the proof.

Let M(x1, x2, . . . , xk) be an exponential element of V ∗. Then M is multip-

licative in each coordinate, that is

M(x1y1, x2y2, . . . , xkyk) = M(x1, x2, . . . , xk)M(y1, y2, . . . , yk)

for every xi, yi ∈ K∗. Therefore,

M(x1, x2, . . . , xk) = M(x1, 1, . . . , 1)M(1, x2, . . . , 1) · · ·M(1, 1, . . . , xk)

= m1(x1)m2(x2) · · ·mk(xk)

for every x1, . . . , xk ∈ K∗. We extend mj to K by putting mj(0) = 0. Then each

mj is an injective homomorphism, because it is additive by the k-additivity of M ,

and it is multiplicative as well.

Now we prove that each Pj is constant.

Suppose, e.g. that P1 is not constant. Then, by Lemma 2.1, there is a nonzero

additive function A on (K∗)k such that

d(x1, . . . , xk) = A(x1, . . . , xk) ·m1(x1) · · ·mk(xk) ∈ V ∗.

The additivity of A means that is,

A(x1 · y1, x2 · y2, . . . , xk · yk) = A(x1, x2, . . . , xk) +A(y1, y2, . . . , yk) (10)

for every x1, . . . , xn, y1, . . . , yn ∈ K∗. We prove that in this case d ≡ 0 which is a

contradiction.

Then d(x1, 1, . . . , 1) = A(x1, 1, . . . , 1)m1(x1) is a polynomial exponential of

the case of Theorem 2.3, therefore d(x1, 1, . . . , 1) = 0 and since m1(x1) 6= 0,

A(x1, 1, . . . , 1) = 0. This is true for every coordinate. Using (10), we obtain that

A(x1, x2, . . . , xk) = A(x1, 1, . . . , 1) + · · ·+A(1, 1, . . . , xk) = 0

for every x1, x2, . . . , xk ∈ K∗, therefore d must be zero. ¤

Lemma 2.8. If φ1, . . . , φk : K → C are injective homomorphisms then the

product φ1 · · ·φk is a solution of (2) if and only if

n∑

i=1

ai
∏

j∈J

φj(bi)
∏

j′ /∈J

φj′(ci) = 0 (11)

for every J ⊆ {1, . . . , k}.
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Proof. See [4, Lemma 3.4] ¤

Remark 2.9. In the special case when the functional equation can be written

of the form (1) the situation is slightly simpler, since the condition (11) takes the

following form:
n∑

i=1

aiφj1 . . . φjs(bi) = 0 (12)

for every choice of the integers 0 ≤ j1 < · · · < js ≤ k (0 ≤ s ≤ k). Consequently,

if we take the injective homomorphism solutions of (1), then forming the products

at most n − 1 of them gives a basis of the space of the solutions. Furthermore,

the conditions (12) imply that every subproduct of a product which is a solution

of (1) must be a solution, as well.

3. Trivial functional equations

In this section we present another class of equations such that the set of its

additive solutions is spanned by those solutions which are injective homomorp-

hisms.

Theorem 3.1. The variety VC generated by the automorphisms of C con-

tains every additive function.

Proof. The variety VC is the closure of the set of linear combinations of the

automorphisms of C. This means that whenever f : C→ C is such that, for every

y1, y2, . . . , yn ∈ C and ε > 0 there are automorphisms φ1, φ2, . . . , φM satisfying

∣∣∣f(yj)−
M∑

m=1

ci · φm(yj)
∣∣∣ < ε

for every j = {1, . . . , n}, then f ∈ VC. We have to show that every additive

function on C has this property.

It is enough to prove that if K is finitely generated, then the variety VK ,

generated by the injective homomorphisms of K into C contains every additive

function on K. Indeed, for given points y1, y2, . . . , yn ∈ C, we may take the

subfield K generated by these points. If we can guarantee that the restriction of

a given additive function f to K is in the variety VK for every finitely generated

subfield K of C, then, by Proposition 2.2, VC contains the function f .

We will prove the following stronger statement by induction on the number of

generators of K: if a function f ∈ VK and the points y1, y2, . . . , yn ∈ K are given,
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then there are injective homomorphisms φ1, φ2, . . . , φM and there are complex

numbers c1, . . . , cM such that

f(yj) =

M∑
m=1

cm · φm(yj)

for every j = {1, . . . , n}. It is clear that the statement is true for K = Q, since
every additive function on Q is of the form c · Id, where Id denotes the identity

function of Q. Let us assume that the statement is true for a finitely generated K.

We prove the statement for K(β) and for K(t), where β is an algebraic number,

and t is a transcendental number.

Case 1: β is an algebraic number, and |K(β) : K| = n. Then

K(β) = {a0 + a1β + · · ·+ an−1β
n−1 : ai ∈ K (i = 0, . . . , n− 1)}.

Let the additive function f : K(β) → C and the numbers y1, . . . , yN ∈ K(β) be

given.

Since every yj is a sum of terms of the form b · βi (b ∈ K), therefore, by

additivity, it is enough to represent f at the points bi,j · βi for every bi,j ∈ K

(j = 1, . . . , N , i = 0, . . . , n − 1). For every fix i, the function f(x · βi) is an

additive function on K. Thus, by the induction hypothesis, there are injective

homomorphisms φ1, . . . , φM of K into C, and there are complex numbers ci,m
such that

f(bi,j · βi) =

M∑
m=1

ci,m · φm(bi,j) (13)

for every i = 0, . . . , n − 1 and j = 1, . . . , N . We need to represent every term

on the right hand side of (16) by some linear combination of values of injective

homomorphisms of K(β) at the point bi,j · βi. Let the roots of the minimal

polynomial of β be β = β0, . . . , βn−1. We put

ψm,k(a0 + a1β + · · ·+ an−1β
n−1) = φm(a0) + φm(a1)βk + · · ·+ φm(an−1)β

n−1
k

for every a0, . . . , an−1 ∈ K and k = 0, . . . , n − 1. Then ψm,k is an injective

homomorphism of K(β) into C for every m and k. We show that there are

numbers xm,k such that

f(bi,jβ
i) =

M∑
m=1

n−1∑

k=0

xm,kψm,k(bi,jβ
i); (14)

that is,

f(bi,jβ
i) =

M∑
m=1

n−1∑

k=0

xm,kφm(bi,j) · βi
k.
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By (13), it is enough to find xm,k satisfying the equations

ci,m · φm(bi,j) =

n−1∑

k=0

xm,kφm(bi,j) · βi
k

for every i = 0, . . . , n − 1, j = 1, . . . , N and m = 1, . . . ,M . That is, xm,k has to

satisfy

ci,m =

n−1∑

k=0

xm,k · βi
k (15)

for every i = 0, . . . , n−1 and m = 1, . . . ,M . Since the determinant of the system

of equations (15) is nonzero (Vandermonde) for every fixed m, these systems are

solvable. If xm,k is a solution, (14) shows that f is represented on the set {bi,jβi}
as a linear combination of injective homomorphisms.

Case 2: If t is a transcendental number, then every element of K(t) is a

rational function of the variable t with coefficients from K.

Let f : K(t) → C be an additive function. Let the rational functions

y1, . . . , yn ∈ K(t) be given. Let q(t) be a common multiple of the denominat-

ors of the rational functions yi.

Since every yj is a sum of terms of the form b · ti/q(t) (b ∈ K), therefore, by

additivity, it is enough to represent f at the points bi,j · ti/q(t) for every bi,j ∈ K

(j = 1, . . . , N, i = 0, . . . , n − 1). For every fix i, the function f(x · ti/q(t)) is an

additive function on K. Thus, by the induction hypothesis, there are injective

homomorphisms φ1, . . . , φM of K into C, and there are complex numbers ci,m
such that

f(bi,j · ti/q(t)) =
M∑

m=1

ci,m · φm(bi,j) (16)

for every i = 0, . . . , n− 1 and j = 1, . . . , N . We need to represent every term on

the right hand side of (13) by some linear combination of values of injective homo-

morphisms of K(t) at the points bi,j · ti/q(t). Let t0, t2, . . . , tn−1 be algebraically

independent elements over K, and put

ψm,k(r(t)) = (φm ◦ r)(tk)

for every r ∈ K(t), m = 1, . . . ,M and k = 0, . . . , n− 1. Then ψm,k is an injective

homomorphism ofK(t) into C for everym and k. We show that there are numbers

xm,k such that

f(bi,jt
i/q(t)) =

M∑
m=1

n−1∑

k=0

xm,kψm,k(bi,jt
i/q(t)); (17)
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that is,

f(bi,jt
i/q(t)) =

M∑
m=1

n−1∑

k=0

xm,kφm(bi,j) · tik
φm(q(tk))

.

By (13), it is enough to find xm,k satisfying the equations

ci,m · φm(bi,j) =

n−1∑

k=0

xm,kφm(bi,j) · tik
φm(q(tk))

(18)

for every i = 0, . . . , n− 1, j = 1, . . . , N and m = 1, . . . ,M . Let zm,k satisfy

ci,m =

n−1∑

k=0

zm,k · tik (19)

for every i = 0, . . . , n−1 and m = 1, . . . ,M . Since the determinant of the system

of equations (19) is nonzero (Vandermonde) for every fixed m, these systems are

solvable. If zm,k is a solution, then put xm,k = zm,k ·φm(q(tk)). Then (17) shows

that f is represented on the set {bi,jti/q(t)} as a linear combination of injective

homomorphisms.

This completes the proof. ¤

4. Further cases

Theorem 3.1 might suggest that if there are infinitely many injective homo-

morphisms which are solutions of (2), then the variety generated by these injective

homomorphisms contains every additive solution as well. Now we show that this

is not true (see Theorem 4.3 below).

Definition 4.1. LetK denote a field overQ. We say that a function d : K → C
is a derivation if it has the following two properties:

(1) d(x+ y) = d(x) + d(y) and

(2) d(xy) = d(x)y + xd(y)

for every x, y ∈ K.

Lemma 4.2. Let K ⊂ L be subfields of C. If d is derivation on K, then it

can be extended to L as a derivation.

Proof. Well-known. See, e.g. [7, Proposition, p. 154]. ¤
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Theorem 4.3. If K ⊂ C is a field which contains a transcendental number,

then there exists a linear functional equation

n∑

i=1

aif(bix+ y) = 0

such that bi ∈ K for every i = 1, . . . , n, and there exists an additive solution

which is not contained by the variety generated by the injective homomorphisms

which are solutions.

Proof. Let us suppose that t ∈ K is a transcendental number and a1, . . . , an
are nonzero complex numbers satisfying

n∑

i=1

ai = 0,

n∑

i=1

ait
i = 0,

n∑

i=1

aiit
i−1 = 0. (20)

We will prove that in this case the functional equation

n∑

i=1

aif(t
ix+ y) = 0 (21)

satisfies the requirements.

Every element of Q(t) is a rational function with rational coefficients of the

variable t. The operation d0 = ∂
∂t is a well-defined derivation on Q(t). It follows

from Lemma 4.2 that we can extend d0 from Q(t) to K as a derivation. Then d0
is a solution of (21). Indeed,

n∑

i=1

ai(d0(t
ix+ y)) =

n∑

i=1

aid0(t
i)x+

n∑

i=1

ait
id0(x) +

n∑

i=1

aid0(y)

=

n∑

i=1

aiit
i−1d0(t)x+

n∑

i=1

ait
id0(x) +

n∑

i=1

aid0(y) = 0 (22)

by (20).

Let V denote the variety generated by those injective homomorphisms which

are solutions of (21) on K.

Suppose φ ∈ V is an injective homomorphism. Then, by (20), we have∑n
i=1 aiφ(t)

i = 0, and thus φ(t) is a root of the polynomial p(x) =
∑n

i=1 aix
i.

Let u1, . . . , uk be the distinct roots of p. Suppose φ(t) = ui. If ψ ∈ V is another

injective homomorphism with ψ(t) = ui, then restrictions of φ and ψ to Q(t)
coincide. This easily implies that the family of restrictionsW = {g|Q(t) : g ∈ V } is
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finite dimensional. It is clear that if φ1, . . . , φk are fixed injective homomorphisms

such that φj(t) = uj (j = 1, . . . , k), then the restrictions φj |Q(t) form a basis of

W as a linear space.

Suppose d0 ∈ V . Then there are complex numbers c1, . . . , ck such that

k∑

j=1

cjφj(w) = d0(w) (23)

for every w ∈ Q(t). Applying (23) with w = ti and using d0(t
i) = i · ti−1, we find

k∑

j=1

cjφj(t
i) =

k∑

j=1

cju
i
j = i · ti−1

for every i = 1, 2, . . .. Multiplying by zi and summing for i = 1, 2, . . . we obtain

k∑

j=1

cj

∞∑

i=1

ui
jz

i =

∞∑

i=1

i · ti−1zi,

as an equation between formal power series. However, for z small enough both

power series are convergent, and we obtain

k∑

j=1

cj
ujz

1− ujz
=

∂

∂t
· 1

1− tz
= − z

(1− tz)2
(24)

for every |z| < δ. The functions was defined with power series and the intersection

of domains of convergence contains a set that has a non-isolated point. These

imply that the functions are equal in the union of the domains using Uniqueness

Principle. Thus that equation (24) is an identity on the whole complex plane.

Since the last term of equation (24) is a meromorphic function on the whole space

with a pole singularity in z = 1/t, therefore

k∑

j=1

cj
(1− tz)2ujz

1− ujz
= −z

holds for every z 6= 1/t and if z → 1
t the left side tends to 0, but the right is not.

This contradiction shows that d0 /∈ V , which completes the proof. ¤

Example. It is easy to check that the function equation

f(t2x+ y)− 2tf(tx+ y) + t2f(x+ y)− (t+ 1)2f(y) = 0 (25)

satisfies the conditions of Theorem 4.3.
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