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On the Banach algebra (w∞(Λ), w∞(Λ)) and applications
to the solvability of matrix equations in w∞(Λ)

By BRUNO DE MALAFOSSE (Le Havre) and EBERHARD MALKOWSKY (Giessen)

Abstract. We apply the characterisation of the class (w∞(Λ), w∞(Σ)) and the

fact that this is a Banach algebra to study the solvability in w∞(Λ) of matrix equations

of the form ∆+
ρ X = B and ∆ρX = B, where ∆+

ρ and ∆ρ are upper and lower triangular

matrices. Finally, we obtain some results on infinite tridiagonal matrices considered as

operators from w∞(Λ) into itself, and study the solvability in w∞(Λ) of matrix equations

for tridiagonal matrices.

1. Introduction and known results

Let ω denote the set of all sequences x = (xk)
∞
k=0, and `∞, c0 and φ be the

sets of all bounded, null and finite sequences, respectively. We write e and e(n)

(n = 0, 1, . . . ) for the sequences with ek = 1 for all k, and e
(n)
n = 1 and e

(n)
k = 0

for k 6= n.

A BK space X is a Banach sequence space with continuous coordinates

Pk : X → |C where Pn(x) = xk (k = 0, 1, . . . ) for all x ∈ X. A BK space X ⊃ φ

is said to have AK if x =
∑∞

k=0xke
(k) for every sequence x = (xk)

∞
k=0 ∈ X.

Let X be a subset of ω. Then the set Xβ = {a ∈ ω :
∑∞

k=0akxk converges for

all x ∈ X} is called the β-dual of X.

Let A=(ank)
∞
k=0 be an infinite matrix of complex numbers and x=(xk)

∞
k=0∈ω.

Then we write An = (ank)
∞
k=0 (n = 0, 1, . . . ) and Ak = (ank)

∞
n=0 (k = 0, 1, . . . ) for
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the sequences in the n-th row and the k-th column of A, and An(x) =
∑∞

k=0ankxk

provided the series converges. Given any subsets X and Y of ω, we write (X,Y )

for the class of all infinite matrices A that map X into Y , that is An ∈ Xβ for

all n, and A(x) = (An(x))
∞
n=0 ∈ Y .

LetX and Y be Banach spaces, and BX = {x ∈ X : ‖x‖ ≤ 1} denote the unit
ball in X. Then B(X,Y ) denotes the Banach space of all bounded linear operators

L : X → Y with the operator norm ‖L‖ = supx∈BX
‖L(x)‖; X∗ = B(X, |C) is

the continuous dual of X with the norm ‖f‖ = supx∈BX
|f(x)| for al f ∈ X∗.

It is well known ([12, Theorem 4.2.8]) that if X and Y are BK spaces then

(X,Y ) ⊂ B(X,Y ), that is, if A ∈ (X,Y ), then LA ∈ B(X,Y ) where LA(x) = A(x)

for all x ∈ X.

Let (µn)
∞
n=0 be a non-decreasing sequence of positive reals tending to infinity.

The set

w̃∞(µ) =

{
x ∈ ω : sup

n

1

µn

n∑

k=0

|xk| < ∞
}

was defined and studied in [9], where the concept of exponentially bounded sequ-

ences was introduced. When µn = n+1 (n = 0, 1, . . . ) then this set reduces w∞,

the set of all sequences that are strongly bounded by the Cesàro method of order 1

([1]). A non-decreasing sequence Λ = (λn)
∞
n=0 of positive is called exponentially

bounded if there is an integer m ≥ 2 such that for all non-negative integers ν there

is at least one term λn in the interval I
(ν)
m = [mν ,mν+1 − 1]. It was shown ([9,

Lemma 1]) that a non-decreasing sequence Λ = (λn)
∞
n=0 is exponentially bounded,

if and only if there are reals s ≤ t such that for some subsequence (λn(ν))
∞
ν=0

0 < s ≤ λn(ν)

λn(ν+1)
≤ t < 1 for all ν = 0, 1, . . . ;

such a subsequence is called an associated subsequence.

If Λ = (λn)
∞
n=0 is an exponentially bounded sequence, and (λn(ν))

∞
ν=0 is an

associated subsequence with λn(0) = λ0, then we write Kν (ν = 0, 1, . . . ) for the

set of all integers k with n(ν) ≤ k ≤ n(ν + 1)− 1, and define the sets

w0(Λ) =

{
x ∈ ω : lim

ν→∞
1

λn(ν+1)

∑

k∈Kν

|xk| = 0

}

and

w∞(Λ) =

{
x ∈ ω : sup

ν

1

λn(ν+1)

∑

k∈Kν

|xk| < ∞
}
.

The next result is well known.
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Theorem 1.1 ([9, Theorem 1 (a), (b)]). Let (µn)
∞
n=0 be a non-decreasing

sequence of positive reals tending to infinity, Λ = (λn)
∞
n=0 be an exponentially

bounded sequence and (λn(ν))
∞
n=0 be an associated subsequence. Then w̃∞(µ) is

a BK space with the norm ‖ · ‖−µ defined by

‖x‖−µ = sup
n

1

µn

n∑

k=0

|xk|. (1.1)

Moreover, we have w̃∞(Λ) = w∞(Λ), and the norms ‖·‖−Λ and ‖·‖Λare equivalent
on w∞(Λ), where

‖x‖Λ = sup
ν

1

λn(ν+1)

∑

k∈Kν

|xk|. (1.2)

Thus, in view of the previous result, we always assume, unless explicitly

stated otherwise, that Λ is an exponentially bounded sequence and (λn(ν))
∞
n=0 is

an associated subsequence, and we consider the spaces w0(Λ) and w∞(Λ) with

the norm ‖ · ‖ = ‖ · ‖Λ.
First we give the characterisaton of the class (w∞(Λ), w∞(Σ)). Let Λ =

(λk)
∞
k=0 and Σ = (σm)∞m=0 be exponentially bounded sequences and (λk(ν))

∞
ν=0

and (σm(µ))
∞
µ=0 be associated subsequences. Furthermore, let Kν (ν = 0, 1, . . . )

and Mµ (µ = 0, 1, . . . ) be the sets of all integers k and m with k(ν) ≤ k ≤
k(ν + 1) − 1 and m(µ) ≤ m ≤ m(µ + 1) − 1. We obtain the characterisation of

the class (w∞(Λ), w∞(Σ)) as the special case p = 1 of [10, Theorem 3.1].

Theorem 1.2. We have A ∈ (w∞(Λ), w∞(Σ)) if and only if

‖A‖(w∞(Λ),w∞(Σ))

= sup
µ

(
1

σm(µ+1)
max

M(µ)⊂Mµ

∞∑
ν=0

λk(ν+1) max
k∈Kν

∣∣∣∣
∑

m∈M(µ)

amk

∣∣∣∣
)

< ∞. (1.3)

If A ∈ (w∞(Λ), w∞(Σ)), then

‖A‖(w∞(Λ),w∞(Σ)) ≤ ‖LA‖ ≤ 4 · ‖A‖(w∞(Λ),w∞(Σ)). (1.4)

Finally we need the following known result.

Theorem 1.3 ([10, Theorem 4.2]). The class (w∞(Λ), w∞(Λ)) is a Banach

algebra with respect to the norm

‖A‖(Λ,Λ) = sup{‖A‖Λ : ‖x‖Λ ≤ 1} = ‖LA‖ for all A ∈ (w∞(Λ), w∞(Λ)).
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In this paper, we use the characterisation of the class (w∞(Λ), w∞(Λ)) in

Theorem 1.2 and the fact that this class is a Banach algebra to study the solva-

bility in w∞(Λ) of matrix equations of the form ∆+
ρ X = B and ∆ρX = B, where

∆+
ρ and ∆ρ are upper and lower triangular matrices. Finally, we obtain some

results on infinite tridiagonal matrices considered as operators from w∞(Λ) into

itself, and study the solvability in w∞(Λ) of matrix equations for tridiagonal mat-

rices; these results are new. Our results on the Banach algebra and the deduced

solvability in w∞(Λ) of matrix equations are also useful for statistical conver-

gence, and for A-statistical convergence, where A is an operator represented by

an infinite matrix. They can also be applied in spectral theory and the study

of operators generators of analytic semi-group, and be used in the intuitionistic

fuzzy normed space (IFNS).

2. The sets s0τ , s
(c)
τ and sτ

We are going to study the solvability of certain matrix equations AX = B

in w∞(Λ), where B belongs to the set w∞(Λ) and A is an infinite matrix.

First, we recall some results on the sets s0τ , s
(c)
τ and sτ which are needed in

the sequel. These sets are closely related to the sets c0, c and `∞. We also define

and study the sets Ĉ, Γ̂, Γ and Ĉ1.

We slightly change our notations to match those normally used in the theory

of infinite systems of linear equations, in particular, we consider sequences x as

one-column matrices X. It is also more convenient for the indices to run from 1

to ∞ instead of from 0 to ∞.

Thus, for a given infinite matrix A = (ank)n,k≥1, we consider the operators

An for any integer n ≥ 1, defined by

An(X) =

∞∑

k=1

ankxk (2.1)

where X = (xn)n≥1 is a one-column matrix of complex numbers, and the series

are assumed to be convergent. So we are led to the study of the infinite linear

system

An(X) = bn for n = 1, 2, . . . (2.2)

where B = (bn)n≥1 is a one-column matrix and X the unknown ([2], [4], [5],

[6], [7], [8]). The equations in (2.2) can be written in the form AX = B, where

AX = (An(X))n≥1. We also consider A as an operator from a sequence space

into another sequence space.
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By cs, we denote the set of all convergent series.

2.1. The sets DτE, where E is any of the sets c0, c, or `∞. Throughout,

we use the set

U+ = {(un)n≥1 ∈ ω : un > 0 for all n}.
For a given sequence τ = (τn)n≥1 ∈ U+, we define the infinite diagonal matrix

Dτ = (τnδnk)n,k≥1; Dτ can be considered as the operatorX = (xn)n≥1 7→ DτX =

(τnxn)n≥1 from ω to itself. For any subset E of ω, we write

DτE =

{
(xn)n≥1 ∈ ω :

(
xn

τn

)

n

∈ E

}
,

in particular,

DτE =





s0τ if E = c0,

s
(c)
τ if E = c,

sτ if E = `∞

([3]). Each of the spaces DτE, where E ∈ {c0, c, `∞}, is a BK space normed by

‖X‖sτ = sup
n≥1

( |xn|
τn

)
, (2.3)

and s0τ has AK.

Now let τ = (τn)n≥1, ν = (νn)n≥1 ∈ U+. We write Sτ,ν for the set of infinite

matrices A = (anm)n,m≥1 such that supn≥1

(∑∞
k=1 |ank|τk/νn

)
< ∞. The set

Sτ,ν is a Banach space with the norm

‖A‖Sτ,ν = sup
n≥1

(
1

νn

∞∑

k=1

|ank|τk
)
.

It was proved in [8] thatA ∈ (sτ , sν) if and only ifA ∈ Sτ,ν , that is, (sτ , sν) = Sτ,ν .

When sτ = sν then Sτ = Sτ,ν is a Banach algebra with identity, normed by

‖A‖Sτ = ‖A‖Sτ,τ ([3, 5]).

If τ = (rn)n≥1, we write Sr, sr, s
0

r and s
(c)
r for Sτ , sτ , s

0
τ and s

(c)
τ , respectively.

When r = 1, we obtain s1 = `∞, s
0

1 = c0 and s
(c)
1 = c. Thus we have S1 = Se. It

is well known ([12, Example 8.4.5A]) that

(s1, s1) = (c0, s1) = (c, s1) = S1.

For any subset E of ω, we put

AE = {Y ∈ ω : Y = AX for some X ∈ E}. (2.4)

If F is a subset of ω, we write

F (A) = FA = {X ∈ ω : Y = AX ∈ F}. (2.5)
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2.2. Some properties of the sequence C(X)X. Here we deal with the ope-

rators represented by C(Λ) and ∆(Λ). Let U be the set of all sequences (un)n≥1

with un 6= 0 for all n. We define C(Λ) = (cnk)n,k≥1 for Λ = (λn)n≥1 ∈ U , by

cnk =





1

λn
if k ≤ n

0 otherwise.

We write C(Λ)T = C+(Λ), C(e) = Σ and Σ+ = ΣT . The matrix ∆(Λ) =

(c′nk)n,k≥1 with

c′nk =





λn if k = n

−λn−1 if k = n− 1 and n ≥ 2

0 otherwise

is the inverse of C(Λ) ([3], [4]). We need to recall some results given in [3], [7].

For this, we consider the following sets

Ĉ1 =

{
X = (xn)n≥1 ∈ U+ : sup

n

[
1

xn

( n∑

k=1

xk

)]
< ∞

}
,

Ĉ =

{
X = (xn)n≥1 ∈ U+ :

(
1

xn

( n∑

k=1

xk

))

n≥1

∈ c

}
,

Ĉ+
1 =

{
X ∈ U+

⋂
cs : sup

n

[
1

xn

( ∞∑

k=n

xk

)]
< ∞

}
,

Γ =

{
X ∈ U+ : limn→∞

(
xn−1

xn

)
< 1

}
,

Γ̂ =

{
X ∈ U+ : lim

n→∞

(
xn−1

xn

)
< 1

}
,

Γ+ =

{
X ∈ U+ : limn→∞

(
xn+1

xn

)
< 1

}
.

Note that X ∈ Γ+ if and only if 1/X ∈ Γ. We will see in Lemma 2.1 that if

X ∈ Ĉ1, then xn → ∞ (n → ∞). Furthermore, X ∈ Γ if and only if there is an

integer q ≥ 1 such that

γq(X) = sup
n≥q+1

(
xn−1

xn

)
< 1.

Writing

[C(X)X]n =
1

xn

(
n∑

k=1

xk

)
,

we obtain the following the following result from [5, Proposition 2.1].
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Lemma 2.1. Let τ ∈ U+. Then

i) (τn−1/τn)n≥1 → 0 (n → ∞) if and only if [C(τ)τ ]n → 1 (n → ∞).

ii) a) τ ∈ Ĉ if and only if (τn−1/τn)
∞
n=0 ∈ c,

b) [C(τ)τ ]n → l (n → ∞) if and only if τn−1/τn → 1− 1/l (n → ∞).

iii) If τ ∈ Ĉ1 then there are K > 0 and γ > 1 such that

τn ≥ Kγn for all n. (2.6)

iv) The condition τ ∈ Γ implies τ ∈ Ĉ1 and there is a real b > 0 such that

[C(τ)τ ]n ≤ 1

1− γq(τ)
+ bγq(τ)

n for n ≥ q + 1. (2.7)

v) The condition τ ∈ Γ+ implies τ ∈ Ĉ+
1 .

It was also shown in [7] that

Ĉ = Γ̂ ⊂ Γ ⊂ Ĉ1.

3. The Characterizations of some operators mapping w∞(Λ)

into itself

In this section, we apply Theorem 1.3 to infinite matrices such as ∆+
ρ , ∆ρ

considered as operators from w∞(Λ) into Daw∞(Λ).

Throughout, we assume that Λ = (λn)n≥1 is an exponentially bounded se-

quence, and (λni)i≥1 is an associated subsequence.

As an immediate consequence of Theorem 1.3, we see that (w∞(Λ), w∞(Λ))

is a Banach algebra with the norm

‖A‖−(Λ,Λ) = sup
X 6=0

(‖AX‖−Λ
‖X‖−Λ

)
. (3.1)

where ‖ · ‖− is the norm defined in (1.1).

Since the sequence Λ with λn = n (n = 1, 2 . . . ) is exponentially bounded,

we obtain in particular that (w∞, w∞) is a Banach algebra with the norm in (3.1)

where

‖X‖− = sup
n

(
1

n

n∑

k=1

|xk|
)
.
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3.1. Some properties of the matrix map ∆+
ρ .

3.1.1. The map ∆+
ρ considered as an operator from w∞(Λ) into itself. Let ρ =

(ρn)n≥1 and consider the infinite matrix ∆+
ρ = {(∆+

ρ )nk} defined by

(∆+
ρ )nk =





1 (k = n)

−ρn (k = n+ 1)

0 (otherwise)

for all n, k.

First we see that if ρ and (λn+1/λn)n≥1 ∈ `∞ then ∆+
ρ ∈ (w∞(Λ), w∞(Λ)).

Indeed, we have

∆+
ρ xn = xn − ρnxn+1 for all n

and

1

λn

n∑

k=1

|xk − ρkxk+1| ≤ 1

λn

n∑

k=1

|xk|+ λn+1

λn
sup
n

|ρn| 1

λn+1

n+1∑

k=2

|xk|

≤
(
1 + sup

n

(
λn+1

λn

)
sup
n

|ρn|
)
‖X‖−w∞(Λ).

for all X ∈ w∞(Λ) and for all n. This shows that ∆+
ρ X ∈ w∞(Λ) for all X ∈

w∞(Λ).

More precisely we have the following result.

Theorem 3.1. Let Λ ∈ U+ be an exponentially bounded sequence and

assume

limn→∞

(
λn+1

λn

)
< ∞ and limn→∞|ρn| < 1

limn→∞
(λn+1

λn

) . (3.2)

For given B ∈ w∞(Λ) the equation ∆+
ρ X = B has a unique solution in w∞(Λ)

given by

xn = bn +

∞∑

i=n+1

( i−1∏

j=n

ρj

)
bi for all n. (3.3)

Proof. Let

Σ+(N)
ρ =




[
∆

+(N)
ρ

]−1
0

1

0 .


 ,

where ∆
+(N)
ρ is the finite matrix whose elements are those of the N first rows

and columns of ∆+
ρ . The finite matrix ∆

+(N)
ρ is invertible, since it is an upper
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triangle. We get ∆+
ρ Σ

+(N)
ρ = (ank)

∞
n,k≥1, with ann = 1 for all n; an,n+1 = −ρn

for all n ≥ N ; and ank = 0 otherwise. For any given X ∈ w∞(Λ), we have

(I −∆+
ρ Σ

+(N)
ρ )X = (ξn(X))n≥1 with ξn(X) = 0 for all n ≤ N − 1 and ξn(X) =

ρnxn+1 for all n ≥ N . Now we put KN = supn≥N (λn+1/λn) supk≥N |ρk| and
show that (3.2) implies KN < 1 for N large enough. For this let ε > 0 be given.

From (3.2), we have limn→∞|ρn| = l < ∞, since limn→∞λn+1/λn ≥ 1. Then

there is an integer N1 such that

sup
n≥N1

|ρn| < l + ε.

Now since limn→∞λn+1/λn < ∞, (3.2) implies limn→∞λn+1/λn = L < 1/l, and

as above there is an integer N2 such that

sup
n≥N2

(
λn+1

λn

)
< L+ ε.

Since lL < 1, for ε small enough, taking N = max{N1, N2}, we then have

KN ≤ (l + ε)(L+ ε) = lL+ lε+ Lε+ ε2 < 1.

Now we obtain

∥∥(I −∆+
ρ Σ

+(N)
ρ )X

∥∥−
w∞(Λ)

= sup
n≥N

(
1

λn

n∑

k=N

|ρkxk+1|
)

≤ sup
n≥N

[(
sup
k≥N

|ρk|
)

1

λn

n+1∑

k=N+1

|xk|
]

≤ sup
n≥N

(
λn+1

λn

)
sup
k≥N

|ρk| sup
n≥N

(
1

λn+1

n+1∑

k=N+1

|xk|
)

≤
[
sup
n≥N

(
λn+1

λn

)
sup
k≥N

|ρk|
]
‖X‖−w∞(Λ).

Then ‖(I −∆+
ρ Σ

+(N)
ρ )X‖−w∞(Λ) ≤ KN‖X‖−w∞(Λ) and we conclude

∥∥I −∆+
ρ Σ

+(N)
ρ

∥∥−
(Λ,Λ)

= sup
X 6=0

(∥∥(I −∆+
ρ Σ

(N)
ρ

)
X
∥∥−
w∞(Λ)

‖X‖−w∞(Λ)

)
≤ KN < 1.

Then (3.2) implies ‖I − ∆+
ρ Σ

+(N)
ρ ‖−(Λ,Λ) ≤ KN < 1 and ∆+

ρ Σ
+(N)
ρ has a uni-

que inverse in the Banach algebra (w∞(Λ), w∞(Λ)). Since obviously Σ
+(N)
ρ is
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bijective from w∞(Λ) into itself, the operators defined by ∆+
ρ Σ

+(N)
ρ and ∆+

ρ =

(∆+
ρ Σ

+(N)
ρ )(Σ

+(N)
ρ )−1 are bijective from w∞(Λ) into itself. So, for any given

B ∈ w∞(Λ), the equation ∆+
ρ X = B has a unique solution in w∞(Λ). Finally

(∆+
ρ )

−1 =
∑∞

i=0(I −∆+
ρ )

i =
[
[(∆+

ρ )
T ]−1

]T
and an elementary calculation shows

that

(∆+
ρ )

−1 =
[[
(∆+

ρ )
T
]−1

]T
=




1 ρ1 ρ1ρ2 . .

1 ρ2 ρ2ρ3 .

. .

0 1 ρn
.




.

We then obtain (3.3). This completes the proof. ¤

Proposition 3.2. For given B ∈ w∞(Λ), the equation ∆+
ρ X = B has a

unique solution in w∞(Λ) given by (3.3) in the following cases

i) Λ ∈ Ĉ1 and limn→∞(λn+1/λn)|ρn| < 1;

ii) Λ /∈ Ĉ1 and condition (3.2) holds.

Proof. i) The condition Λ ∈ Ĉ1 implies w∞(Λ) = sΛ. Furthermore, the

condition limn→∞(λn+1/λn)|ρn| < 1 implies that there is an integer N such that

sup
n≥N

(
λn+1

λn
|ρn|

)
< 1.

Now since (w∞(Λ), w∞(Λ)) = (sΛ, sΛ) = SΛ, we deduce

∥∥∥I −∆+
ρ Σ

+(N)
ρ

∥∥∥
−

(Λ,Λ)
=

∥∥∥I −∆+
ρ Σ

+(N)
ρ

∥∥∥
Sλ

= sup
n≥N

(
λn+1

λn
|ρn|

)
< 1.

So we have shown i).

ii) This is a direct consequence of Theorem 3.1. ¤

Remark 3.3. Note that since

limn→∞(λn+1/λn)|ρn| ≤ limn→∞(λn+1/λn)limn→∞|ρn|, condition (3.2) is weaker

than the condition limn→∞(λn+1/λn)|ρn| < 1 in Proposition 3.2 ii).

Putting Λ− = (1, λ1, . . . , λn−1, . . . ), we easily deduce the following result.

Corollary 3.4. We assume Λ ∈ Ĉ1. Then we have

i) w∞(Λ) = sΛ;
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ii) ii) w∞(Λ)(∆+) = w∞(Λ−) = sΛ− and, for any given B ∈ w∞(Λ), the equa-

tion

∆+X = B (3.4)

has infinitely many solutions in w∞(Λ−) given by xn = u−∑n−1
k=1 bk, where

u is an arbitrary scalar.

Proof. i) Part (i) comes from [4].

ii) It can easily be seen that Λ ∈ Ĉ1 implies Λ− ∈ Ĉ1 and since w∞(Λ) = sΛ,

we only have to show that sΛ(∆
+) = sΛ− . From the inequality

λn−1

λn
≤ sup

n

(∑n
k=1 λk

λn

)
< ∞ for all n,

we deduce that supn(λn−1/λn) < ∞ and ∆+ ∈ (sΛ− , sΛ). Then, for any given

B ∈ sΛ, the solutions of the equation ∆+X = B are given by x1 = −u, and

xn = u+

n−1∑

k=1

bk for n ≥ 2, where u is an arbitrary scalar. (3.5)

So there exists a real K > 0, such that

|xn|
λn−1

=

∣∣u+
∑n−1

k=1 bk
∣∣

λn−1
≤ sup

n

(
|u|+K

(∑n−1
k=1 λk

)

λn−1

)
< ∞,

since supn(|u|/λn−1) < ∞. So X ∈ sΛ− and we conclude that ∆+ is surjective

from sΛ− into sΛ. Then Λ ∈ Ĉ1 implies

sΛ(∆
+) = sΛ− .

The previous argument shows that the equation ∆+X = B has infinitely many

solutions in w∞(Λ−) = sΛ− given by xn = u − ∑n−1
k=1 bk. This completes the

proof. ¤

3.1.2. Properties of ∆+(µ) considered as an operator from Dτw∞(Λ) to

Dτµw∞(Λ). Here we consider the set

Dτw∞(Λ) =

{
X = (xn)n≥1 : sup

n

(
1

λn

n∑

k=1

∣∣∣∣
xk

τk

∣∣∣∣
)

< ∞
}
.

We need the following lemma.

Lemma 3.5. Let E and F be linear subspaces of ω and assume A ∈ (E,F ).

If A is a surjective map from E to F and KerA = {0}, then
F (A) = E.

Proof. Let X ∈ F (A). Then Y = AX ∈ F . Now we show that AX ∈ F

impliesX ∈ E. For this, we assume that AX ∈ F andX /∈ E. Since A is surjective



208 Bruno de Malafosse and Eberhard Malkowsky

from E to F , there is X0 ∈ E such that Y = AX = AX0 and X −X0 ∈ KerA.

So X = X0 ∈ E which gives a contradiction. Thus we have shown F (A) ⊂ E.

The inclusion E ⊂ F (A) is immediate. This shows the lemma. ¤

Note, for instance, that for 0 < r < 1, we have ‖I −∆+‖Sr
= r < 1. This

means that ∆+ is bijective from sr to itself. Since e ∈ Ker∆+ \ {τ}, we have

∆+e = 0 ∈ sτ and e ∈ sτ (∆
+) \ sτ . This shows sr(∆+) 6= sr.

We have as a direct consequence of Theorem 3.1

Corollary 3.6. Let Λ, µ, τ ∈ U+ and assume

limn→∞
τn+1

τn
<

1

limn→∞
(λn+1

λn

) . (3.6)

i) Then ∆+ is bijective from Dτw∞(Λ) into itself and ∆+(µ) is bijective from

Dτw∞(Λ) into Dτµw∞(Λ).

ii) (Dτw∞(Λ))(C+(µ)) = Dτµw∞(Λ).

Proof. i) Here we have that ∆+X = B with B,X ∈ Dτw∞(Λ) (X being

the unknown) is equivalent to (D1/τ∆
+Dτ )X

′ = D1/τB where D1/τB ∈ w∞(Λ)

and X ′ = D1/τX ∈ w∞(Λ). So ρn = τn+1/τn for all n and, by Theorem 3.1, the

operator ∆+ is bijective from Dτw∞(Λ) into itself. Now since ∆+ (µ) = Dµ∆
+,

we easily conclude that ∆+ is bijective from Dτw∞(Λ) into itself and Dµ is

bijective from Dτw∞(Λ) into Dτµw∞(Λ) and ∆+(µ) is bijective from Dτw∞(Λ)

into Dτµw∞(Λ).

ii) Since ∆+(µ) is bijective from Dτw∞(Λ) into Dτµw∞(Λ), C+(µ)

= Σ+D1/µ = (∆+(µ))−1 is bijective from Dτµw∞(Λ) into Dτw∞(Λ). Now the

equation C+(µ)X = 0 is equivalent to Σ+Y = 0 with Y = D1/µX = (yn)n≥1 and

Y ∈ cs. Then we have ∞∑

k=n

yk = 0 for n = 1, 2, . . . .

We conclude y1 = y2 = · · · = yn = 0 for all n and KerΣ+ = KerC+(µ) = {0}.
By Lemma 3.5, we conclude (Dτw∞(Λ))(C+(µ)) = Dτµw∞(Λ). ¤

Corollary 3.7. If τ ∈ Γ+, then the equation∆+X = B has a unique solution

in Dτw∞ for any given B ∈ Dτw∞.

Proof. Indeed by Corollary 3.6, the condition τ ∈ Γ+ implies that (3.2) is

satisfied for λn = n, that is,

limn→∞
τn+1

τn
<

1

limn→∞
(
n+1
n

) = 1. ¤
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These results lead to the next remarks.

Remark 3.8. Note that if Λ ∈ Γ+ then (3.6) yields 1 < 1/limn→∞(λn+1/λn)

and ∆+ is bijective from w∞(Λ) into itself.

Remark 3.9. Using the inverse of the infinite matrix (∆+
ρ )

T ([2]), we see that,

under (3.2), we also have that
∑n

k=1 |xk| = O(λn) (n → ∞) implies

n∑

k=1

∣∣∣∣∣∣
xk +

∞∑

i=k+1




i−1∏

j=k

ρj


xi

∣∣∣∣∣∣
= O(λn) (n → ∞) for all X ∈ ω.

Now we consider an example.

Example 3.10. We choose λn = n and ρn = an − 1/nα for all n, where

(an)n ∈ c is a positive sequence with an → l for some l < 1 (n → ∞), and α > 0.

We see that if
∑n

k=1 |xk| = O(n) (n → ∞) then

n∑

k=1

∣∣∣∣∣∣
xk +

∞∑

i=k+1




i−1∏

j=k

(
aj − 1

jα

)
xi

∣∣∣∣∣∣
= O(n) (n → ∞)

for all X ∈ ω.

Remark 3.11. Note that, by Corollary 3.4 ii), we have Λ ∈ Ĉ1 if and only

if w∞(Λ)(∆+) = w∞(Λ−). Indeed, since w∞(Λ) = sΛ, it is enough to assume

that sΛ(∆
+) = sΛ− . If we take B = Λ ∈ sΛ, then the solutions of the equation

∆+X = B belong to sΛ− , and are given by xn = x1 −
∑n−1

k=1 λk, where x1 is an

arbitrary scalar and

xn

λn−1
=

x1

λn−1
− 1

λn−1

( n−1∑

k=1

λk

)
= O(1) (n → ∞).

Putting x1 = 0, we conclude that Λ ∈ Ĉ1.

3.2. Some properties of the matrix map ∆ρ.

3.2.1. On the operator ∆ρ mapping w∞(Λ) into itself. Now we study the triangle

∆ρ = (∆+
ρ )

T , that is,

∆ρ =




1

−ρ1 1 0

. .

−ρn−1 1 .

. .




.
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considered as an operator that maps w∞(Λ) to itself.

As in Subsection 3.1.1, we easily see that ∆ρ ∈ (w∞(Λ), w∞(Λ)), if

(λn−1/λn)n≥2 ∈ `∞.

Theorem 3.12. Let Λ ∈ U+ be an exponentially bounded sequence. We

assume

limn→∞|ρn| < 1

limn→∞
(λn−1

λn

) . (3.7)

Then, for any given B ∈ w∞(Λ), the equation ∆ρX = B has a unique solution in

w∞(Λ) given by x1 = b1 and 66

xn = bn +

n−1∑

k=1

( n−1∏

j=k

ρj

)
bk for all n ≥ 2. (3.8)

Proof. Let Σ
(N)
ρ be defined by




[
∆

(N)
ρ

]−1

0

1

0 .


 ,

where ∆
(N)
ρ is the finite matrix whose elements are those of the N first rows

and columns of ∆ρ. The finite matrix ∆
(N)
ρ is invertible, since it is a triangle.

We get Σ
(N)
ρ ∆ρ = (ank)n,k≥1, with ann = 1 for all n; an,n−1 = −ρn−1 for all

n ≥ N + 1; and anm = 0 otherwise. For any given X ∈ w∞(Λ), we have (I −
Σ

(N)
ρ ∆ρ)X = (ξn(X))n≥1 with ξn(X) = 0 for all n ≤ N and ξn(X) = ρn−1xn−1

for all n ≥ N + 1. Now put K ′
N = supn≥N+1(λn−1/λn) supk≥N+1 |ρk−1|. Then

we have as in Theorem 3.1

sup
n≥N+1

[(
sup

N≤k≤n
|ρk|

)
λn−1

λn

]
≤ K ′

N < 1 for all n ≥ N. (3.9)

Furthermore, we obtain

∥∥∥
(
I − Σ(N)

ρ ∆ρ

)
X
∥∥∥
−

w∞(Λ)
= sup

n≥N+1

(
1

λn

n∑

k=N+1

|ρk−1xk−1|
)

≤ sup
n≥N+1

[(
sup

N+1≤k≤n
|ρk−1|

)
λn−1

λn

]
sup
n≥N

(
1

λn−1

n−1∑

k=N

|xk|
)

≤ K ′
N‖X‖−w∞(Λ).

Finally, using (3.9), we get
∥∥∥I − Σ(N)

ρ ∆ρ

∥∥∥
−

(Λ,Λ)
≤ K ′

N < 1,

and we conclude, reasoning as Theorem 3.1. ¤



On the Banach algebra (w∞(Λ), w∞(Λ)) and applications to the solvability. . . 211

Remark 3.13. Note that since Λ is a non-decreasing sequence, we do not need

to assume limn→∞(λn−1/λn) < ∞ in Theorem 3.12.

We immediately get

Corollary 3.14. Under (3.7), we have w∞(Λ)(∆ρ) = w∞(Λ).

Corollary 3.15. i) We assume that (3.7) holds. Then

sup
n

(
1

λn

n∑

k=1

|xk|
)

< ∞

implies

sup
n





1

λn

n∑

k=2

∣∣∣∣∣∣
xk +

k−1∑

j=1




k−1∏

i=j

ρi


xj

∣∣∣∣∣∣



 < ∞ for all X.

ii) If Λ ∈ Γ and limn→∞|ρn| < 1, then

sup
n

( |xk|
λn

)
< ∞

implies

sup
n





1

λn

∣∣∣∣∣∣
xn +

n−1∑

j=1




n−1∏

i=j

ρi


xj

∣∣∣∣∣∣



 < ∞ for all X.

Proof. i) Part i) is an immediate consequence of Theorem 3.12.

ii) Since Λ ∈ Γ, that is, limn→∞(λn−1/λn) < 1, we have

limn→∞|ρn| < 1 <
1

limn→∞(λn−1/λn)

and condition (3.7) follows. Now, by Corollary 3.4, we have w∞(Λ) = sΛ and,

by Theorem 3.12, ∆ρ is bijective from sΛ into itself. We conclude, using iden-

tity (3.8). ¤

Remark 3.16. Putting ∆1 = ∆, we see that if Λ ∈ Γ then w∞(Λ)(∆) =

w∞(Λ). Indeed by Theorem 3.12, condition (3.7) implies limn→∞(λn−1/λn) < 1,

that is, Λ ∈ Γ. Since Γ ⊂ Ĉ1, applying Corollary 3.4, we conclude w∞(Λ) = sΛ
and sΛ(∆) = sΛ.

These results lead to consider the sets [C(Λ), C(µ)]∞ and [C(Λ),∆ρ(µ)]∞,

([5]). In this way we obtain the following results.
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3.2.2. On the sets [C(Λ), C(µ)]∞ and [C(Λ),∆ρ(µ)]∞. Now we can give some

applications of the previous results. For this, we define for Λ, µ ∈ U+ the set

[C(Λ), C(µ)]∞ = {X ∈ ω : C(Λ)(|C(µ)X|) ∈ `∞} .

Then we have

[C(Λ), C(µ)]∞ =

{
X ∈ ω : sup

n

(
1

λn

n∑

k=1

1

µk

∣∣∣∣∣
k∑

i=1

xi

∣∣∣∣∣

)
< ∞

}
.

It was shown in [5, Theorem 3.1] that if Λ,Λµ ∈ Ĉ1 then

[C(Λ), C(µ)]∞ = sΛµ.

This result can be improved here as follows. We put C1 = C((n)n≥1). The

following result holds.

Proposition 3.17. Let µ,Λ ∈ U+.

i) If

limn→∞
µn−1

µn
<

1

limn→∞
λn−1

λn

,

then [C(Λ), C(µ)]∞ = Dµw∞(Λ).

ii) If µ ∈ Γ, then A ∈ ([C1, C(µ)]∞, sη) if and only if

∞∑

i=1

2i max
2i≤m≤2i+1−1

|anm|µm = ηnO(1) (n → ∞).

Proof. i) We have ∆ρ = D1/µ∆Dµ with ρn = µn−1/µn for all n, and

∆ : Dµw∞(Λ) 7−→ Dµw∞(Λ) is bijective, so Dµw∞(Λ)(∆) = Dµw∞(Λ). We

have X ∈ [C(Λ), C(µ)]∞ if and only if C(µ)X ∈ w∞(Λ), that is

X ∈ C(µ)−1w∞(Λ);

and since C(µ)−1 = ∆(µ) = ∆Dµ, we have X ∈ ∆Dµw∞(Λ) = Dµw∞(Λ). Thus

we have shown Part i).

ii) Here λn = n for all n, so limn→∞(λn−1/λn) = 1 and condition (3.7)

is satisfied, since µ ∈ Γ. By Part i), we have [C1, C(µ)]∞ = Dµw∞ and A ∈
([C1, C(µ)]∞, sη) if and only if D1/ηADµ ∈ (w∞(Λ), `∞). We conclude, using the

characterization of (w∞(Λ), `∞), given in [11, Remark, p. 33]. ¤
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Now we write ∆ρ(µ) = ∆ρDµ and

[C(Λ),∆ρ(µ)]∞ = {X ∈ ω : C(Λ)(|∆ρ(µ)X|) ∈ `∞} .

Then we have

[C(Λ),∆ρ(µ)]∞ =

{
X ∈ ω : sup

n

(
1

λn

n∑

k=1

|µkxk − µk−1ρk−1xk−1|
)

< ∞
}
.

We obtain the following result.

Proposition 3.18. Let Λ, µ, ρ ∈ U+.

i) We assume that (3.7) holds. Then [C(Λ),∆ρ(µ)]∞ = D1/µw∞(Λ);

ii) A ∈ ([C(Λ),∆ρ(µ)]∞, sη) if and only if

∞∑

i=1

2i max
2i≤m≤2i+1−1

|anm|
µn

= ηnO(1) (n → ∞).

Proof. Here C(Λ)(|∆ρ(µ)X|) ∈ `∞ if and only if DµX ∈ w∞(Λ)(∆ρ) and,

by (3.7), we get w∞(Λ)(∆ρ) = w∞(Λ).

(ii) We obtain Part ii), reasoning as in Proposition 3.17 ii). ¤

4. On an infinite tridiagonal matrix considered as an operator

from w∞(Λ) into itself and applications

In this section, we give some results on the infinite tridiagonal matrix

M(γ, a, η), considered as an operator from χ into Daχ where χ is any of the sets

w∞(Λ), sΛ,s
0
Λ, s

(c)
Λ , or `p(Λ).

Note that the previous results on ∆+
ρ and ∆ρ cannot be considered as a

consequence of the next ones.

Let γ = (γn)n≥1, η = (ηn)n≥1 and a = (an)n≥1 be given sequences, and

a ∈ U . We consider the infinite tridiagonal matrix

M(γ, a, η) =




a1 η1
γ1 a2 η2 O

. . .

O γn−1 an ηn
. .




.
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In the following we use the sets

`p =

{
X = (xn)n≥1 :

∞∑
n=1

|xn|p < ∞
}

for 1 ≤ p < ∞

and `p(τ) = Dτ `p for τ ∈ U+.

We notice that Dasτ = D|a|sτ = s|a|τ , Das
0
τ = D|a|s0τ = s0|a|τ and Da`p(τ) =

`p(|a|τ) for τ ∈ U+.

We suppose that K1 = supn≥2 |γn−1/an| < 1 and K2 = supn |ηn/an| > 0.

The following theorem holds.

Theorem 4.1. Let Λ ∈ U+ be an exponentially bounded sequence and

assume that

sup
n

(
λn+1

λn

)
<

1−K1

K2
. (4.1)

Then, for any given B ∈ Daw∞(Λ), the equation M(γ, a, η)X = B has a unique

solution in w∞(Λ) given by X =
∑∞

i=0(I −M(γ, a, η))iB.

Proof. We consider D1/aM(γ, a, η) = M(ζ, e, ρ) with ζn−1 = γn−1/an for

n ≥ 2 and ρn = ηn/an for all n. Then we have

M(ζ, e, ρ) = M(ζ, ρ) =




1 ρ1
ζ1 1 ρ2 O

. . .

O ζn−1 1 ρn
. .




.

(Note that M(ζ, ρ) = (∆−2ζ +∆+
−2ρ)/2). Here we have

(I −M(ζ, ρ))X = −(ρ1x2, ζ1x1 + ρ2x3, . . . , ζn−1xn−1 + ρnxn+1, . . . )
T .

Then

‖(I −M(ζ, ρ))X‖−w∞(Λ) = sup
n

(
1

λn

n∑

k=1

|ζk−1xk−1 + ρkxk+1|
)

with x0 = 0 and

1

λn

n∑

k=1

|ζk−1xk−1 + ρkxk+1| ≤ λn−1

λn
sup

k≤n−1
|ζk| 1

λn−1

n−1∑

k=1

|xk|

+
λn+1

λn
sup
k≤n

|ρk| 1

λn+1

n+1∑

k=2

|xk| ≤
[
sup
n

(
λn−1

λn

)
K1 + sup

n

(
λn+1

λn

)
K2

]
‖X‖−w∞(Λ).
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Since Λ is a non-decreasing sequence, supn(λn−1/λn) ≤ 1, and using (4.1), we

easily conclude that

‖I −M(ζ, ρ)‖−(w∞(Λ),w∞(Λ)) = sup
X 6=0

‖(I −M(ζ, ρ))X‖−w∞(Λ)

‖X‖−w∞(Λ)

≤ K1 + sup
n

(
λn+1

λn

)
K2 < 1.

Finally, for any given B ∈ w∞(Λ), the equation M(γ, a, η)X = B is equivalent

to M(ζ, ρ)X = D1/aB. So, for any given B ∈ Daw∞(Λ), the last equation has a

unique solution in w∞(Λ). ¤

Corollary 4.2. Let λ ∈ U+ be an exponentially bounded sequence and

assume that (4.1) holds. Then

i) M(γ,a,η) is bijective from w∞(Λ) toDaw∞(Λ) andM(γ, a, η)−1∈(Daw∞(Λ),

w∞(Λ));

ii) M(γ, a, η) is bijective from sΛ into s|a|Λ and M(γ, a, η)−1 ∈ (s|a|Λ, sΛ);

iii) M(γ, a, η) is bijective from s
◦
Λ into s

◦
|a|Λ and M(γ, a, η)−1 ∈ (s

◦
|a|Λ, s

◦
Λ);

iv) for a ∈ U+, the condition limn→∞(γn−1λn−1 + ηnλn+1)λ
−1
n a−1

n = l 6= 0,

implies that M(γ, a, η) is bijective from s
(c)
Λ into s

(c)
aΛ, and M(γ, a, η)−1 ∈

(s
(c)
aΛ, s

(c)
Λ ).

v) Let p ≥ 1 be a real. If K̃p,Λ = K1 + K ′
2 < 1 with K1 = supn(|γn−1/an|)

and K ′
2 = supn(|ηn/an|λn+1/λn), then M(γ, a, η) is bijective from `p(Λ) into

`p(|a|Λ), and M(γ, a, η)−1 ∈ (`p(|a|Λ), `p(Λ)).
Proof. By [5, Theorem 6.1] 4.1 and Condition (4.1), we have

ξ(Λ) = sup
n≥1

[
1

|an|
(
|γn−1|λn−1

λn
+ |ηn|λn+1

λn

)]
< 1,

and K̃p,Λ = K1 +K ′
2 < 1, since

ξ(Λ) ≤ K̃p,Λ ≤ K1 + sup
n

(
λn+1

λn

)
K2 < 1. ¤

We can also explicitly calculate the solution of an infinite tridiagonal system

when γn = γ and ηn = η for all n. Indeed the next result was shown in [6], where

M(ζ, ρ) = M(ζ, e, ρ).
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Proposition 4.3. Let ζ, ρ be positive reals with 0 < ζ + ρ < 1. Then

i) M(ζ, ρ) : X 7−→ M(ζ, ρ)X is bijective from χ into itself, for χ ∈ {s1, c0, c}.
ii) a) Let χ be any of the sets s1, or c0, or c, and put

u =
(
1−

√
1− 4ζρ

)
/2ζ and v =

(
1−

√
1− 4ζρ

)
/2ζ.

Then, for any given B ∈ χ, the equation M(ζ, ρ)X = B has a unique

solution X
◦
= (x

◦
n)n≥1 in χ given by

x
◦
n =

(
uv + 1

uv − 1

)
(−1)nvn

∞∑
m=1

[1− (uv)−l](−1)mumbm for all n,

with l = min{n,m}.
b) The inverse [M(ζ, ρ)]−1 = (a′nm)n,m≥1 is given by

a′nm =

(
uv + 1

uv − 1

)
(−v)n−m[(uv)l − 1] for all n,m ≥ 1 and l = min{n,m}.

References

[1] I. J. Maddox, On Kuttner’s theorem, J. London Math. Soc. 43 (1968), 285–290.

[2] B. de Malafosse, Sets of sequences that are strongly τ -bounded and matrix transforma-
tions between these sets, Demonstr. Math. 36 (2003), 155–171.

[3] B. de Malafosse, On some BK space, Int. J. Math. Math. Sci. 28 (2003), 1783–1801.

[4] B. de Malafosse, On the set of sequences that are strongly α-bounded and α-convergent
to naught with index p, Semin. Mat. Univ. Politec. Torino 61 (2003), 13–32.

[5] B. de Malafosse, Calculations on some sequence spaces, Int. J. Math. Math. Sci. 31
(2004), 1653–1670.

[6] B. de Malafosse, The Banach algebra B(X), where X is a BK space and applications,
Mat. Vesnik 57, (2005), 41–60.

[7] B. de Malafosse and E. Malkowsky, Matrix transformations in the sets χ(NpNq) where

χ is in the form sξ, or s◦ξ , or s
(c)
ξ , Filomat 17 (2003), 85–106.

[8] B. de Malafosse and E. Malkowsky, Sequence spaces and inverse of an infinite matrix,
Rend. del Circ. Mat. di Palermo, Serie II. 51 (2002), 277–294.

[9] E. Malkowsky, The continuous duals of the spaces c0(Λ) and c(Λ) for exponentially
bounded sequences Λ, Acta Sci. Math. (Szeged) 61 (1995), 241–250.

[10] E. Malkowsky, Banach algebras of matrix transformations between spaces of strongly
bounded and summable sequences, Adv. Dyn. Syst. Appl. 6 (2011), 91–109.
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76600 LE HAVRE

FRANCE

E-mail: bdemalaf@wanadoo.fr

EBERHARD MALKOWSKY

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF GIESSEN

ARNDTSTRASSE 2

D-35392 GIESSEN

GERMANY

C/O DEPARTMENT OF MATHEMATICS

FACULTY OF ARTS AND SCIENCES

FATIH UNIVERSITY

34500 BÜYÜKČEKMECE
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