On the Banach algebra $\left(w_{\infty}(\Lambda), w_{\infty}(\Lambda)\right)$ and applications to the solvability of matrix equations in $w_{\infty}(\Lambda)$

By BRUNO DE MALAFOSSE (Le Havre) and EBERHARD MALKOWSKY (Giessen)

Abstract

We apply the characterisation of the class $\left(w_{\infty}(\Lambda), w_{\infty}(\Sigma)\right)$ and the fact that this is a Banach algebra to study the solvability in $w_{\infty}(\Lambda)$ of matrix equations of the form $\Delta_{\rho}^{+} X=B$ and $\Delta_{\rho} X=B$, where Δ_{ρ}^{+}and Δ_{ρ} are upper and lower triangular matrices. Finally, we obtain some results on infinite tridiagonal matrices considered as operators from $w_{\infty}(\Lambda)$ into itself, and study the solvability in $w_{\infty}(\Lambda)$ of matrix equations for tridiagonal matrices.

1. Introduction and known results

Let ω denote the set of all sequences $x=\left(x_{k}\right)_{k=0}^{\infty}$, and ℓ_{∞}, c_{0} and ϕ be the sets of all bounded, null and finite sequences, respectively. We write e and $e^{(n)}$ $(n=0,1, \ldots)$ for the sequences with $e_{k}=1$ for all k, and $e_{n}^{(n)}=1$ and $e_{k}^{(n)}=0$ for $k \neq n$.

A $B K$ space X is a Banach sequence space with continuous coordinates $P_{k}: X \rightarrow \mathrm{C}$ where $P_{n}(x)=x_{k}(k=0,1, \ldots)$ for all $x \in X$. A $B K$ space $X \supset \phi$ is said to have $A K$ if $x=\sum_{k=0}^{\infty} x_{k} e^{(k)}$ for every sequence $x=\left(x_{k}\right)_{k=0}^{\infty} \in X$.

Let X be a subset of ω. Then the set $X^{\beta}=\left\{a \in \omega: \sum_{k=0}^{\infty} a_{k} x_{k}\right.$ converges for all $x \in X\}$ is called the β-dual of X.

Let $A=\left(a_{n k}\right)_{k=0}^{\infty}$ be an infinite matrix of complex numbers and $x=\left(x_{k}\right)_{k=0}^{\infty} \in \omega$. Then we write $A_{n}=\left(a_{n k}\right)_{k=0}^{\infty}(n=0,1, \ldots)$ and $A^{k}=\left(a_{n k}\right)_{n=0}^{\infty}(k=0,1, \ldots)$ for

[^0]the sequences in the n-th row and the k-th column of A, and $A_{n}(x)=\sum_{k=0}^{\infty} a_{n k} x_{k}$ provided the series converges. Given any subsets X and Y of ω, we write (X, Y) for the class of all infinite matrices A that map X into Y, that is $A_{n} \in X^{\beta}$ for all n, and $A(x)=\left(A_{n}(x)\right)_{n=0}^{\infty} \in Y$.

Let X and Y be Banach spaces, and $B_{X}=\{x \in X:\|x\| \leq 1\}$ denote the unit ball in X. Then $\mathcal{B}(X, Y)$ denotes the Banach space of all bounded linear operators $L: X \rightarrow Y$ with the operator norm $\|L\|=\sup _{x \in B_{X}}\|L(x)\| ; X^{*}=\mathcal{B}(X, \mathbb{C})$ is the continuous dual of X with the norm $\|f\|=\sup _{x \in B_{X}}|f(x)|$ for al $f \in X^{*}$. It is well known ([12, Theorem 4.2.8]) that if X and Y are $B K$ spaces then $(X, Y) \subset \mathcal{B}(X, Y)$, that is, if $A \in(X, Y)$, then $L_{A} \in \mathcal{B}(X, Y)$ where $L_{A}(x)=A(x)$ for all $x \in X$.

Let $\left(\mu_{n}\right)_{n=0}^{\infty}$ be a non-decreasing sequence of positive reals tending to infinity. The set

$$
\tilde{w}_{\infty}(\mu)=\left\{x \in \omega: \sup _{n} \frac{1}{\mu_{n}} \sum_{k=0}^{n}\left|x_{k}\right|<\infty\right\}
$$

was defined and studied in [9], where the concept of exponentially bounded sequences was introduced. When $\mu_{n}=n+1(n=0,1, \ldots)$ then this set reduces w_{∞}, the set of all sequences that are strongly bounded by the Cesàro method of order 1 ([1]). A non-decreasing sequence $\Lambda=\left(\lambda_{n}\right)_{n=0}^{\infty}$ of positive is called exponentially bounded if there is an integer $m \geq 2$ such that for all non-negative integers ν there is at least one term λ_{n} in the interval $I_{m}^{(\nu)}=\left[m^{\nu}, m^{\nu+1}-1\right]$. It was shown ([9, Lemma 1]) that a non-decreasing sequence $\Lambda=\left(\lambda_{n}\right)_{n=0}^{\infty}$ is exponentially bounded, if and only if there are reals $s \leq t$ such that for some subsequence $\left(\lambda_{n(\nu)}\right)_{\nu=0}^{\infty}$

$$
0<s \leq \frac{\lambda_{n(\nu)}}{\lambda_{n(\nu+1)}} \leq t<1 \quad \text { for all } \nu=0,1, \ldots
$$

such a subsequence is called an associated subsequence.
If $\Lambda=\left(\lambda_{n}\right)_{n=0}^{\infty}$ is an exponentially bounded sequence, and $\left(\lambda_{n(\nu)}\right)_{\nu=0}^{\infty}$ is an associated subsequence with $\lambda_{n(0)}=\lambda_{0}$, then we write $K_{\nu}(\nu=0,1, \ldots)$ for the set of all integers k with $n(\nu) \leq k \leq n(\nu+1)-1$, and define the sets

$$
w_{0}(\Lambda)=\left\{x \in \omega: \lim _{\nu \rightarrow \infty} \frac{1}{\lambda_{n(\nu+1)}} \sum_{k \in K_{\nu}}\left|x_{k}\right|=0\right\}
$$

and

$$
w_{\infty}(\Lambda)=\left\{x \in \omega: \sup _{\nu} \frac{1}{\lambda_{n(\nu+1)}} \sum_{k \in K_{\nu}}\left|x_{k}\right|<\infty\right\}
$$

The next result is well known.

On the Banach algebra $\left(w_{\infty}(\Lambda), w_{\infty}(\Lambda)\right)$ and applications to the solvability... 199
Theorem 1.1 ([9, Theorem 1 (a), (b)]). Let $\left(\mu_{n}\right)_{n=0}^{\infty}$ be a non-decreasing sequence of positive reals tending to infinity, $\Lambda=\left(\lambda_{n}\right)_{n=0}^{\infty}$ be an exponentially bounded sequence and $\left(\lambda_{n(\nu)}\right)_{n=0}^{\infty}$ be an associated subsequence. Then $\tilde{w}_{\infty}(\mu)$ is a $B K$ space with the norm $\|\cdot\|_{\mu}^{-}$defined by

$$
\begin{equation*}
\|x\|_{\mu}^{-}=\sup _{n} \frac{1}{\mu_{n}} \sum_{k=0}^{n}\left|x_{k}\right| . \tag{1.1}
\end{equation*}
$$

Moreover, we have $\tilde{w}_{\infty}(\Lambda)=w_{\infty}(\Lambda)$, and the norms $\|\cdot\|_{\Lambda}^{-}$and $\|\cdot\|_{\Lambda}$ are equivalent on $w_{\infty}(\Lambda)$, where

$$
\begin{equation*}
\|x\|_{\Lambda}=\sup _{\nu} \frac{1}{\lambda_{n(\nu+1)}} \sum_{k \in K_{\nu}}\left|x_{k}\right| . \tag{1.2}
\end{equation*}
$$

Thus, in view of the previous result, we always assume, unless explicitly stated otherwise, that Λ is an exponentially bounded sequence and $\left(\lambda_{n(\nu)}\right)_{n=0}^{\infty}$ is an associated subsequence, and we consider the spaces $w_{0}(\Lambda)$ and $w_{\infty}(\Lambda)$ with the norm $\|\cdot\|=\|\cdot\|_{\Lambda}$.

First we give the characterisaton of the class $\left(w_{\infty}(\Lambda), w_{\infty}(\Sigma)\right)$. Let $\Lambda=$ $\left(\lambda_{k}\right)_{k=0}^{\infty}$ and $\Sigma=\left(\sigma_{m}\right)_{m=0}^{\infty}$ be exponentially bounded sequences and $\left(\lambda_{k(\nu)}\right)_{\nu=0}^{\infty}$ and $\left(\sigma_{m(\mu)}\right)_{\mu=0}^{\infty}$ be associated subsequences. Furthermore, let $K_{\nu}(\nu=0,1, \ldots)$ and $M_{\mu}(\mu=0,1, \ldots)$ be the sets of all integers k and m with $k(\nu) \leq k \leq$ $k(\nu+1)-1$ and $m(\mu) \leq m \leq m(\mu+1)-1$. We obtain the characterisation of the class $\left(w_{\infty}(\Lambda), w_{\infty}(\Sigma)\right)$ as the special case $p=1$ of [10, Theorem 3.1].

Theorem 1.2. We have $A \in\left(w_{\infty}(\Lambda), w_{\infty}(\Sigma)\right)$ if and only if

$$
\begin{align*}
& \|A\|_{\left(w_{\infty}(\Lambda), w_{\infty}(\Sigma)\right)} \\
& \quad=\sup _{\mu}\left(\frac{1}{\sigma_{m(\mu+1)}} \max _{M(\mu) \subset M_{\mu}} \sum_{\nu=0}^{\infty} \lambda_{k(\nu+1)} \max _{k \in K_{\nu}}\left|\sum_{m \in M(\mu)} a_{m k}\right|\right)<\infty \tag{1.3}
\end{align*}
$$

If $A \in\left(w_{\infty}(\Lambda), w_{\infty}(\Sigma)\right)$, then

$$
\begin{equation*}
\|A\|_{\left(w_{\infty}(\Lambda), w_{\infty}(\Sigma)\right)} \leq\left\|L_{A}\right\| \leq 4 \cdot\|A\|_{\left(w_{\infty}(\Lambda), w_{\infty}(\Sigma)\right)} . \tag{1.4}
\end{equation*}
$$

Finally we need the following known result.
Theorem 1.3 ([10, Theorem 4.2]). The class $\left(w_{\infty}(\Lambda), w_{\infty}(\Lambda)\right)$ is a Banach algebra with respect to the norm

$$
\|A\|_{(\Lambda, \Lambda)}=\sup \left\{\|A\|_{\Lambda}:\|x\|_{\Lambda} \leq 1\right\}=\left\|L_{A}\right\| \quad \text { for all } A \in\left(w_{\infty}(\Lambda), w_{\infty}(\Lambda)\right)
$$

In this paper, we use the characterisation of the class $\left(w_{\infty}(\Lambda), w_{\infty}(\Lambda)\right)$ in Theorem 1.2 and the fact that this class is a Banach algebra to study the solvability in $w_{\infty}(\Lambda)$ of matrix equations of the form $\Delta_{\rho}^{+} X=B$ and $\Delta_{\rho} X=B$, where Δ_{ρ}^{+}and Δ_{ρ} are upper and lower triangular matrices. Finally, we obtain some results on infinite tridiagonal matrices considered as operators from $w_{\infty}(\Lambda)$ into itself, and study the solvability in $w_{\infty}(\Lambda)$ of matrix equations for tridiagonal matrices; these results are new. Our results on the Banach algebra and the deduced solvability in $w_{\infty}(\Lambda)$ of matrix equations are also useful for statistical convergence, and for A-statistical convergence, where A is an operator represented by an infinite matrix. They can also be applied in spectral theory and the study of operators generators of analytic semi-group, and be used in the intuitionistic fuzzy normed space (IFNS).

2. The sets $s_{\tau}^{0}, s_{\tau}^{(c)}$ and s_{τ}

We are going to study the solvability of certain matrix equations $A X=B$ in $w_{\infty}(\Lambda)$, where B belongs to the set $w_{\infty}(\Lambda)$ and A is an infinite matrix.

First, we recall some results on the sets $s_{\tau}^{0}, s_{\tau}^{(c)}$ and s_{τ} which are needed in the sequel. These sets are closely related to the sets c_{0}, c and ℓ_{∞}. We also define and study the sets $\widehat{C}, \widehat{\Gamma}, \Gamma$ and \widehat{C}_{1}.

We slightly change our notations to match those normally used in the theory of infinite systems of linear equations, in particular, we consider sequences x as one-column matrices X. It is also more convenient for the indices to run from 1 to ∞ instead of from 0 to ∞.

Thus, for a given infinite matrix $A=\left(a_{n k}\right)_{n, k \geq 1}$, we consider the operators A_{n} for any integer $n \geq 1$, defined by

$$
\begin{equation*}
A_{n}(X)=\sum_{k=1}^{\infty} a_{n k} x_{k} \tag{2.1}
\end{equation*}
$$

where $X=\left(x_{n}\right)_{n \geq 1}$ is a one-column matrix of complex numbers, and the series are assumed to be convergent. So we are led to the study of the infinite linear system

$$
\begin{equation*}
A_{n}(X)=b_{n} \quad \text { for } n=1,2, \ldots \tag{2.2}
\end{equation*}
$$

where $B=\left(b_{n}\right)_{n \geq 1}$ is a one-column matrix and X the unknown ([2], [4], [5], $[6]$, [7], [8]). The equations in (2.2) can be written in the form $A X=B$, where $A X=\left(A_{n}(X)\right)_{n \geq 1}$. We also consider A as an operator from a sequence space into another sequence space.

On the Banach algebra $\left(w_{\infty}(\Lambda), w_{\infty}(\Lambda)\right)$ and applications to the solvability... 201
By $c s$, we denote the set of all convergent series.
2.1. The sets $D_{\tau} E$, where E is any of the sets c_{0}, c, or ℓ_{∞}. Throughout, we use the set

$$
U^{+}=\left\{\left(u_{n}\right)_{n \geq 1} \in \omega: u_{n}>0 \text { for all } n\right\} .
$$

For a given sequence $\tau=\left(\tau_{n}\right)_{n \geq 1} \in U^{+}$, we define the infinite diagonal matrix $D_{\tau}=\left(\tau_{n} \delta_{n k}\right)_{n, k \geq 1} ; D_{\tau}$ can be considered as the operator $X=\left(x_{n}\right)_{n \geq 1} \mapsto D_{\tau} X=$ $\left(\tau_{n} x_{n}\right)_{n \geq 1}$ from ω to itself. For any subset E of ω, we write

$$
D_{\tau} E=\left\{\left(x_{n}\right)_{n \geq 1} \in \omega:\left(\frac{x_{n}}{\tau_{n}}\right)_{n} \in E\right\},
$$

in particular,

$$
D_{\tau} E= \begin{cases}s_{\tau}^{0} & \text { if } E=c_{0} \\ s_{\tau}^{(c)} & \text { if } E=c \\ s_{\tau} & \text { if } E=\ell_{\infty}\end{cases}
$$

([3]). Each of the spaces $D_{\tau} E$, where $E \in\left\{c_{0}, c, \ell_{\infty}\right\}$, is a BK space normed by

$$
\begin{equation*}
\|X\|_{s_{\tau}}=\sup _{n \geq 1}\left(\frac{\left|x_{n}\right|}{\tau_{n}}\right) \tag{2.3}
\end{equation*}
$$

and s_{τ}^{0} has AK.
Now let $\tau=\left(\tau_{n}\right)_{n \geq 1}, \nu=\left(\nu_{n}\right)_{n \geq 1} \in U^{+}$. We write $S_{\tau, \nu}$ for the set of infinite matrices $A=\left(a_{n m}\right)_{n, m \geq 1}$ such that $\sup _{n \geq 1}\left(\sum_{k=1}^{\infty}\left|a_{n k}\right| \tau_{k} / \nu_{n}\right)<\infty$. The set $S_{\tau, \nu}$ is a Banach space with the norm

$$
\|A\|_{S_{\tau, \nu}}=\sup _{n \geq 1}\left(\frac{1}{\nu_{n}} \sum_{k=1}^{\infty}\left|a_{n k}\right| \tau_{k}\right) .
$$

It was proved in [8] that $A \in\left(s_{\tau}, s_{\nu}\right)$ if and only if $A \in S_{\tau, \nu}$, that is, $\left(s_{\tau}, s_{\nu}\right)=S_{\tau, \nu}$.
When $s_{\tau}=s_{\nu}$ then $S_{\tau}=S_{\tau, \nu}$ is a Banach algebra with identity, normed by $\|A\|_{S_{\tau}}=\|A\|_{S_{\tau, \tau}}([3,5])$.

If $\tau=\left(r^{n}\right)_{n \geq 1}$, we write S_{r}, s_{r}, s_{r}^{0} and $s_{r}^{(c)}$ for $S_{\tau}, s_{\tau}, s_{\tau}^{0}$ and $s_{\tau}^{(c)}$, respectively. When $r=1$, we obtain $s_{1}=\ell_{\infty}, s_{1}^{0}=c_{0}$ and $s_{1}^{(c)}=c$. Thus we have $S_{1}=S_{e}$. It is well known ([12, Example 8.4.5A]) that

$$
\left(s_{1}, s_{1}\right)=\left(c_{0}, s_{1}\right)=\left(c, s_{1}\right)=S_{1} .
$$

For any subset E of ω, we put

$$
\begin{equation*}
A E=\{Y \in \omega: Y=A X \text { for some } X \in E\} . \tag{2.4}
\end{equation*}
$$

If F is a subset of ω, we write

$$
\begin{equation*}
F(A)=F_{A}=\{X \in \omega: Y=A X \in F\} . \tag{2.5}
\end{equation*}
$$

2.2. Some properties of the sequence $\mathbf{C}(\mathbf{X}) \mathbf{X}$. Here we deal with the operators represented by $C(\Lambda)$ and $\Delta(\Lambda)$. Let U be the set of all sequences $\left(u_{n}\right)_{n \geq 1}$ with $u_{n} \neq 0$ for all n. We define $C(\Lambda)=\left(c_{n k}\right)_{n, k \geq 1}$ for $\Lambda=\left(\lambda_{n}\right)_{n \geq 1} \in U$, by

$$
c_{n k}= \begin{cases}\frac{1}{\lambda_{n}} & \text { if } k \leq n \\ 0 & \text { otherwise }\end{cases}
$$

We write $C(\Lambda)^{T}=C^{+}(\Lambda), C(e)=\Sigma$ and $\Sigma^{+}=\Sigma^{T}$. The matrix $\Delta(\Lambda)=$ $\left(c_{n k}^{\prime}\right)_{n, k \geq 1}$ with

$$
c_{n k}^{\prime}= \begin{cases}\lambda_{n} & \text { if } k=n \\ -\lambda_{n-1} & \text { if } k=n-1 \text { and } n \geq 2 \\ 0 & \text { otherwise }\end{cases}
$$

is the inverse of $C(\Lambda)([3],[4])$. We need to recall some results given in [3], [7]. For this, we consider the following sets

$$
\begin{aligned}
\widehat{C_{1}} & =\left\{X=\left(x_{n}\right)_{n \geq 1} \in U^{+}: \sup _{n}\left[\frac{1}{x_{n}}\left(\sum_{k=1}^{n} x_{k}\right)\right]<\infty\right\} \\
\widehat{C} & =\left\{X=\left(x_{n}\right)_{n \geq 1} \in U^{+}:\left(\frac{1}{x_{n}}\left(\sum_{k=1}^{n} x_{k}\right)\right)_{n \geq 1} \in c\right\} \\
\widehat{C_{1}^{+}} & =\left\{X \in U^{+} \bigcap c s: \sup _{n}\left[\frac{1}{x_{n}}\left(\sum_{k=n}^{\infty} x_{k}\right)\right]<\infty\right\} \\
\Gamma & =\left\{X \in U^{+}: \varlimsup_{n \rightarrow \infty}\left(\frac{x_{n-1}}{x_{n}}\right)<1\right\} \\
\widehat{\Gamma} & =\left\{X \in U^{+}: \lim _{n \rightarrow \infty}\left(\frac{x_{n-1}}{x_{n}}\right)<1\right\} \\
\Gamma^{+} & =\left\{X \in U^{+}: \varlimsup_{n \rightarrow \infty}\left(\frac{x_{n+1}}{x_{n}}\right)<1\right\} .
\end{aligned}
$$

Note that $X \in \Gamma^{+}$if and only if $1 / X \in \Gamma$. We will see in Lemma 2.1 that if $X \in \widehat{C_{1}}$, then $x_{n} \rightarrow \infty(n \rightarrow \infty)$. Furthermore, $X \in \Gamma$ if and only if there is an integer $q \geq 1$ such that

$$
\gamma_{q}(X)=\sup _{n \geq q+1}\left(\frac{x_{n-1}}{x_{n}}\right)<1
$$

Writing

$$
[C(X) X]_{n}=\frac{1}{x_{n}}\left(\sum_{k=1}^{n} x_{k}\right)
$$

we obtain the following the following result from [5, Proposition 2.1].

On the Banach algebra $\left(w_{\infty}(\Lambda), w_{\infty}(\Lambda)\right)$ and applications to the solvability... 203
Lemma 2.1. Let $\tau \in U^{+}$. Then
i) $\left(\tau_{n-1} / \tau_{n}\right)_{n \geq 1} \rightarrow 0(n \rightarrow \infty)$ if and only if $[C(\tau) \tau]_{n} \rightarrow 1(n \rightarrow \infty)$.
ii) a) $\tau \in \widehat{C}$ if and only if $\left(\tau_{n-1} / \tau_{n}\right)_{n=0}^{\infty} \in c$,
b) $[C(\tau) \tau]_{n} \rightarrow l(n \rightarrow \infty)$ if and only if $\tau_{n-1} / \tau_{n} \rightarrow 1-1 / l(n \rightarrow \infty)$.
iii) If $\tau \in \widehat{C_{1}}$ then there are $K>0$ and $\gamma>1$ such that

$$
\begin{equation*}
\tau_{n} \geq K \gamma^{n} \quad \text { for all } n \tag{2.6}
\end{equation*}
$$

iv) The condition $\tau \in \Gamma$ implies $\tau \in \widehat{C_{1}}$ and there is a real $b>0$ such that

$$
\begin{equation*}
[C(\tau) \tau]_{n} \leq \frac{1}{1-\gamma_{q}(\tau)}+b \gamma_{q}(\tau)^{n} \quad \text { for } n \geq q+1 \tag{2.7}
\end{equation*}
$$

v) The condition $\tau \in \Gamma^{+}$implies $\tau \in \widehat{C_{1}^{+}}$.

It was also shown in [7] that

$$
\widehat{C}=\widehat{\Gamma} \subset \Gamma \subset \widehat{C_{1}} .
$$

3. The Characterizations of some operators mapping $w_{\infty}(\Lambda)$ into itself

In this section, we apply Theorem 1.3 to infinite matrices such as $\Delta_{\rho}^{+}, \Delta_{\rho}$ considered as operators from $w_{\infty}(\Lambda)$ into $D_{a} w_{\infty}(\Lambda)$.

Throughout, we assume that $\Lambda=\left(\lambda_{n}\right)_{n \geq 1}$ is an exponentially bounded sequence, and $\left(\lambda_{n_{i}}\right)_{i \geq 1}$ is an associated subsequence.

As an immediate consequence of Theorem 1.3, we see that $\left(w_{\infty}(\Lambda), w_{\infty}(\Lambda)\right)$ is a Banach algebra with the norm

$$
\begin{equation*}
\|A\|_{(\Lambda, \Lambda)}^{-}=\sup _{X \neq 0}\left(\frac{\|A X\|_{\Lambda}^{-}}{\|X\|_{\Lambda}^{-}}\right) \tag{3.1}
\end{equation*}
$$

where $\|\cdot\|^{-}$is the norm defined in (1.1).
Since the sequence Λ with $\lambda_{n}=n(n=1,2 \ldots)$ is exponentially bounded, we obtain in particular that $\left(w_{\infty}, w_{\infty}\right)$ is a Banach algebra with the norm in (3.1) where

$$
\|X\|^{-}=\sup _{n}\left(\frac{1}{n} \sum_{k=1}^{n}\left|x_{k}\right|\right)
$$

3.1. Some properties of the matrix map Δ_{ρ}^{+}.

3.1.1. The map Δ_{ρ}^{+}considered as an operator from $w_{\infty}(\Lambda)$ into itself. Let $\rho=$ $\left(\rho_{n}\right)_{n \geq 1}$ and consider the infinite matrix $\Delta_{\rho}^{+}=\left\{\left(\Delta_{\rho}^{+}\right)_{n k}\right\}$ defined by

$$
\left(\Delta_{\rho}^{+}\right)_{n k}= \begin{cases}1 & (k=n) \\ -\rho_{n} & (k=n+1) \quad \text { for all } n, k \\ 0 & (\text { otherwise })\end{cases}
$$

First we see that if ρ and $\left(\lambda_{n+1} / \lambda_{n}\right)_{n \geq 1} \in \ell_{\infty}$ then $\Delta_{\rho}^{+} \in\left(w_{\infty}(\Lambda), w_{\infty}(\Lambda)\right)$. Indeed, we have

$$
\Delta_{\rho}^{+} x_{n}=x_{n}-\rho_{n} x_{n+1} \quad \text { for all } n
$$

and

$$
\begin{aligned}
\frac{1}{\lambda_{n}} \sum_{k=1}^{n}\left|x_{k}-\rho_{k} x_{k+1}\right| & \leq \frac{1}{\lambda_{n}} \sum_{k=1}^{n}\left|x_{k}\right|+\frac{\lambda_{n+1}}{\lambda_{n}} \sup _{n}\left|\rho_{n}\right| \frac{1}{\lambda_{n+1}} \sum_{k=2}^{n+1}\left|x_{k}\right| \\
& \leq\left(1+\sup _{n}\left(\frac{\lambda_{n+1}}{\lambda_{n}}\right) \sup _{n}\left|\rho_{n}\right|\right)\|X\|_{w_{\infty}(\Lambda)}^{-}
\end{aligned}
$$

for all $X \in w_{\infty}(\Lambda)$ and for all n. This shows that $\Delta_{\rho}^{+} X \in w_{\infty}(\Lambda)$ for all $X \in$ $w_{\infty}(\Lambda)$.

More precisely we have the following result.
Theorem 3.1. Let $\Lambda \in U^{+}$be an exponentially bounded sequence and assume

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty}\left(\frac{\lambda_{n+1}}{\lambda_{n}}\right)<\infty \quad \text { and } \quad \varlimsup_{n \rightarrow \infty}\left|\rho_{n}\right|<\frac{1}{\overline{\lim }_{n \rightarrow \infty}\left(\frac{\lambda_{n+1}}{\lambda_{n}}\right)} \tag{3.2}
\end{equation*}
$$

For given $B \in w_{\infty}(\Lambda)$ the equation $\Delta_{\rho}^{+} X=B$ has a unique solution in $w_{\infty}(\Lambda)$ given by

$$
\begin{equation*}
x_{n}=b_{n}+\sum_{i=n+1}^{\infty}\left(\prod_{j=n}^{i-1} \rho_{j}\right) b_{i} \quad \text { for all } n . \tag{3.3}
\end{equation*}
$$

Proof. Let

$$
\Sigma_{\rho}^{+(N)}=\left(\begin{array}{ccc}
{\left[\Delta_{\rho}^{+(N)}\right]^{-1}} & & 0 \\
& 1 & \\
0 & & .
\end{array}\right)
$$

where $\Delta_{\rho}^{+(N)}$ is the finite matrix whose elements are those of the N first rows and columns of Δ_{ρ}^{+}. The finite matrix $\Delta_{\rho}^{+(N)}$ is invertible, since it is an upper

On the Banach algebra $\left(w_{\infty}(\Lambda), w_{\infty}(\Lambda)\right)$ and applications to the solvability... 205 triangle. We get $\Delta_{\rho}^{+} \Sigma_{\rho}^{+(N)}=\left(a_{n k}\right)_{n, k \geq 1}^{\infty}$, with $a_{n n}=1$ for all n; $a_{n, n+1}=-\rho_{n}$ for all $n \geq N$; and $a_{n k}=0$ otherwise. For any given $X \in w_{\infty}(\Lambda)$, we have $\left(I-\Delta_{\rho}^{+} \Sigma_{\rho}^{+(N)}\right) X=\left(\xi_{n}(X)\right)_{n \geq 1}$ with $\xi_{n}(X)=0$ for all $n \leq N-1$ and $\xi_{n}(X)=$ $\rho_{n} x_{n+1}$ for all $n \geq N$. Now we put $K_{N}=\sup _{n \geq N}\left(\lambda_{n+1} / \lambda_{n}\right) \sup _{k \geq N}\left|\rho_{k}\right|$ and show that (3.2) implies $K_{N}<1$ for N large enough. For this let $\varepsilon>0$ be given. From (3.2), we have $\overline{\lim }_{n \rightarrow \infty}\left|\rho_{n}\right|=l<\infty$, since $\varlimsup_{n \rightarrow \infty} \lambda_{n+1} / \lambda_{n} \geq 1$. Then there is an integer N_{1} such that

$$
\sup _{n \geq N_{1}}\left|\rho_{n}\right|<l+\varepsilon
$$

Now since $\varlimsup_{n \rightarrow \infty} \lambda_{n+1} / \lambda_{n}<\infty$, (3.2) implies $\varlimsup_{n \rightarrow \infty} \lambda_{n+1} / \lambda_{n}=L<1 / l$, and as above there is an integer N_{2} such that

$$
\sup _{n \geq N_{2}}\left(\frac{\lambda_{n+1}}{\lambda_{n}}\right)<L+\varepsilon
$$

Since $l L<1$, for ε small enough, taking $N=\max \left\{N_{1}, N_{2}\right\}$, we then have

$$
K_{N} \leq(l+\varepsilon)(L+\varepsilon)=l L+l \varepsilon+L \varepsilon+\varepsilon^{2}<1
$$

Now we obtain

$$
\begin{aligned}
\left\|\left(I-\Delta_{\rho}^{+} \Sigma_{\rho}^{+(N)}\right) X\right\|_{w_{\infty}(\Lambda)}^{-} & =\sup _{n \geq N}\left(\frac{1}{\lambda_{n}} \sum_{k=N}^{n}\left|\rho_{k} x_{k+1}\right|\right) \\
& \leq \sup _{n \geq N}\left[\left(\sup _{k \geq N}\left|\rho_{k}\right|\right) \frac{1}{\lambda_{n}} \sum_{k=N+1}^{n+1}\left|x_{k}\right|\right] \\
& \leq \sup _{n \geq N}\left(\frac{\lambda_{n+1}}{\lambda_{n}}\right) \sup _{k \geq N}\left|\rho_{k}\right| \sup _{n \geq N}\left(\frac{1}{\lambda_{n+1}} \sum_{k=N+1}^{n+1}\left|x_{k}\right|\right) \\
& \leq\left[\sup _{n \geq N}\left(\frac{\lambda_{n+1}}{\lambda_{n}}\right) \sup _{k \geq N}\left|\rho_{k}\right|\right]\|X\|_{w_{\infty}(\Lambda)}^{-} .
\end{aligned}
$$

Then $\left\|\left(I-\Delta_{\rho}^{+} \Sigma_{\rho}^{+(N)}\right) X\right\|_{w_{\infty}(\Lambda)}^{-} \leq K_{N}\|X\|_{w_{\infty}(\Lambda)}^{-}$and we conclude

$$
\left\|I-\Delta_{\rho}^{+} \Sigma_{\rho}^{+(N)}\right\|_{(\Lambda, \Lambda)}^{-}=\sup _{X \neq 0}\left(\frac{\left\|\left(I-\Delta_{\rho}^{+} \Sigma_{\rho}^{(N)}\right) X\right\|_{w_{\infty}(\Lambda)}^{-}}{\|X\|_{w_{\infty}(\Lambda)}^{-}}\right) \leq K_{N}<1
$$

Then (3.2) implies $\left\|I-\Delta_{\rho}^{+} \Sigma_{\rho}^{+(N)}\right\|_{(\Lambda, \Lambda)}^{-} \leq K_{N}<1$ and $\Delta_{\rho}^{+} \Sigma_{\rho}^{+(N)}$ has a unique inverse in the Banach algebra $\left(w_{\infty}(\Lambda), w_{\infty}(\Lambda)\right)$. Since obviously $\Sigma_{\rho}^{+(N)}$ is
bijective from $w_{\infty}(\Lambda)$ into itself, the operators defined by $\Delta_{\rho}^{+} \Sigma_{\rho}^{+(N)}$ and $\Delta_{\rho}^{+}=$ $\left(\Delta_{\rho}^{+} \Sigma_{\rho}^{+(N)}\right)\left(\Sigma_{\rho}^{+(N)}\right)^{-1}$ are bijective from $w_{\infty}(\Lambda)$ into itself. So, for any given $B \in w_{\infty}(\Lambda)$, the equation $\Delta_{\rho}^{+} X=B$ has a unique solution in $w_{\infty}(\Lambda)$. Finally $\left(\Delta_{\rho}^{+}\right)^{-1}=\sum_{i=0}^{\infty}\left(I-\Delta_{\rho}^{+}\right)^{i}=\left[\left[\left(\Delta_{\rho}^{+}\right)^{T}\right]^{-1}\right]^{T}$ and an elementary calculation shows that

$$
\left(\Delta_{\rho}^{+}\right)^{-1}=\left[\left[\left(\Delta_{\rho}^{+}\right)^{T}\right]^{-1}\right]^{T}=\left(\begin{array}{ccccc}
1 & \rho_{1} & \rho_{1} \rho_{2} & \cdot & \cdot \\
& 1 & \rho_{2} & \rho_{2} \rho_{3} & \cdot \\
& & \cdot & \cdot & \\
0 & & & 1 & \rho_{n} \\
& & & & \cdot
\end{array}\right)
$$

We then obtain (3.3). This completes the proof.
Proposition 3.2. For given $B \in w_{\infty}(\Lambda)$, the equation $\Delta_{\rho}^{+} X=B$ has a unique solution in $w_{\infty}(\Lambda)$ given by (3.3) in the following cases
i) $\Lambda \in \widehat{C_{1}}$ and $\varlimsup_{n \rightarrow \infty}\left(\lambda_{n+1} / \lambda_{n}\right)\left|\rho_{n}\right|<1$;
ii) $\Lambda \notin \widehat{C_{1}}$ and condition (3.2) holds.

Proof. i) The condition $\Lambda \in \widehat{C_{1}}$ implies $w_{\infty}(\Lambda)=s_{\Lambda}$. Furthermore, the condition $\varlimsup_{n \rightarrow \infty}\left(\lambda_{n+1} / \lambda_{n}\right)\left|\rho_{n}\right|<1$ implies that there is an integer N such that

$$
\sup _{n \geq N}\left(\frac{\lambda_{n+1}}{\lambda_{n}}\left|\rho_{n}\right|\right)<1
$$

Now since $\left(w_{\infty}(\Lambda), w_{\infty}(\Lambda)\right)=\left(s_{\Lambda}, s_{\Lambda}\right)=S_{\Lambda}$, we deduce

$$
\left\|I-\Delta_{\rho}^{+} \Sigma_{\rho}^{+(N)}\right\|_{(\Lambda, \Lambda)}^{-}=\left\|I-\Delta_{\rho}^{+} \Sigma_{\rho}^{+(N)}\right\|_{S_{\lambda}}=\sup _{n \geq N}\left(\frac{\lambda_{n+1}}{\lambda_{n}}\left|\rho_{n}\right|\right)<1
$$

So we have shown i).
ii) This is a direct consequence of Theorem 3.1.

Remark 3.3. Note that since
$\varlimsup_{n \rightarrow \infty}\left(\lambda_{n+1} / \lambda_{n}\right)\left|\rho_{n}\right| \leq \varlimsup_{n \rightarrow \infty}\left(\lambda_{n+1} / \lambda_{n}\right) \overline{\lim }_{n \rightarrow \infty}\left|\rho_{n}\right|$, condition (3.2) is weaker than the condition $\varlimsup_{n \rightarrow \infty}\left(\lambda_{n+1} / \lambda_{n}\right)\left|\rho_{n}\right|<1$ in Proposition 3.2 ii).

Putting $\Lambda^{-}=\left(1, \lambda_{1}, \ldots, \lambda_{n-1}, \ldots\right)$, we easily deduce the following result.
Corollary 3.4. We assume $\Lambda \in \widehat{C_{1}}$. Then we have
i) $w_{\infty}(\Lambda)=s_{\Lambda}$;

On the Banach algebra $\left(w_{\infty}(\Lambda), w_{\infty}(\Lambda)\right)$ and applications to the solvability... 207
ii) ii) $w_{\infty}(\Lambda)\left(\Delta^{+}\right)=w_{\infty}\left(\Lambda^{-}\right)=s_{\Lambda^{-}}$and, for any given $B \in w_{\infty}(\Lambda)$, the equation

$$
\begin{equation*}
\Delta^{+} X=B \tag{3.4}
\end{equation*}
$$

has infinitely many solutions in $w_{\infty}\left(\Lambda^{-}\right)$given by $x_{n}=u-\sum_{k=1}^{n-1} b_{k}$, where u is an arbitrary scalar.
Proof. i) Part (i) comes from [4].
ii) It can easily be seen that $\Lambda \in \widehat{C_{1}}$ implies $\Lambda^{-} \in \widehat{C_{1}}$ and since $w_{\infty}(\Lambda)=s_{\Lambda}$, we only have to show that $s_{\Lambda}\left(\Delta^{+}\right)=s_{\Lambda^{-}}$. From the inequality

$$
\frac{\lambda_{n-1}}{\lambda_{n}} \leq \sup _{n}\left(\frac{\sum_{k=1}^{n} \lambda_{k}}{\lambda_{n}}\right)<\infty \quad \text { for all } n
$$

we deduce that $\sup _{n}\left(\lambda_{n-1} / \lambda_{n}\right)<\infty$ and $\Delta^{+} \in\left(s_{\Lambda^{-}}, s_{\Lambda}\right)$. Then, for any given $B \in s_{\Lambda}$, the solutions of the equation $\Delta^{+} X=B$ are given by $x_{1}=-u$, and

$$
\begin{equation*}
x_{n}=u+\sum_{k=1}^{n-1} b_{k} \text { for } n \geq 2, \quad \text { where } u \text { is an arbitrary scalar. } \tag{3.5}
\end{equation*}
$$

So there exists a real $K>0$, such that

$$
\frac{\left|x_{n}\right|}{\lambda_{n-1}}=\frac{\left|u+\sum_{k=1}^{n-1} b_{k}\right|}{\lambda_{n-1}} \leq \sup _{n}\left(\frac{|u|+K\left(\sum_{k=1}^{n-1} \lambda_{k}\right)}{\lambda_{n-1}}\right)<\infty
$$

since $\sup _{n}\left(|u| / \lambda_{n-1}\right)<\infty$. So $X \in s_{\Lambda^{-}}$and we conclude that Δ^{+}is surjective from $s_{\Lambda^{-}}$into s_{Λ}. Then $\Lambda \in \widehat{C_{1}}$ implies

$$
s_{\Lambda}\left(\Delta^{+}\right)=s_{\Lambda^{-}} .
$$

The previous argument shows that the equation $\Delta^{+} X=B$ has infinitely many solutions in $w_{\infty}\left(\Lambda^{-}\right)=s_{\Lambda^{-}}$given by $x_{n}=u-\sum_{k=1}^{n-1} b_{k}$. This completes the proof.
3.1.2. Properties of $\Delta^{+}(\mu)$ considered as an operator from $D_{\tau} w_{\infty}(\Lambda)$ to $D_{\tau \mu} w_{\infty}(\Lambda)$. Here we consider the set

$$
D_{\tau} w_{\infty}(\Lambda)=\left\{X=\left(x_{n}\right)_{n \geq 1}: \sup _{n}\left(\frac{1}{\lambda_{n}} \sum_{k=1}^{n}\left|\frac{x_{k}}{\tau_{k}}\right|\right)<\infty\right\}
$$

We need the following lemma.
Lemma 3.5. Let E and F be linear subspaces of ω and assume $A \in(E, F)$. If A is a surjective map from E to F and $\operatorname{Ker} A=\{0\}$, then

$$
F(A)=E .
$$

Proof. Let $X \in F(A)$. Then $Y=A X \in F$. Now we show that $A X \in F$ implies $X \in E$. For this, we assume that $A X \in F$ and $X \notin E$. Since A is surjective
from E to F, there is $X_{0} \in E$ such that $Y=A X=A X_{0}$ and $X-X_{0} \in \operatorname{Ker} A$. So $X=X_{0} \in E$ which gives a contradiction. Thus we have shown $F(A) \subset E$. The inclusion $E \subset F(A)$ is immediate. This shows the lemma.

Note, for instance, that for $0<r<1$, we have $\left\|I-\Delta^{+}\right\|_{S_{r}}=r<1$. This means that Δ^{+}is bijective from s_{r} to itself. Since $e \in \operatorname{Ker} \Delta^{+} \backslash\{\tau\}$, we have $\Delta^{+} e=0 \in s_{\tau}$ and $e \in s_{\tau}\left(\Delta^{+}\right) \backslash s_{\tau}$. This shows $s_{r}\left(\Delta^{+}\right) \neq s_{r}$.

We have as a direct consequence of Theorem 3.1
Corollary 3.6. Let $\Lambda, \mu, \tau \in U^{+}$and assume

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty} \frac{\tau_{n+1}}{\tau_{n}}<\frac{1}{\overline{\lim }_{n \rightarrow \infty}\left(\frac{\lambda_{n+1}}{\lambda_{n}}\right)} \tag{3.6}
\end{equation*}
$$

i) Then Δ^{+}is bijective from $D_{\tau} w_{\infty}(\Lambda)$ into itself and $\Delta^{+}(\mu)$ is bijective from $D_{\tau} w_{\infty}(\Lambda)$ into $D_{\tau \mu} w_{\infty}(\Lambda)$.
ii) $\left(D_{\tau} w_{\infty}(\Lambda)\right)\left(C^{+}(\mu)\right)=D_{\tau \mu} w_{\infty}(\Lambda)$.

Proof. i) Here we have that $\Delta^{+} X=B$ with $B, X \in D_{\tau} w_{\infty}(\Lambda)$ (X being the unknown) is equivalent to $\left(D_{1 / \tau} \Delta^{+} D_{\tau}\right) X^{\prime}=D_{1 / \tau} B$ where $D_{1 / \tau} B \in w_{\infty}(\Lambda)$ and $X^{\prime}=D_{1 / \tau} X \in w_{\infty}(\Lambda)$. So $\rho_{n}=\tau_{n+1} / \tau_{n}$ for all n and, by Theorem 3.1, the operator Δ^{+}is bijective from $D_{\tau} w_{\infty}(\Lambda)$ into itself. Now since $\Delta^{+}(\mu)=D_{\mu} \Delta^{+}$, we easily conclude that Δ^{+}is bijective from $D_{\tau} w_{\infty}(\Lambda)$ into itself and D_{μ} is bijective from $D_{\tau} w_{\infty}(\Lambda)$ into $D_{\tau \mu} w_{\infty}(\Lambda)$ and $\Delta^{+}(\mu)$ is bijective from $D_{\tau} w_{\infty}(\Lambda)$ into $D_{\tau \mu} w_{\infty}(\Lambda)$.
ii) Since $\Delta^{+}(\mu)$ is bijective from $D_{\tau} w_{\infty}(\Lambda)$ into $D_{\tau \mu} w_{\infty}(\Lambda), C^{+}(\mu)$ $=\Sigma^{+} D_{1 / \mu}=\left(\Delta^{+}(\mu)\right)^{-1}$ is bijective from $D_{\tau \mu} w_{\infty}(\Lambda)$ into $D_{\tau} w_{\infty}(\Lambda)$. Now the equation $C^{+}(\mu) X=0$ is equivalent to $\Sigma^{+} Y=0$ with $Y=D_{1 / \mu} X=\left(y_{n}\right)_{n \geq 1}$ and $Y \in c s$. Then we have

$$
\sum_{k=n}^{\infty} y_{k}=0 \quad \text { for } n=1,2, \ldots
$$

We conclude $y_{1}=y_{2}=\cdots=y_{n}=0$ for all n and $\operatorname{Ker} \Sigma^{+}=\operatorname{Ker} C^{+}(\mu)=\{0\}$. By Lemma 3.5, we conclude $\left(D_{\tau} w_{\infty}(\Lambda)\right)\left(C^{+}(\mu)\right)=D_{\tau \mu} w_{\infty}(\Lambda)$.

Corollary 3.7. If $\tau \in \Gamma^{+}$, then the equation $\Delta^{+} X=B$ has a unique solution in $D_{\tau} w_{\infty}$ for any given $B \in D_{\tau} w_{\infty}$.

Proof. Indeed by Corollary 3.6, the condition $\tau \in \Gamma^{+}$implies that (3.2) is satisfied for $\lambda_{n}=n$, that is,

$$
\varlimsup_{n \rightarrow \infty} \frac{\tau_{n+1}}{\tau_{n}}<\frac{1}{\varlimsup_{\lim }^{n \rightarrow \infty}}\left(\frac{n+1}{n}\right) \quad=1 .
$$

On the Banach algebra $\left(w_{\infty}(\Lambda), w_{\infty}(\Lambda)\right)$ and applications to the solvability... 209
These results lead to the next remarks.
Remark 3.8. Note that if $\Lambda \in \Gamma^{+}$then (3.6) yields $1<1 / \overline{\lim }_{n \rightarrow \infty}\left(\lambda_{n+1} / \lambda_{n}\right)$ and Δ^{+}is bijective from $w_{\infty}(\Lambda)$ into itself.

Remark 3.9. Using the inverse of the infinite matrix $\left(\Delta_{\rho}^{+}\right)^{T}([2])$, we see that, under (3.2), we also have that $\sum_{k=1}^{n}\left|x_{k}\right|=O\left(\lambda_{n}\right)(n \rightarrow \infty)$ implies

$$
\sum_{k=1}^{n}\left|x_{k}+\sum_{i=k+1}^{\infty}\left(\prod_{j=k}^{i-1} \rho_{j}\right) x_{i}\right|=O\left(\lambda_{n}\right) \quad(n \rightarrow \infty) \quad \text { for all } X \in \omega
$$

Now we consider an example.
Example 3.10. We choose $\lambda_{n}=n$ and $\rho_{n}=a_{n}-1 / n^{\alpha}$ for all n, where $\left(a_{n}\right)_{n} \in c$ is a positive sequence with $a_{n} \rightarrow l$ for some $l<1(n \rightarrow \infty)$, and $\alpha>0$. We see that if $\sum_{k=1}^{n}\left|x_{k}\right|=O(n)(n \rightarrow \infty)$ then

$$
\sum_{k=1}^{n}\left|x_{k}+\sum_{i=k+1}^{\infty}\left[\prod_{j=k}^{i-1}\left(a_{j}-\frac{1}{j^{\alpha}}\right)\right] x_{i}\right|=O(n) \quad(n \rightarrow \infty)
$$

for all $X \in \omega$.
Remark 3.11. Note that, by Corollary 3.4 ii), we have $\Lambda \in \widehat{C_{1}}$ if and only if $w_{\infty}(\Lambda)\left(\Delta^{+}\right)=w_{\infty}\left(\Lambda^{-}\right)$. Indeed, since $w_{\infty}(\Lambda)=s_{\Lambda}$, it is enough to assume that $s_{\Lambda}\left(\Delta^{+}\right)=s_{\Lambda^{-}}$. If we take $B=\Lambda \in s_{\Lambda}$, then the solutions of the equation $\Delta^{+} X=B$ belong to $s_{\Lambda^{-}}$, and are given by $x_{n}=x_{1}-\sum_{k=1}^{n-1} \lambda_{k}$, where x_{1} is an arbitrary scalar and

$$
\frac{x_{n}}{\lambda_{n-1}}=\frac{x_{1}}{\lambda_{n-1}}-\frac{1}{\lambda_{n-1}}\left(\sum_{k=1}^{n-1} \lambda_{k}\right)=O(1) \quad(n \rightarrow \infty)
$$

Putting $x_{1}=0$, we conclude that $\Lambda \in \widehat{C_{1}}$.

3.2. Some properties of the matrix map Δ_{ρ}.

3.2.1. On the operator Δ_{ρ} mapping $w_{\infty}(\Lambda)$ into itself. Now we study the triangle $\Delta_{\rho}=\left(\Delta_{\rho}^{+}\right)^{T}$, that is,

$$
\Delta_{\rho}=\left(\begin{array}{ccccc}
1 & & & & \\
-\rho_{1} & 1 & & 0 & \\
& \cdot & \cdot & & \\
& & -\rho_{n-1} & 1 & \cdot \\
& & & \cdot & .
\end{array}\right)
$$

considered as an operator that maps $w_{\infty}(\Lambda)$ to itself.
As in Subsection 3.1.1, we easily see that $\Delta_{\rho} \in\left(w_{\infty}(\Lambda), w_{\infty}(\Lambda)\right)$, if $\left(\lambda_{n-1} / \lambda_{n}\right)_{n \geq 2} \in \ell_{\infty}$.

Theorem 3.12. Let $\Lambda \in U^{+}$be an exponentially bounded sequence. We assume

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty}\left|\rho_{n}\right|<\frac{1}{\varlimsup_{\lim }^{n \rightarrow \infty}}\left(\frac{\lambda_{n-1}}{\lambda_{n}}\right) . \tag{3.7}
\end{equation*}
$$

Then, for any given $B \in w_{\infty}(\Lambda)$, the equation $\Delta_{\rho} X=B$ has a unique solution in $w_{\infty}(\Lambda)$ given by $x_{1}=b_{1}$ and 66

$$
\begin{equation*}
x_{n}=b_{n}+\sum_{k=1}^{n-1}\left(\prod_{j=k}^{n-1} \rho_{j}\right) b_{k} \quad \text { for all } n \geq 2 \tag{3.8}
\end{equation*}
$$

Proof. Let $\Sigma_{\rho}^{(N)}$ be defined by

$$
\left(\begin{array}{ccc}
{\left[\Delta_{\rho}^{(N)}\right]^{-1}} & & 0 \\
& 1 & \\
0 & & .
\end{array}\right)
$$

where $\Delta_{\rho}^{(N)}$ is the finite matrix whose elements are those of the N first rows and columns of Δ_{ρ}. The finite matrix $\Delta_{\rho}^{(N)}$ is invertible, since it is a triangle. We get $\Sigma_{\rho}^{(N)} \Delta_{\rho}=\left(a_{n k}\right)_{n, k \geq 1}$, with $a_{n n}=1$ for all $n ; a_{n, n-1}=-\rho_{n-1}$ for all $n \geq N+1$; and $a_{n m}=0$ otherwise. For any given $X \in w_{\infty}(\Lambda)$, we have ($I-$ $\left.\Sigma_{\rho}^{(N)} \Delta_{\rho}\right) X=\left(\xi_{n}(X)\right)_{n \geq 1}$ with $\xi_{n}(X)=0$ for all $n \leq N$ and $\xi_{n}(X)=\rho_{n-1} x_{n-1}$ for all $n \geq N+1$. Now put $K_{N}^{\prime}=\sup _{n \geq N+1}\left(\lambda_{n-1} / \lambda_{n}\right) \sup _{k \geq N+1}\left|\rho_{k-1}\right|$. Then we have as in Theorem 3.1

$$
\begin{equation*}
\sup _{n \geq N+1}\left[\left(\sup _{N \leq k \leq n}\left|\rho_{k}\right|\right) \frac{\lambda_{n-1}}{\lambda_{n}}\right] \leq K_{N}^{\prime}<1 \quad \text { for all } n \geq N . \tag{3.9}
\end{equation*}
$$

Furthermore, we obtain

$$
\begin{aligned}
&\left\|\left(I-\Sigma_{\rho}^{(N)} \Delta_{\rho}\right) X\right\|_{w_{\infty}(\Lambda)}^{-}=\sup _{n \geq N+1}\left(\frac{1}{\lambda_{n}} \sum_{k=N+1}^{n}\left|\rho_{k-1} x_{k-1}\right|\right) \\
& \leq \sup _{n \geq N+1}\left[\left(\sup _{N+1 \leq k \leq n}\left|\rho_{k-1}\right|\right) \frac{\lambda_{n-1}}{\lambda_{n}}\right] \sup _{n \geq N}\left(\frac{1}{\lambda_{n-1}} \sum_{k=N}^{n-1}\left|x_{k}\right|\right) \leq K_{N}^{\prime}\|X\|_{w_{\infty}(\Lambda)}^{-}
\end{aligned}
$$

Finally, using (3.9), we get

$$
\left\|I-\Sigma_{\rho}^{(N)} \Delta_{\rho}\right\|_{(\Lambda, \Lambda)}^{-} \leq K_{N}^{\prime}<1
$$

and we conclude, reasoning as Theorem 3.1.

On the Banach algebra $\left(w_{\infty}(\Lambda), w_{\infty}(\Lambda)\right)$ and applications to the solvability... 211
Remark 3.13. Note that since Λ is a non-decreasing sequence, we do not need to assume $\overline{\lim }_{n \rightarrow \infty}\left(\lambda_{n-1} / \lambda_{n}\right)<\infty$ in Theorem 3.12.

We immediately get
Corollary 3.14. Under (3.7), we have $w_{\infty}(\Lambda)\left(\Delta_{\rho}\right)=w_{\infty}(\Lambda)$.
Corollary 3.15. i) We assume that (3.7) holds. Then

$$
\sup _{n}\left(\frac{1}{\lambda_{n}} \sum_{k=1}^{n}\left|x_{k}\right|\right)<\infty
$$

implies

$$
\sup _{n}\left\{\frac{1}{\lambda_{n}} \sum_{k=2}^{n}\left|x_{k}+\sum_{j=1}^{k-1}\left(\prod_{i=j}^{k-1} \rho_{i}\right) x_{j}\right|\right\}<\infty \quad \text { for all } X .
$$

ii) If $\Lambda \in \Gamma$ and $\overline{\lim }_{n \rightarrow \infty}\left|\rho_{n}\right|<1$, then

$$
\sup _{n}\left(\frac{\left|x_{k}\right|}{\lambda_{n}}\right)<\infty
$$

implies

$$
\sup _{n}\left\{\frac{1}{\lambda_{n}}\left|x_{n}+\sum_{j=1}^{n-1}\left(\prod_{i=j}^{n-1} \rho_{i}\right) x_{j}\right|\right\}<\infty \quad \text { for all } X .
$$

Proof. i) Part i) is an immediate consequence of Theorem 3.12.
ii) Since $\Lambda \in \Gamma$, that is, $\varlimsup_{n \rightarrow \infty}\left(\lambda_{n-1} / \lambda_{n}\right)<1$, we have

$$
\varlimsup_{n \rightarrow \infty}\left|\rho_{n}\right|<1<\frac{1}{\varlimsup_{\lim }^{n \rightarrow \infty}} \begin{aligned}
& \left(\lambda_{n-1} / \lambda_{n}\right)
\end{aligned}
$$

and condition (3.7) follows. Now, by Corollary 3.4, we have $w_{\infty}(\Lambda)=s_{\Lambda}$ and, by Theorem 3.12, Δ_{ρ} is bijective from s_{Λ} into itself. We conclude, using identity (3.8).

Remark 3.16. Putting $\Delta_{1}=\Delta$, we see that if $\Lambda \in \Gamma$ then $w_{\infty}(\Lambda)(\Delta)=$ $w_{\infty}(\Lambda)$. Indeed by Theorem 3.12, condition (3.7) implies $\varlimsup_{n \rightarrow \infty}\left(\lambda_{n-1} / \lambda_{n}\right)<1$, that is, $\Lambda \in \Gamma$. Since $\Gamma \subset \widehat{C_{1}}$, applying Corollary 3.4, we conclude $w_{\infty}(\Lambda)=s_{\Lambda}$ and $s_{\Lambda}(\Delta)=s_{\Lambda}$.

These results lead to consider the sets $[C(\Lambda), C(\mu)]_{\infty}$ and $\left[C(\Lambda), \Delta_{\rho}(\mu)\right]_{\infty}$, ([5]). In this way we obtain the following results.
3.2.2. On the sets $[C(\Lambda), C(\mu)]_{\infty}$ and $\left[C(\Lambda), \Delta_{\rho}(\mu)\right]_{\infty}$. Now we can give some applications of the previous results. For this, we define for $\Lambda, \mu \in U^{+}$the set

$$
[C(\Lambda), C(\mu)]_{\infty}=\left\{X \in \omega: C(\Lambda)(|C(\mu) X|) \in \ell_{\infty}\right\}
$$

Then we have

$$
[C(\Lambda), C(\mu)]_{\infty}=\left\{X \in \omega: \sup _{n}\left(\frac{1}{\lambda_{n}} \sum_{k=1}^{n} \frac{1}{\mu_{k}}\left|\sum_{i=1}^{k} x_{i}\right|\right)<\infty\right\}
$$

It was shown in [5, Theorem 3.1] that if $\Lambda, \Lambda \mu \in \widehat{C_{1}}$ then

$$
[C(\Lambda), C(\mu)]_{\infty}=s_{\Lambda \mu}
$$

This result can be improved here as follows. We put $C_{1}=C\left((n)_{n \geq 1}\right)$. The following result holds.

Proposition 3.17. Let $\mu, \Lambda \in U^{+}$.
i) If

$$
\varlimsup_{n \rightarrow \infty} \frac{\mu_{n-1}}{\mu_{n}}<\frac{1}{\varlimsup_{n \rightarrow \infty} \frac{\lambda_{n-1}}{\lambda_{n}}}
$$

then $[C(\Lambda), C(\mu)]_{\infty}=D_{\mu} w_{\infty}(\Lambda)$.
ii) If $\mu \in \Gamma$, then $A \in\left(\left[C_{1}, C(\mu)\right]_{\infty}, s_{\eta}\right)$ if and only if

$$
\sum_{i=1}^{\infty} 2^{i} \max _{2^{i} \leq m \leq 2^{i+1}-1}\left|a_{n m}\right| \mu_{m}=\eta_{n} O(1) \quad(n \rightarrow \infty)
$$

Proof. i) We have $\Delta_{\rho}=D_{1 / \mu} \Delta D_{\mu}$ with $\rho_{n}=\mu_{n-1} / \mu_{n}$ for all n, and $\Delta: D_{\mu} w_{\infty}(\Lambda) \longmapsto D_{\mu} w_{\infty}(\Lambda)$ is bijective, so $D_{\mu} w_{\infty}(\Lambda)(\Delta)=D_{\mu} w_{\infty}(\Lambda)$. We have $X \in[C(\Lambda), C(\mu)]_{\infty}$ if and only if $C(\mu) X \in w_{\infty}(\Lambda)$, that is

$$
X \in C(\mu)^{-1} w_{\infty}(\Lambda)
$$

and since $C(\mu)^{-1}=\Delta(\mu)=\Delta D_{\mu}$, we have $X \in \Delta D_{\mu} w_{\infty}(\Lambda)=D_{\mu} w_{\infty}(\Lambda)$. Thus we have shown Part i).
ii) Here $\lambda_{n}=n$ for all n, so $\varlimsup_{n \rightarrow \infty}\left(\lambda_{n-1} / \lambda_{n}\right)=1$ and condition (3.7) is satisfied, since $\mu \in \Gamma$. By Part i), we have $\left[C_{1}, C(\mu)\right]_{\infty}=D_{\mu} w_{\infty}$ and $A \in$ $\left(\left[C_{1}, C(\mu)\right]_{\infty}, s_{\eta}\right)$ if and only if $D_{1 / \eta} A D_{\mu} \in\left(w_{\infty}(\Lambda), \ell_{\infty}\right)$. We conclude, using the characterization of $\left(w_{\infty}(\Lambda), \ell_{\infty}\right)$, given in [11, Remark, p. 33].

On the Banach algebra $\left(w_{\infty}(\Lambda), w_{\infty}(\Lambda)\right)$ and applications to the solvability... 213
Now we write $\Delta_{\rho}(\mu)=\Delta_{\rho} D_{\mu}$ and

$$
\left[C(\Lambda), \Delta_{\rho}(\mu)\right]_{\infty}=\left\{X \in \omega: C(\Lambda)\left(\left|\Delta_{\rho}(\mu) X\right|\right) \in \ell_{\infty}\right\}
$$

Then we have

$$
\left[C(\Lambda), \Delta_{\rho}(\mu)\right]_{\infty}=\left\{X \in \omega: \sup _{n}\left(\frac{1}{\lambda_{n}} \sum_{k=1}^{n}\left|\mu_{k} x_{k}-\mu_{k-1} \rho_{k-1} x_{k-1}\right|\right)<\infty\right\}
$$

We obtain the following result.
Proposition 3.18. Let $\Lambda, \mu, \rho \in U^{+}$.
i) We assume that (3.7) holds. Then $\left[C(\Lambda), \Delta_{\rho}(\mu)\right]_{\infty}=D_{1 / \mu} w_{\infty}(\Lambda)$;
ii) $A \in\left(\left[C(\Lambda), \Delta_{\rho}(\mu)\right]_{\infty}, s_{\eta}\right)$ if and only if

$$
\sum_{i=1}^{\infty} 2^{i} \max _{2^{i} \leq m \leq 2^{i+1}-1} \frac{\left|a_{n m}\right|}{\mu_{n}}=\eta_{n} O(1) \quad(n \rightarrow \infty)
$$

Proof. Here $C(\Lambda)\left(\left|\Delta_{\rho}(\mu) X\right|\right) \in \ell_{\infty}$ if and only if $D_{\mu} X \in w_{\infty}(\Lambda)\left(\Delta_{\rho}\right)$ and, by (3.7), we get $w_{\infty}(\Lambda)\left(\Delta_{\rho}\right)=w_{\infty}(\Lambda)$.
(ii) We obtain Part ii), reasoning as in Proposition 3.17 ii).
4. On an infinite tridiagonal matrix considered as an operator from $w_{\infty}(\Lambda)$ into itself and applications

In this section, we give some results on the infinite tridiagonal matrix $M(\gamma, a, \eta)$, considered as an operator from χ into $D_{a} \chi$ where χ is any of the sets $w_{\infty}(\Lambda), s_{\Lambda}, s_{\Lambda}^{0}, s_{\Lambda}^{(c)}$, or $\ell_{p}(\Lambda)$.

Note that the previous results on Δ_{ρ}^{+}and Δ_{ρ} cannot be considered as a consequence of the next ones.

Let $\gamma=\left(\gamma_{n}\right)_{n \geq 1}, \eta=\left(\eta_{n}\right)_{n \geq 1}$ and $a=\left(a_{n}\right)_{n \geq 1}$ be given sequences, and $a \in U$. We consider the infinite tridiagonal matrix

$$
M(\gamma, a, \eta)=\left(\begin{array}{ccccc}
a_{1} & \eta_{1} & & & \\
\gamma_{1} & a_{2} & \eta_{2} & & \mathbf{O} \\
& \cdot & \cdot & \cdot & \\
\mathbf{O} & & \gamma_{n-1} & a_{n} & \eta_{n} \\
& & & \cdot & \cdot
\end{array}\right)
$$

In the following we use the sets

$$
\ell_{p}=\left\{X=\left(x_{n}\right)_{n \geq 1}: \sum_{n=1}^{\infty}\left|x_{n}\right|^{p}<\infty\right\} \quad \text { for } 1 \leq p<\infty
$$

and $\ell_{p}(\tau)=D_{\tau} \ell_{p}$ for $\tau \in U^{+}$.
We notice that $D_{a} s_{\tau}=D_{|a|} s_{\tau}=s_{|a| \tau}, D_{a} s_{\tau}^{0}=D_{|a|} s_{\tau}^{0}=s_{|a| \tau}^{0}$ and $D_{a} \ell_{p}(\tau)=$ $\ell_{p}(|a| \tau)$ for $\tau \in U^{+}$.

We suppose that $K_{1}=\sup _{n \geq 2}\left|\gamma_{n-1} / a_{n}\right|<1$ and $K_{2}=\sup _{n}\left|\eta_{n} / a_{n}\right|>0$.
The following theorem holds.
Theorem 4.1. Let $\Lambda \in U^{+}$be an exponentially bounded sequence and assume that

$$
\begin{equation*}
\sup _{n}\left(\frac{\lambda_{n+1}}{\lambda_{n}}\right)<\frac{1-K_{1}}{K_{2}} . \tag{4.1}
\end{equation*}
$$

Then, for any given $B \in D_{a} w_{\infty}(\Lambda)$, the equation $M(\gamma, a, \eta) X=B$ has a unique solution in $w_{\infty}(\Lambda)$ given by $X=\sum_{i=0}^{\infty}(I-M(\gamma, a, \eta))^{i} B$.

Proof. We consider $D_{1 / a} M(\gamma, a, \eta)=M(\zeta, e, \rho)$ with $\zeta_{n-1}=\gamma_{n-1} / a_{n}$ for $n \geq 2$ and $\rho_{n}=\eta_{n} / a_{n}$ for all n. Then we have

$$
M(\zeta, e, \rho)=M(\zeta, \rho)=\left(\begin{array}{cccccc}
1 & \rho_{1} & & & \\
\zeta_{1} & 1 & \rho_{2} & & \mathbf{O} \\
& \cdot & \cdot & . & \\
\mathbf{O} & & \zeta_{n-1} & 1 & \rho_{n} \\
& & & \cdot & \cdot
\end{array}\right)
$$

(Note that $\left.M(\zeta, \rho)=\left(\Delta_{-2 \zeta}+\Delta_{-2 \rho}^{+}\right) / 2\right)$. Here we have

$$
(I-M(\zeta, \rho)) X=-\left(\rho_{1} x_{2}, \zeta_{1} x_{1}+\rho_{2} x_{3}, \ldots, \zeta_{n-1} x_{n-1}+\rho_{n} x_{n+1}, \ldots\right)^{T}
$$

Then

$$
\|(I-M(\zeta, \rho)) X\|_{w_{\infty}(\Lambda)}^{-}=\sup _{n}\left(\frac{1}{\lambda_{n}} \sum_{k=1}^{n}\left|\zeta_{k-1} x_{k-1}+\rho_{k} x_{k+1}\right|\right)
$$

with $x_{0}=0$ and

$$
\begin{gathered}
\frac{1}{\lambda_{n}} \sum_{k=1}^{n}\left|\zeta_{k-1} x_{k-1}+\rho_{k} x_{k+1}\right| \leq \frac{\lambda_{n-1}}{\lambda_{n}} \sup _{k \leq n-1}\left|\zeta_{k}\right| \frac{1}{\lambda_{n-1}} \sum_{k=1}^{n-1}\left|x_{k}\right| \\
+\frac{\lambda_{n+1}}{\lambda_{n}} \sup _{k \leq n}\left|\rho_{k}\right| \frac{1}{\lambda_{n+1}} \sum_{k=2}^{n+1}\left|x_{k}\right| \leq\left[\sup _{n}\left(\frac{\lambda_{n-1}}{\lambda_{n}}\right) K_{1}+\sup _{n}\left(\frac{\lambda_{n+1}}{\lambda_{n}}\right) K_{2}\right]\|X\|_{w_{\infty}(\Lambda)}^{-} .
\end{gathered}
$$

On the Banach algebra $\left(w_{\infty}(\Lambda), w_{\infty}(\Lambda)\right)$ and applications to the solvability... 215
Since Λ is a non-decreasing sequence, $\sup _{n}\left(\lambda_{n-1} / \lambda_{n}\right) \leq 1$, and using (4.1), we easily conclude that

$$
\begin{aligned}
\|I-M(\zeta, \rho)\|_{\left(w_{\infty}(\Lambda), w_{\infty}(\Lambda)\right)}^{-} & =\sup _{X \neq 0} \frac{\|(I-M(\zeta, \rho)) X\|_{w_{\infty}(\Lambda)}^{-}}{\|X\|_{w_{\infty}(\Lambda)}^{-}} \\
& \leq K_{1}+\sup _{n}\left(\frac{\lambda_{n+1}}{\lambda_{n}}\right) K_{2}<1 .
\end{aligned}
$$

Finally, for any given $B \in w_{\infty}(\Lambda)$, the equation $M(\gamma, a, \eta) X=B$ is equivalent to $M(\zeta, \rho) X=D_{1 / a} B$. So, for any given $B \in D_{a} w_{\infty}(\Lambda)$, the last equation has a unique solution in $w_{\infty}(\Lambda)$.

Corollary 4.2. Let $\lambda \in U^{+}$be an exponentially bounded sequence and assume that (4.1) holds. Then
i) $M(\gamma, a, \eta)$ is bijective from $w_{\infty}(\Lambda)$ to $D_{a} w_{\infty}(\Lambda)$ and $M(\gamma, a, \eta)^{-1} \in\left(D_{a} w_{\infty}(\Lambda)\right.$, $\left.w_{\infty}(\Lambda)\right)$;
ii) $M(\gamma, a, \eta)$ is bijective from s_{Λ} into $s_{|a| \Lambda}$ and $M(\gamma, a, \eta)^{-1} \in\left(s_{|a| \Lambda}, s_{\Lambda}\right)$;
iii) $M(\gamma, a, \eta)$ is bijective from s_{Λ}° into $s_{|a| \Lambda}^{\circ}$ and $M(\gamma, a, \eta)^{-1} \in\left(s_{|a| \Lambda}^{\circ}, s_{\Lambda}^{\circ}\right)$;
iv) for $a \in U^{+}$, the condition $\lim _{n \rightarrow \infty}\left(\gamma_{n-1} \lambda_{n-1}+\eta_{n} \lambda_{n+1}\right) \lambda_{n}^{-1} a_{n}^{-1}=l \neq 0$, implies that $M(\gamma, a, \eta)$ is bijective from $s_{\Lambda}^{(c)}$ into $s_{a \Lambda}^{(c)}$, and $M(\gamma, a, \eta)^{-1} \in$ $\left(s_{a \Lambda}^{(c)}, s_{\Lambda}^{(c)}\right)$.
v) Let $p \geq 1$ be a real. If $\widetilde{K}_{p, \Lambda}=K_{1}+K_{2}^{\prime}<1$ with $K_{1}=\sup _{n}\left(\left|\gamma_{n-1} / a_{n}\right|\right)$ and $K_{2}^{\prime}=\sup _{n}\left(\left|\eta_{n} / a_{n}\right| \lambda_{n+1} / \lambda_{n}\right)$, then $M(\gamma, a, \eta)$ is bijective from $\ell_{p}(\Lambda)$ into $\ell_{p}(|a| \Lambda)$, and $M(\gamma, a, \eta)^{-1} \in\left(\ell_{p}(|a| \Lambda), \ell_{p}(\Lambda)\right)$.

Proof. By [5, Theorem 6.1] 4.1 and Condition (4.1), we have

$$
\xi(\Lambda)=\sup _{n \geq 1}\left[\frac{1}{\left|a_{n}\right|}\left(\left|\gamma_{n-1}\right| \frac{\lambda_{n-1}}{\lambda_{n}}+\left|\eta_{n}\right| \frac{\lambda_{n+1}}{\lambda_{n}}\right)\right]<1,
$$

and $\widetilde{K}_{p, \Lambda}=K_{1}+K_{2}^{\prime}<1$, since

$$
\xi(\Lambda) \leq \widetilde{K}_{p, \Lambda} \leq K_{1}+\sup _{n}\left(\frac{\lambda_{n+1}}{\lambda_{n}}\right) K_{2}<1 .
$$

We can also explicitly calculate the solution of an infinite tridiagonal system when $\gamma_{n}=\gamma$ and $\eta_{n}=\eta$ for all n. Indeed the next result was shown in [6], where

$$
M(\zeta, \rho)=M(\zeta, e, \rho)
$$

Proposition 4.3. Let ζ, ρ be positive reals with $0<\zeta+\rho<1$. Then
i) $M(\zeta, \rho): X \longmapsto M(\zeta, \rho) X$ is bijective from χ into itself, for $\chi \in\left\{s_{1}, c_{0}, c\right\}$.
ii) a) Let χ be any of the sets s_{1}, or c_{0}, or c, and put

$$
u=(1-\sqrt{1-4 \zeta \rho}) / 2 \zeta \quad \text { and } \quad v=(1-\sqrt{1-4 \zeta \rho}) / 2 \zeta
$$

Then, for any given $B \in \chi$, the equation $M(\zeta, \rho) X=B$ has a unique solution $X^{\circ}=\left(x_{n}^{\circ}\right)_{n \geq 1}$ in χ given by

$$
\begin{aligned}
& x_{n}^{\circ}=\left(\frac{u v+1}{u v-1}\right)(-1)^{n} v^{n} \sum_{m=1}^{\infty}\left[1-(u v)^{-l}\right](-1)^{m} u^{m} b_{m} \quad \text { for all } n, \\
& \text { with } l=\min \{n, m\} .
\end{aligned}
$$

b) The inverse $[M(\zeta, \rho)]^{-1}=\left(a_{n m}^{\prime}\right)_{n, m \geq 1}$ is given by

$$
a_{n m}^{\prime}=\left(\frac{u v+1}{u v-1}\right)(-v)^{n-m}\left[(u v)^{l}-1\right] \quad \text { for all } n, m \geq 1 \text { and } l=\min \{n, m\}
$$

References

[1] I. J. Maddox, On Kuttner's theorem, J. London Math. Soc. 43 (1968), 285-290.
[2] B. de Malafosse, Sets of sequences that are strongly τ-bounded and matrix transformations between these sets, Demonstr. Math. 36 (2003), 155-171.
[3] B. de Malafosse, On some BK space, Int. J. Math. Math. Sci. 28 (2003), 1783-1801.
[4] B. de Malafosse, On the set of sequences that are strongly α-bounded and α-convergent to naught with index p, Semin. Mat. Univ. Politec. Torino 61 (2003), 13-32.
[5] B. de Malafosse, Calculations on some sequence spaces, Int. J. Math. Math. Sci. 31 (2004), 1653-1670.
[6] B. de Malafosse, The Banach algebra $\mathcal{B}(X)$, where X is a BK space and applications, Mat. Vesnik 57, (2005), 41-60.
[7] B. de Malafosse and E. Malkowsky, Matrix transformations in the sets $\chi\left(\bar{N}_{p} \bar{N}_{q}\right)$ where χ is in the form s_{ξ}, or s_{ξ}°, or $\mathrm{s}_{\xi}^{(c)}$, Filomat $\mathbf{1 7}$ (2003), 85-106.
[8] B. de Malafosse and E. Malkowsky, Sequence spaces and inverse of an infinite matrix, Rend. del Circ. Mat. di Palermo, Serie II. 51 (2002), 277-294.
[9] E. Malkowsky, The continuous duals of the spaces $c_{0}(\Lambda)$ and $c(\Lambda)$ for exponentially bounded sequences Λ, Acta Sci. Math. (Szeged) 61 (1995), 241-250.
[10] E. Malkowsky, Banach algebras of matrix transformations between spaces of strongly bounded and summable sequences, Adv. Dyn. Syst. Appl. 6 (2011), 91-109.
[11] E. Malkowsky and V. Rakočević, The measure of noncompactness of linear operators between spaces of strongly C_{1} summable and bounded sequences, Acta Math. Hungar. 89 (2000), 29-45.

On the Banach algebra $\left(w_{\infty}(\Lambda), w_{\infty}(\Lambda)\right)$ and applications to the solvability... 217
[12] A. Wilansky, Summability through Functional Analysis, Mathematics Studies, 85, Nor-th-Holland, Amsterdam, 1984

BRUNO DE MALAFOSSE
I.U.T UNIVERSITÉ DU HAVRE

76600 LE HAVRE
FRANCE
E-mail: bdemalaf@wanadoo.fr

EBERHARD MALKOWSKY
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF GIESSEN
ARNDTSTRASSE 2
D-35392 GIESSEN
GERMANY
C/O DEPARTMENT OF MATHEMATICS
FACULTY OF ARTS AND SCIENCES
FATIH UNIVERSITY
34500 BÜYÜKČEKMECE
ISTANBUL
TURKEY
E-mail: Eberhard.Malkowsky@Math.uni-giessen.de, ema@BankerInter.net
(Received July 3, 2013; revised October 23, 2013)

[^0]: Mathematics Subject Classification: Primary: 45H05; Secondary: 46A45.
 Key words and phrases: summability, BK spaces, spaces of strongly bounded sequences, matrix transformations, infinite linear systems.
 Work of the second author supported by the research project \#174025 of the Serbian Ministry of Science, Technology and Environment.

