Publ. Math. Debrecen
85/1-2 (2014), 197217
DOI: 10.5486/PMD.2014.5915

On the Banach algebra (wo(A), wes(A)) and applications
to the solvability of matrix equations in w(A)

By BRUNO DE MALAFOSSE (Le Havre) and EBERHARD MALKOWSKY (Giessen)

Abstract. We apply the characterisation of the class (woo(A), Woo(X)) and the
fact that this is a Banach algebra to study the solvability in we (A) of matrix equations
of the form A;’X = B and A, X = B, where A;’ and A, are upper and lower triangular
matrices. Finally, we obtain some results on infinite tridiagonal matrices considered as
operators from ws (A) into itself, and study the solvability in wes (A) of matrix equations
for tridiagonal matrices.

1. Introduction and known results

Let w denote the set of all sequences x = (x)72, and £, co and ¢ be the
sets of all bounded, null and finite sequences, respectively. We write e and (")
(n=0,1,...) for the sequences with e; = 1 for all k, and el™ =1 and eé") =0
for k # n.

A BK space X is a Banach sequence space with continuous coordinates
P, : X — C where P,(z) = (k=0,1,...) forall z € X. A BK space X D ¢
is said to have AK if x = Y3 jz,e® for every sequence z = (74)%2, € X.

Let X be a subset of w. Then the set X* = {a € w : Zz‘;oakxk converges for
all x € X} is called the -dual of X.

Let A=(ank);>, be an infinite matrix of complex numbers and x=(x1)72 (Ew.
Then we write A,, = (@)%, (n =0,1,...) and A% = (ank)3>, (k =0,1,...) for
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the sequences in the n-th row and the k-th column of A, and A,,(z) = Y77 jankTs
provided the series converges. Given any subsets X and Y of w, we write (X,Y)
for the class of all infinite matrices A that map X into Y, that is A, € X? for
all n, and A(z) = (An(2))32, €Y.

Let X and Y be Banach spaces, and By = {z € X : ||z|| < 1} denote the unit
ball in X. Then B(X,Y") denotes the Banach space of all bounded linear operators
L : X — Y with the operator norm ||L|| = sup,cp, ||L(z)|; X* = B(X,C) is
the continuous dual of X with the norm ||f|| = sup,cp, |f(z)| for al f € X*.
It is well known ([12, Theorem 4.2.8]) that if X and Y are BK spaces then
(X,Y) C B(X,Y), thatis,if A € (X,Y), then L4 € B(X,Y) where Ls(z) = A(x)
for all z € X.

Let (un)22, be a non-decreasing sequence of positive reals tending to infinity.
The set .

Woo(p) = {JJ cw: supi Z || < oo}
n Mo

was defined and studied in [9], where the concept of exponentially bounded sequ-
ences was introduced. When p,, =n+1 (n =0,1,...) then this set reduces weo,
the set of all sequences that are strongly bounded by the Cesaro method of order 1
([1]). A non-decreasing sequence A = (A,)52, of positive is called exponentially
bounded if there is an integer m > 2 such that for all non-negative integers v there
is at least one term A, in the interval I\y) = [m”, m**1 —1]. Tt was shown (9,
Lemma 1]) that a non-decreasing sequence A = (A,)52 is exponentially bounded,
if and only if there are reals s < ¢ such that for some subsequence (A,(.))pZq

n(v)

0<s< <t<1l forallv=0,1,...;

n(v+1)
such a subsequence is called an associated subsequence.
If A= (M)l is an exponentially bounded sequence, and (A,(,))5%, is an
associated subsequence with A, ) = Ao, then we write K, (v = 0,1,...) for the
set of all integers k with n(rv) <k < n(r+ 1) — 1, and define the sets

1
wo(A) =<4z €w: lim T =0
o) = {rews fim T2 37 il =0}

keK,

and

1
ww(A):{wa:sup)\ Z |xk<oo}.

v An(tl) gk,

The next result is well known.
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Theorem 1.1 ([9, Theorem 1 (a), (b)]). Let (u,)22, be a non-decreasing
sequence of positive reals tending to infinity, A = (A\,)22, be an exponentially
bounded sequence and (A, (,))no be an associated subsequence. Then o (1) is

a BK space with the norm || - ||, defined by

_ 1<
2]l,; = sup— > |axl. (1.1)
n HPnl

Moreover, we have Woo(A) = weo (A), and the norms || || and |- ||sare equivalent
on W (A), where

ol = sup s—— 3 faul, (1.2)
v Antl) pek,

Thus, in view of the previous result, we always assume, unless explicitly
stated otherwise, that A is an exponentially bounded sequence and (A,())nZ is
an associated subsequence, and we consider the spaces wg(A) and ws(A) with
the norm || || = | - |-

First we give the characterisaton of the class (woo(A), woo(X)). Let A =
(M) and ¥ = (0 )py—o be exponentially bounded sequences and (Ag(,))p2o
and (o ()l be associated subsequences. Furthermore, let K, (v = 0,1,...)
and M, (u = 0,1,...) be the sets of all integers k and m with k(v) < k <
k(v+1)—1and m(p) <m < m(u+ 1) — 1. We obtain the characterisation of
the class (weo(A), wso (X)) as the special case p =1 of [10, Theorem 3.1].

Theorem 1.2. We have A € (woo(A), woo (X)) if and only if

Al (oo (A) weo (2))

E mk

1 oo
= sup ( max Z/\k(,,ﬂ) Inax > <oo. (1.3)

o \Om(u+1) M)CM, F—7 mEM (1)
If A € (Woo(A), wee (X)), then
A (wee (A), 0o (2)) < 1 Lall <4+ [[All (wao (A),wee (£))- (1.4)

Finally we need the following known result.

Theorem 1.3 ([10, Theorem 4.2]). The class (woo(A), weo(A)) is a Banach
algebra with respect to the norm

[Alla.n) = sup{[[Alla : [[e]la <1} = [[Lall for all A € (weo(A), weo (A))-
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In this paper, we use the characterisation of the class (woo(A), weo(A)) in
Theorem 1.2 and the fact that this class is a Banach algebra to study the solva-
bility in ws (A) of matrix equations of the form A;‘X = B and A, X = B, where
A; and A, are upper and lower triangular matrices. Finally, we obtain some
results on infinite tridiagonal matrices considered as operators from wq,(A) into
itself, and study the solvability in we(A) of matrix equations for tridiagonal mat-
rices; these results are new. Our results on the Banach algebra and the deduced
solvability in ws(A) of matrix equations are also useful for statistical conver-
gence, and for A-statistical convergence, where A is an operator represented by
an infinite matrix. They can also be applied in spectral theory and the study
of operators generators of analytic semi-group, and be used in the intuitionistic
fuzzy normed space (IFNS).

2. The sets s9

Cc
pt SS_) and s,

We are going to study the solvability of certain matrix equations AX = B
in ws (A), where B belongs to the set weo(A) and A is an infinite matrix.

9, s(TC) and s, which are needed in

First, we recall some results on the sets s
the sequel. These sets are closely related to the sets cg, ¢ and .. We also define
and study the sets é, f, T and C.

We slightly change our notations to match those normally used in the theory
of infinite systems of linear equations, in particular, we consider sequences x as
one-column matrices X. It is also more convenient for the indices to run from 1
to oo instead of from 0 to co.

Thus, for a given infinite matrix A = (ank)n,k>1, we consider the operators

A, for any integer n > 1, defined by
An(X) = Zankmk (2.1)
k=1

where X = (zp)n>1 18 a one-column matrix of complex numbers, and the series
are assumed to be convergent. So we are led to the study of the infinite linear
system

An(X)=b, forn=12... (2.2)

where B = (b,)p>1 is a one-column matrix and X the unknown ([2], [4], [5],
[6], [7], [8]). The equations in (2.2) can be written in the form AX = B, where
AX = (An(X))n>1. We also consider A as an operator from a sequence space
into another sequence space.



On the Banach algebra (weo(A), weo (A)) and applications to the solvability... 201

By cs, we denote the set of all convergent series.

2.1. The sets D, E, where E is any of the sets cg, ¢, or /,,. Throughout,
we use the set

Ut = {(up)n>1 € w: uy, >0 for all n}.
For a given sequence 7 = (7,),>1 € U™, we define the infinite diagonal matrix
D; = (TpOnk)n,k>1; D7 can be considered as the operator X = (2,,)n>1 — D, X =
(Tn@n)n>1 from w to itself. For any subset E of w, we write

D.E = {(xn)n21 cw: (f_n) € E}?

0 _
s if E = ¢,

in particular,

D.E = ss-c) if F=c,
s if E=1/ly
([3]). Each of the spaces D, E, where E € {cg, ¢, s}, is a BK space normed by
Ty,
1., =sup (221), 23)
n>1 Tn
and s has AK.
Now let 7 = (7)n>1, v = (Vn)n>1 € UT. We write S;,, for the set of infinite
matrices A = (@nm)n,m>1 such that sup,>, (Z;’;l |ank|7k/un) < oo. The set
S:. is a Banach space with the norm

1 )
1Alls,, =sup | — Z | @kl T | -
n>1 \ Un =1

It was proved in [8] that A € (s, s,) ifand only if A € S, ,, that is, (s;,s,) = Sr..
When s, = s, then S, = 5, , is a Banach algebra with identity, normed by
[Alls, = | Alls,.. (3, 5]).

Ifr = (r")n>1, we write Sy, s, s: and sic) for S., s,, s2 and S(TC)

, respectively.
When r = 1, we obtain s; = {, s(l) = ¢p and s(lc) = ¢. Thus we have S; = S,.. It
is well known ([12, Example 8.4.5A]) that

(s1,51) = (co, 81) = (¢, 81) = S1.

For any subset F of w, we put

AE ={Y €w:Y = AX for some X € E}. (2.4)
If F is a subset of w, we write

F(A)=Fy={X€w:Y = AX € F}. (2.5)
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2.2. Some properties of the sequence C(X)X. Here we deal with the ope-
rators represented by C(A) and A(A). Let U be the set of all sequences (uy,)n>1
with u,, # 0 for all n. We define C'(A) = (¢pi)nk>1 for A = (An)n>1 € U, by
1
— if k<n
Cnk — >\n
0 otherwise.
We write C(A)T = CT(A), C(e) = ¥ and T = X7, The matrix A(A) =

(Chg)n.k>1 With

An if k=n
Gk =94 Ap_1 if k=n—1andn>2
0 otherwise

is the inverse of C'(A) ([3], [4]). We need to recall some results given in [3], [7].
For this, we consider the following sets

C, = {X = (Tn)ns1 € U s sup [;(ixkﬂ < oo},

n

~ 1 n
C:{X:(:En)n>1€U+ ((Zl’k)) EC},
"\ =1 n>1
— 1 >
cf = {X c U*ﬂcs:s%p Ln<kz:xk>} < oo},
r— {X eU*t hmn%o(x"l> 1},
I"l
T = {X e Ut : lim (mn1> 1},
n—oo xn

It = {X ceU™ :limnﬁoo(x"“) < 1}.
Tn,

Note that X € I't if and only if 1/X € I'. We will see in Lemma 2.1 that if
X € (4, then z,, —» 0o (n — 00). Furthermore, X € T if and only if there is an
integer ¢ > 1 such that

Yo(X) = sup (x"‘1> <1

n>q+1 Tn

COOX] = - ( y x) ,
" \k=1

Writing

we obtain the following the following result from [5, Proposition 2.1].
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Lemma 2.1. Let 7 € Ut. Then
1) (Tn=1/Tn)n>1 — 0 (n — o00) if and only if [C(T)7], — 1 (n — 00).
i) a) 7eC ifand only if (1,_1/m)%, € ¢,
b) [C(7)7]n — 1 (n — o0) if and only if 7,1 /7, = 1 — 1/l (n — o).
iii) If 7 € 6'\1 then there are K > 0 and v > 1 such that

Tn > K™ for all n. (2.6)

iv) The condition T € T implies T € C, and there is a real b > 0 such that

[C(7)T] + byg(1)" forn>gq+1. (2.7

n < ———
L —4(7)

v) The condition T € T'" implies 7 € Cy .

It was also shown in [7] that

ézfcl“ca.

3. The Characterizations of some operators mapping weo (A)
into itself

In this section, we apply Theorem 1.3 to infinite matrices such as A;”, A,
considered as operators from weo(A) into Dyweo(A).

Throughout, we assume that A = (\,,),>1 is an exponentially bounded se-
quence, and (A, );>1 is an associated subsequence.

As an immediate consequence of Theorem 1.3, we see that (weo(A), Weo(A))
is a Banach algebra with the norm

- [AX][x
JAII7, ) = sup ( Iy (3.1)
A 0 \ X,
where || - ||~ is the norm defined in (1.1).

Since the sequence A with A\, = n (n = 1,2...) is exponentially bounded,
we obtain in particular that (we, Weo) is @ Banach algebra with the norm in (3.1)

B 1 n
i = (231 ).

" k=1

where
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3.1. Some properties of the matrix map A;.

3.1.1. The map A“‘ considered as an operator from weo(A) into itself. Let p =
(pn)n>1 and conslder the infinite matrix A¥ = {(A}),x} defined by

1 (k=n)
(A;r)nk =4 —p, (k=n+1) foralln, k.
0 (otherwise)

First we see that if p and (Ani1/An)n>1 € foo then AT € (oo (A), woo(A)).
Indeed, we have
ijn =T — PnTp+1 forallm

and
1 n 1 n 1 n+1
— Z Tp = prTrr] < ) |7kl + Sup o] ~— Z ||
An k=1 " k=1 An+1 k=2

A
< <1 o+ sup ( "“) Suplpn|> X )

for all X € wuo(A) and for all n. This shows that ATX € we(A) for all X €
Weo (A).
More precisely we have the following result.

Theorem 3.1. Let A € U™ be an exponentially bounded sequence and
assume

1

(3.2)

_ A _
lim,, 00 < n+1) <oo and lim,_,lpn| < =— 5y .
)\n My — 00 ( ;+1 )

For given B € woo(A) the equation ATX = B has a unique solution in wu(A)

given by
00 1—1
Tp = bp + Z ( H pj)bi for all n. (3.3)
i=n+1 j=n
PRroOOF. Let .
AFT
+(N) _
gp( ) — 1 ;
0

where A;(N) is the finite matrix whose elements are those of the N first rows
and columns of Aj. The finite matrix A:,F(N) is invertible, since it is an upper
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triangle. We get A;E;(N) = (ank)p>1> With an, = 1 for all n; ap i1 = —pn
for all n > N; and a,; = 0 otherwise. For any given X € woo(A), we have
(I = AT X = (£,(X))n>1 with €,(X) =0 for all n < N — 1 and &,(X) =
Pnny1 for all n > N. Now we put Ky = sup,,s> y(An+1/An) sups v |px| and
show that (3.2) implies Ky < 1 for N large enougl_l. For this let & > 0 be given.
From (3.2), we have lim,, ,oo|pn| = | < 00, since lim, yooAnt1/An > 1. Then
there is an integer N; such that

sup |pn| <l+e.
’I’LZNl

Now since lim,, s oo Api1/An < 00, (3.2) implies lim, oo Ant1/An = L < 1/, and
as above there is an integer Ny such that

An
sup ( +1> < L+e.
YLENQ >\n

Since IL < 1, for ¢ small enough, taking N = max{N;, N}, we then have

Kn<(+e)(L+e)=IL+1le+Le+e*<1.

Now we obtain

- 1 &
7= 8325y = s (5 3 Il )

n+1
<swp | (swplnl) 5 D b
nzN " L=N+1
)\ 1 n+1
1
< sup < ot ) bup |pi| sup ( Z |xk|>
n>N >\n n>N )\n+1 E=N41

IN

)\n 1
sup (2552) sup ol 11
n>N n k>N

N — _
Then ||(7 — A3 ™)X, ) < Kn[IXIl,_ 4 and we conclude

17— A+2+(N)||_ = sup (7 A+E(N))X||w°°(/\ <Ky <1l
PP (A,N) X#0 || ||woo(A) -

Then (3.2) implies [T — A3y ™| ) < Ky < 1 and AF5/" has a uni-

que inverse in the Banach algebra (woo(A), woo(A)). Since obviously Z;(N) is
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bijective from wy,(A) into itself, the operators defined by AjZ;(N) and At =
(A;“Z:)F(N))(Z;(N))_1 are bijective from wu(A) into itself. So, for any given
B € weo(A), the equation ATX = B has a unique solution in we(A). Finally
(ANt =Y2(I-Ah) = [[(Aj)T]*l]T and an elementary calculation shows
that

1 p1 pip2
o U 1 p2 paps
@™ =[lanH7] = o
0 1T pa
We then obtain (3.3). This completes the proof. O

Proposition 3.2. For given B € wu(A), the equation AjX = B has a
unique solution in ws(A) given by (3.3) in the following cases

i) A e and Timy_oo Mgt /An)|on] < 1;
i) A ¢ C, and condition (3.2) holds.

PROOF. i) The condition A € 6'\1 implies weo(A) = sp. Furthermore, the
condition 1im,, o0 (Ant1/An)|pn| < 1 implies that there is an integer N such that

An
sup ( >\+1|pn|> < 1.

n>N n

Now since (woo (A), Woo(A)) = (s, 84) = Sa, we deduce

A
= sup ( ;—H |pn|> <1.

Sx n>N n

+y+(N) || _ +y+H (N
HI_A”EP( )H(A,A)_HI_A”E”( )‘

So we have shown 1i).

i) This is a direct consequence of Theorem 3.1. O

Remark 3.3. Note that since
Iy, o0 (Ana1/An)|on] < 1My oo (Ant1/An)limy, 0| pnl, condition (3.2) is weaker
than the condition lim,, o (Ant1/An)|pn| < 1 in Proposition 3.2 ii).

Putting A~ = (1, A1, ..., A\n—1,...), we easily deduce the following result.

Corollary 3.4. We assume A € 6'\1 Then we have
1) Woo(A) = sp;
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i) i) Weo(A)(AT) = woo (A7) = sy~ and, for any given B € ws(A), the equa-
tion
ATX =B (3.4)
has infinitely many solutions in w.,(A~) given by x, = u — Zz;ll by, where
u is an arbitrary scalar.
PROOF. i) Part (i) comes from [4].

ii) It can easily be seen that A € 6'\1 implies A~ € 6'\1 and since ws, (A) = sa,
we only have to show that sy (AT) = sy-. From the inequality

An— A
L < sup 2=t M < oo for all n,
)\n n >\TL

we deduce that sup,,(A,—1/\,) < oo and AT € (sy—,sa). Then, for any given

B ¢ sy, the solutions of the equation AT X = B are given by x; = —u, and
n—1
Tp =u-+ Z by for n > 2, where u is an arbitrary scalar. (3.5)
k=1

So there exists a real K > 0, such that
n—1 n—1
b K A
ol _ Jut Eisite] (|u| + K (S k)> -
n

)\n—l )\n—l )\n—l

since sup,, (|u|/An—1) < 0. So X € sp- and we conclude that A% is surjective
from sp— into s;x. Then A € C; implies

SA(A+) = SA—-
The previous argument shows that the equation ATX = B has infinitely many
solutions in we(A~) = sp- given by z, = u — Z;ll bi. This completes the
proof. O

3.1.2. Properties of AT (1) considered as an operator from D wes (A) to
D, woe(A). Here we consider the set

n

Drwao(N) = {X = (@n)n>1 : sup ()\171 >

Tk
n —1 Tk

<)

Lemma 3.5. Let E and F be linear subspaces of w and assume A € (E, F).
If A is a surjective map from E to F and Ker A = {0}, then

F(A) = E.

PROOF. Let X € F(A). Then Y = AX € F. Now we show that AX € F
implies X € E. For this, we assume that AX € F and X ¢ E. Since A is surjective

We need the following lemma.
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from E to F, there is Xy € FE such that Y = AX = AXy and X — X, € KerA.
So X = Xy € E which gives a contradiction. Thus we have shown F'(A) C E.
The inclusion E C F(A) is immediate. This shows the lemma. O

Note, for instance, that for 0 < r < 1, we have || — AT|ls, = r < 1. This

means that A1 is bijective from s, to itself. Since e € Ker AT \ {7}, we have
Ate=0¢€ s, and e € s;(AT)\ s,. This shows s,.(AT) # s,.
We have as a direct consequence of Theorem 3.1

Corollary 3.6. Let A, u,7 € UT and assume

- 1
Ty oo 2 < . (3.6)

Tn hmn_,oo ( A:\Lzl )

i) Then AT is bijective from D,wo.(A) into itself and A™(u) is bijective from
Drweo(A) into Dy jwee (A).
i) (Drwos(A))(CF (1)) = Drpweo(A).

PROOF. i) Here we have that A™X = B with B, X € D,ws(A) (X being
the unknown) is equivalent to (Dy,,ATD;)X’ = Dy, B where Dy, B € woo(A)
and X' = Dy, X € weo(A). So pp = Tyy1/7, for all n and, by Theorem 3.1, the
operator AT is bijective from D;w..(A) into itself. Now since A™ (u) = D, AT,
we easily conclude that A% is bijective from D;woo(A) into itself and D, is
bijective from D,weo(A) into Dypwee(A) and A (p) is bijective from D weo(A)
into D, wee(A).

ii) Since A () is bijective from D;weo(A) into Dy ywee(A), CF (1)
= YDy, = (AT ()" is bijective from Drjywee(A) into Drwee(A). Now the
equation CT ()X = 0 is equivalent to XTY = 0 with Y = D1/, X = (y5)n>1 and
Y € ¢s. Then we have -

Zyk:O form=1,2,....

k=n
We conclude y; = yo = -+ = y,, = 0 for all n and Ker X1 = Ker C*(u) = {0}.
By Lemma 3.5, we conclude (D;woo(A))(CF (1)) = Drpwoo(A). O

Corollary 3.7. If 7 € I'", then the equation AT X = B has a unique solution
in D;we for any given B € D woo.

PROOF. Indeed by Corollary 3.6, the condition 7 € 't implies that (3.2) is
satisfied for A\, = n, that is,

Tn+1 1
— =1. O

limy, 00



On the Banach algebra (woo(A), weo (A)) and applications to the solvability... 209

These results lead to the next remarks.

Remark 3.8. Note that if A € I'T then (3.6) yields 1 < 1/lim,, 00 (Ant1/An)
and A7 is bijective from we, (A) into itself.

Remark 3.9. Using the inverse of the infinite matrix (A})" ([2]), we see that,
under (3.2), we also have that Y ;_, |zx| = O(\,) (n — oco) implies

n [e’e) i—1
Z g + Z Hpj zi| =0(\,) (n—o0) forall X €w.
k=1 i=k+1 \j=k

Now we consider an example.

Example 3.10. We choose \,, = n and p, = a, — 1/n® for all n, where
(an)n € cis a positive sequence with a,, — [ for some [ < 1 (n — 00), and a > 0.
We see that if >"7_; |zx| = O(n) (n — co) then

éxh+i§_1 ﬁ(@-—?) ;| =0(n) (n— o0)

=k J°
for all X € w.

Remark 3.11. Note that, by Corollary 3.4 ii), we have A € 6'\1 if and only
if Woo(A)(AT) = weo(A7). Indeed, since wo(A) = sp, it is enough to assume
that sp(AT) = sy—. If we take B = A € sy, then the solutions of the equation
ATX = B belong to s,-, and are given by x,, = =1 — 22;11 Ai, where x1 is an
arbitrary scalar and

n—1
Ty 1 1
= — x| =0(1 n— oo).
Zom L (; ) =00 (o)
Putting x; = 0, we conclude that A € 6'\1

3.2. Some properties of the matrix map A,.

3.2.1. On the operator A, mapping we(A) into itself. Now we study the triangle
A, = (Aj)T, that is,
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considered as an operator that maps ws (A) to itself.
As in Subsection 3.1.1, we easily see that A, € (woo(A), woo(A)), if

()\nfl/)\n)n22 S Zoo
Theorem 3.12. Let A € Ut be an exponentially bounded sequence. We
assume 1

lim <—F—. 3.7
n—o0|Pn| T, (,\K:Ll) (3.7)

Then, for any given B € wo(A), the equation A,X = B has a unique solution in

Woo (A) given by z1 = by and 66

n—1 n—1
Ty = by + Z < H pj)bk for all n > 2. (3.8)
k=1 j=k

PrOOF. Let £ be defined by
—1
[AE}“} 0

0

where A,(ON) is the finite matrix whose elements are those of the N first rows
and columns of A,. The finite matrix AE,N) is invertible, since it is a triangle.
We get ZE,N)AP = (nk)nk>1, With an, = 1 for all n; ay -1 = —pp—1 for all
n > N + 1; and ay,, = 0 otherwise. For any given X € wy,(A), we have (I —
SMANX = (6,(X))n>1 with £,(X) = 0 for all n < N and £,(X) = pp_12n_1
for all n > N + 1. Now put Ky = sup,>n11(An—1/An)Supg> i1 [pr—1]- Then
we have as in Theorem 3.1

An—
sup [( sup |pk|> 3 1] <Ky<1 foralln>N. (3.9)
n>N+1 N<k<n n

Furthermore, we obtain

_ 1 n
Ji-mea0x] = o, (5 52 e

n>N+1 nk:N-‘,—l
A 1 n—1
-1 —
< s [( s ol ) 52 s (A qu)gmnxnwmw.
n>N+1 N+1<k<n n n>N n—1 =N

Finally, using (39), we get
I— Z(N)A H < K/N 1
H h P AN < 1,

and we conclude, reasoning as Theorem 3.1. (|
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Remark 3.13. Note that since A is a non-decreasing sequence, we do not need
to assume lim,, o0 (Ap—1/An) < 00 in Theorem 3.12.

We immediately get

Corollary 3.14. Under (3.7), we have woo(A)(A,) = woo(A).

Corollary 3.15. i) We assume that (3.7) holds. Then

1 n
sup </\ Z |xk|> < oo
" k=1

n

implies
1 n k—1 [k—1
sup )\—Z xk+z pi | xj| p <oo forall X.
" " =2 j=1 \'i=j

ii) If A € T and lim,,_,|pn| < 1, then

ka|>
su —_— < 0
o ( An

implies
1 n—1 [fn—1
sup /\—xn—f—z Hpi zj| p <oo forall X.

PROOF. i) Part i) is an immediate consequence of Theorem 3.12.

ii) Since A € T, that is, lim, 0 (A_1/Mn) < 1, we have

_ 1
limy, oolpn] <1< =
- hmn—>oo(/\n—1//\n)
and condition (3.7) follows. Now, by Corollary 3.4, we have ws (A) = sz and,
by Theorem 3.12, A, is bijective from s, into itself. We conclude, using iden-
tity (3.8). O
Remark 3.16. Putting Ay = A, we see that if A € T' then ws(A)(A) =

Woo (A). Indeed by Theorem 3.12, condition (3.7) implies lim,, o0 (An_1/An) < 1,
that is, A € T'. Since T' C (4, applying Corollary 3.4, we conclude wuo(A) = sp
and sp(A) = sp.

These results lead to consider the sets [C(A), C(1)]oe and [C(A), Ay(1)]oos
([5]). In this way we obtain the following results.
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3.2.2. On the sets [C(A),C(1)]oo and [C'(A), Ay(1t)]oc. Now we can give some
applications of the previous results. For this, we define for A, u € U the set

[C(A), C(w)]eo ={X €w: C(A)(|C(W)X]) € Lo} -

)<m}

Then we have

k
D

=1

11

[C(A),C(p)]oo = ¢ X €Ew sup [ — Z -

no\An i M

It was shown in [5, Theorem 3.1] that if A, Ap € C; then

[C(A), C()]oo = sap-

This result can be improved here as follows. We put C; = C((n),>1). The
following result holds.

Proposition 3.17. Let u,A c UT.
D It

— _ 1
hmn—moun = < b )

. n—1
" limy, 00

An

then [C(A), ()] = Dyt (A).
ii) If peT, then A € ([C1,C(1)]oo, 8) if and only if

2° nm|tm = M O(1 N .
32, . lowmlin = mOW) (0 )

PROOF. i) We have A, = D,,,AD, with p, = pn_1/p, for all n, and

A Dywe(A) — Dywee(A) is bijective, so Dywoe(A)(A) = Dywee(A). We
have X € [C(A),C(p)]s if and only if C(1)X € weo(A), that is

X € C(n) ™ wee (A);

and since C'(u)~* = A(p) = AD,,, we have X € AD,woo(A) = Dywoo(A). Thus
we have shown Part i).

ii) Here )\, = n for all n, so lim, s~ (\,—1/\,) = 1 and condition (3.7)
is satisfied, since ¢ € I'. By Part i), we have [C1,C(i)]oc = Dywoo and A €
([C1, C(1)]o» 5y) if and only if Dy, AD,, € (woo(A),€s). We conclude, using the
characterization of (wuo(A), ¢ ), given in [11, Remark, p. 33]. a
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Now we write A,(u) = A,D,, and
[C(A), Ap()]oo ={X € w: CA)(|A, (1) X]) € Lo}

Then we have

" k=1

[C(A%Ap(ﬂ)]m = {X Cw: Slip ()\1 Z |y — Mk—1pk—196k—1|> < OO} .

We obtain the following result.

Proposition 3.18. Let A, u,p € U™T.
i) We assume that (3.7) holds. Then [C(A), A,(11)]oo = D1/,Weo(A);
ii) A€ ([C(A), Ap(1t)]ocs Sy) if and only if

i |anM‘
2 —_— = 1 .
; pi<maoitio1 mO(L) (n = o)

Proor. Here C(A)(|A,(1)X]) € £ if and only if D, X € woo(A)(A,) and,
by (3.7), we get woo (A)(A,) = woo(A).

(ii) We obtain Part ii), reasoning as in Proposition 3.17 ii). O

4. On an infinite tridiagonal matrix considered as an operator
from wo (A) into itself and applications

In this section, we give some results on the infinite tridiagonal matrix
M (v, a,n), considered as an operator from y into D,x where x is any of the sets
Weo(A), 54,83, SE\C), or £,(A).

Note that the previous results on A} and A, cannot be considered as a
consequence of the next ones.

Let v = (Ya)n>1, 7 = (n)n>1 and a = (an)n>1 be given sequences, and
a € U. We consider the infinite tridiagonal matrix

ar m

Y1 a2 12 o
M(’Ya a, 77) = . .
O Tn—1 an  Tin
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In the following we use the sets

l, = {X = (Tn)n>1: Z|xn|p < oo} for 1 <p< oo
n=1
and £,(1) = D.l, for T € UT.
We notice that Dos, = Djq)8r = S|q|r, Das? = Djq 59 = S‘OG‘T and Do 0, (1) =
ly(lalT) for T € UT.
We suppose that K7 = sup,,~s |[Yn—1/an| < 1 and Ky = sup,, |, /an| > 0.
The following theorem holds.

Theorem 4.1. Let A € Ut be an exponentially bounded sequence and
An+1 1-K;

) 4.1

sgp( N, ) <& (4.1)

Then, for any given B € D,w(A), the equation M (y,a,n)X = B has a unique
solution in weo(A) given by X =Y o2 (I — M(v,a,n))'B.

assume that

PrROOF. We consider Dy,,M(v,a,m) = M(C, e, p) with (,_1 = yp—1/a, for
n > 2 and p, = n,/a, for all n. Then we have

L p

Cl 1 P2 (0]
M(C,e,p):M(C,p): .

O Cnfl 1 Pn

(Note that M (¢, p) = (A_gc + AfQP)/Q). Here we have

(I—M((p) X = —(p1z2, G121 + p2x3, -, Ca1Tne1 + PuTptts- .- )

Then

(1 — M(C, P))XH w(A) = SUP <>\1 Z |Ck—1ZK—1 + kak+1>

k=1

with zg = 0 and

sup |Gl

Z &
ArL k<n— n— | |

An
) K + sup ( )\+1> Kz} 1 X ay-
n

/\ Z'Ck 1Tk~ 1+Pk$k+1| <
n k? 1

)\ n+1
+ ;H Sup \pk| Z || < [sup (
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Since A is a non-decreasing sequence, sup,,(A,—1/A,) < 1, and using (4.1), we
easily conclude that

(T = MG p) Xl ()
||I— M(Cup)Hiw w A w )
(woe (M) (8)) = S X )

An
< K, +sup< )\H) Ky < 1.
n n
Finally, for any given B € ws(A), the equation M(v,a,n)X = B is equivalent
to M(C,p)X = D1/,B. So, for any given B € Dywo(A), the last equation has a
unique solution in we (A). O

Corollary 4.2. Let A\ € Ut be an exponentially bounded sequence and
assume that (4.1) holds. Then
i) M(v,a,n) is bijective from we, (A) to Dgwoo (A) and M (7, a,n) "t €(Dyweo (A),
Woo (A));

ii) M(v,a,n) is bijective from s, into 5|,z and M(vy,a,m)"t € (SlajAs 5A);

iit) M(vy,a,n) is bijective from s, into STaIA and M(vy,a,n)~t € (sloalA,sj\);

iv) for a € U™, the condition lim, oo (Yn_1An_1 + NnAni1) A, tat = 1 # 0,
implies that M (v,a,n) is bijective from 55\0) into sfﬁi, and M(vy,a,n)"! €
(S(C)7 S(C)).

arr SA

v) Let p > 1 be a real. If K, 5 = Ky + K} < 1 with K1 = sup,, (|n_1/an|)
and K5 = sup,,(|nn/an|Ant1/An), then M (v, a,n) is bijective from £,(A) into
Cp(|alA), and M(y,a,m)~" € (Up(lalA), £5(A)).

PROOF. By [5, Theorem 6.1] 4.1 and Condition (4.1), we have

1 An— An
) =swp | (Bl 52 k%2 )| <1

n>1 |an| )\n

and I~(p)A = K; + K} < 1, since

€(A) < Kpp < Ky +sup<>\;+1)Kz<1~ 0

n

We can also explicitly calculate the solution of an infinite tridiagonal system
when v,, = v and 7,, = n for all n. Indeed the next result was shown in [6], where

M(¢, p) = M(C,e,p).
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Proposition 4.3. Let (, p be positive reals with 0 < ( + p < 1. Then
i) M(¢,p): X — M(¢, p)X is bijective from x into itself, for x € {s1,co,c}.

ii) a) Let x be any of the sets s, or ¢g, or ¢, and put

uz(l—@)/% and vz(l—@)/%.

Then, for any given B € , the equation M((,p)X = B has a unique
solution X* = (x, ),>1 in x given by

uv — 1

x; = (uv + 1) (=1)™" Z [1-— (uv)_l](—l)mumbm for all n,

m=1

with | = min{n, m}.

b) The inverse [M (¢, p)]™' = (@l )n.m>1 Is given by

1
a,,., = (ZZ i_ 1) (—v)"_m[(uv)l —1] for alln,m > 1 and |l = min{n, m}.
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