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Quasi Ahlfors–David regularity of Moran sets

By YU SUN (Wuhan), MANLI LOU (Guangzhou), FAN LÜ (Wuhan)
and LIFENG XI (Ningbo)

Abstract. For Moran fractals in Euclidean spaces, under suitable assumption, we

obtain their quasi Ahlfors–David regularity and quasi-Lipschitz equivalence.

1. Introduction

1.1. Moran set. Recall some notions in fractals. A map S : Rn → Rn is called

a similitude with ratio r, if |S(x) − S(y)| = r|x − y| for all x, y ∈ Rn. For two

subsets A and B of Rn, we say that A is geometrically similar to B with ratio r,

if there is a similitude S of ratio r such that S(A) = B. For subset A, let |A| be
the diameter of the set, and Ā the closure of A.

The notion of Moran set is introduced by Wen in [16].

Given integers {nk}k≥1 with nk ≥ 2 and ratios {ck,i}k≥1, 1≤i≤nk
⊂ (0, 1),

let Σ̃∗ =
⋃∞

k=0

∏k
i=1{1, . . . , ni} be the collection of finite words with k-th let-

ter in {1, . . . , nk} for each k, suppose {Vi1···ik}i1···ik∈Σ̃∗ are non-empty open sets

satisfying

Vi1···ik−1ik ⊂ Vi1···ik−1
and Vi1···ik−1ik ∩ Vi1···ik−1jk = ∅ if ik 6= jk, (1.1)

Vi1···ik−1ik is geometrically similar to Vi1···ik−1
with ratio

|Vi1···ik−1ik |/|Vi1···ik−1
| = ck,ik . (1.2)
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A Moran set F is defined by

F =

∞⋂

k=1

⋃

i1···ik∈Σ̃∗

V̄i1···ik . (1.3)

For convenience, we write dk = min1≤i≤nk
ck,i, Dk = max1≤i≤nk

ck,i and

suppose sk satisfies
∏k

j=1

(∑nj

i=1(cj,i)
sk
)
= 1. Let s∗ = limk→∞sk and s∗ =

limk→∞sk.

Remark 1. The self-similar set satisfying the open set condition is a Moran

set. In fact, suppose E = ∪m
i=1Si(E) is a self-similar set (see [7]), where {Si}mi=1

are contracting similitudes with ratios {ri}mi=1 such that the open set condition

holds, i.e., there is a non-empty open set U such that

∪iSi(U) ⊂ U and Si(U) ∩ Sj(U) = ∅ for any i 6= j. (1.4)

Let nk ≡ m and ck,ik = rik , Σ∗ = ∪∞
k=0{1, . . . ,m}k and ∅ the empty word.

We write U∅ = U and Ui1···ik = Si1 ◦ · · · ◦ Sik(U) for word i1 · · · ik ∈ Σ∗, then
(1.4) implies Ui1···ik−1ik ⊂ Ui1···ik−1

and Ui1···ik−1ik ∩ Ui1···ik−1jk = ∅ for any

i1 · · · ik ∈ Σ∗ and ik 6= jkand Ui1···ik−1ik is geometrically similar to Ui1···ik−1
with

ratio |Ui1···ik−1ik |/|Ui1···ik−1
| = rik . It follows from (1.4) that ∪iSi(Ū) ⊂ Ū , hence

the self-similar set

E =

∞⋂

k=1

⋃

i1···ik∈Σ∗
Ūi1···ik . (1.5)

1.2. Ahlfors–David regularity. A compact set E is said to be Ahlfors–David

s-regular [11], [12], if there is a Borel measure ν supported on E such that

C−1rs ≤ ν(B(x, r)) ≤ Crs (1.6)

for any x ∈ E and r ≤ |E|. For self-similar set E satisfying the open set condition

as above, as shown in [7], the self-similar measure ν satisfies (1.6) where s =

dimH E = dimB E is the solution of the equation (r1)
s + · · ·+ (rm)s = 1.

For Ahlfors–David s-regular set E, by Theorem 5.7 of [11], we have

dimBE = dimBE = dimH E = s.

It was shown in [16] that, if c∗ = inf dk > 0 for Moran set F as above, then

dimH F = s∗ and dimBF = s∗.

Therefore, if s∗ < s∗, then F can not be Ahlfors–David regular.
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Example 1. Let nk ≡ 2 and ck ∈ {1/3, 1/5}. Then c∗ > 0. Take a sequence

{ck}k such that a = limk→∞qk < limk→∞qk = b, where qk = #{i≤k:ck=1/3}
k . Then

limk→∞sk = limk→∞
k log 2

−(log c1···ck) = limk→∞
log 2

qk log 3+(1−qk) log 5 = log 2
a log 3+(1−a) log 5

and limk→∞sk = log 2
b log 3+(1−b) log 5 , which means dimH F < dimBF .

In the following example, dimH F = dimB F but F is not Ahlfors–David

regular.

Example 2. Let s = log 3/ log 5 and ck = 1
5 (1+

1
2k ) for all k, then limk→∞ ck =

1/5 and limk→∞ 3k(c1 · · · ck)s = limk→∞
[∏k

i=1

(
1 + 1

2i

)]s
= ∞. Set nk ≡ 3. Fix

Iφ = [0, 1] for empty word φ. Given an interval Ii1···ik−1
= [c, d] with i1 · · · ik−1 ∈

{1, 2, 3}k−1, we put Ii1···ik−11 = [c, c+ck(d−c)], Ii1···ik−12 =
[
c+d
2 − ck(d−c)

2 , c+d
2 +

ck(d−c)
2

]
and Ii1···ik−13 = [d− (d− c)ck, d]. Let

F = ∩∞
k=1 ∪i1···ik∈{1,2,3}k Ii1···ik .

Using result in [16], we have dimH F = dimB F = s. We will show that F is not

Ahlfors–David s-regular. On the contrary, there is a constant α > 0 such that

for the corresponding Ahlfors–David s-regular measure ν, we have (c1 · · · ck)s ≤
αν(Ii1···ik) for all i1 · · · ik ∈ {1, 2, 3}k. Therefore,

3k(c1 · · · ck)s ≤ α
∑

i1···ik∈{1,2,3}k

ν(Ii1···ik) = αν([0, 1]) < ∞.

Letting k → ∞, we obtain a contradiction.

However, the Moran set in Example 2 is quasi Ahlfors–David s-regular.

1.3. Quasi Ahlfors–David regularity. We say that F is quasi Ahlfors–David

s-regular [15], if there is a Borel measure µ supported on F such that

log µ(B(x, r))

log r
→ s uniformly for x ∈ F as r → 0. (1.7)

Notice that Ahlfors–David regularity implies quasi Ahlfors–David regularity.

Can we find the conditions for a Moran set to be quasi Ahlfors–David regular?

Now, we shall pose some assumptions upon the Moran sets:

(A1): limk→∞
log dk

log(D1D2···Dk−1)
= 0;

(A2): supk
log(n1n2···nk)

− log(D1D2···Dk)
< ∞;

(A3): limk→∞ sk = s ∈ (0,∞).
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Remark 2. (A1) means
log |V̄i1···ik−1ik

|
log |V̄i1···ik−1

| → 1 uniformly as k → ∞, this is a

natural assumption. We pose (A2) as a technical need.

Remark 3. If c∗ = infk dk > 0, then (A1)–(A2) hold since supk nk ≤ 1/(c∗)n

and 0 < c∗ ≤ dk ≤ Dk ≤ n
√
1− (c∗)n by (1.1)–(1.2).

Remark 4. (A3) means dimH F = dimB F = s in some sense as in [16]. If

c∗ = infk dk > 0, it follows from [16] that dimH F = s∗ and s∗ = dimBF . Using

(A3), we have dimH F = dimB F = s.

Remark 5. For self-similar set E satisfying the open set condition as above,

we have Dk ≡ maxi ri, dk ≡ mini ri, nk ≡ m, ck,i = ri and sk ≡ s with

(r1)
s + · · ·+ (rm)s = 1.

It is obvious that assumptions (A1)–(A3) hold. The Ahlfors–David regularity

of E supports the rationality of these assumptions.

Under these assumption, we get the quasi Ahlfors–David regularity.

Theorem 1. Suppose F is a Moran set satisfying (A1)–(A3). Then F is

quasi Ahlfors–David s-regular.

Besides Example 2, we give the following planar Moran set satisfying

(A1)–(A3).

Example 3 ([3]). Consider a plane fractal defined as follows. Given two sequ-

ences {lk}k≥1 and {nk}k≥1 with nk ≤ l2k and

lim
k→∞

log(n1 · · ·nk)

log(l1 · · · lk) = s.

Take a unit square [0, 1]2 as the initial set. In the first step, we divide [0, 1]2 into

(l1)
2 equal squares with side length 1/l1, then we select n1 ones. By induction, as-

sume that we get a square Qi1···ik−1
(i1 · · · ik−1 ∈ Σ̃∗) of side length (l1 · · · lk−1)

−1,

we divide it into (lk)
2 equal squares with side length (l1 · · · lk−1lk)

−1, and then

we select nk ones from them, denoted by {Qi1···ik−1ik}nk
ik=1. Again and again, we

get a limit set which is a Moran set, where ck,i ≡ (lk)
−1 and Vii···ik is the interior

of Qi1···ik . It is easy to check that assumptions (A1)–(A3) hold.
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1.4. Quasi Lipschitz equivalence of Moran sets. We say that two subsets

A and B of Euclidean spaces are Lipschitz equivalent, if there is a bijection from

A to B such that for all x, y ∈ A,

C−1|x− y| ≤ |f(x)− f(y)| ≤ C|x− y|
for some constant C > 0.

Even for self-similar sets, their Lipschitz equivalences are very difficult to

study, for example see Cooper and Pignataro [1], David and Semmes [3],

Deng and He [4], Deng, Wen, Xiong and Xi [5], Falconer and Marsh [6],

Lau and Luo [10], Llorente and Mattila [9], Rao, Ruan and Wang [13],

Xi and Xiong [17], [19], [20], [21]. As we known, two dust-like self-similar sets

with the same dimension may not be Lipschitz equivalent. But they are quasi

Lipschitz equivalent.

The notion of quasi-Lipschitz equivalence is introduced by Xi [18].

We say that two subsets A and B of Euclidean spaces are quasi-Lipschitz

equivalent, if there is a bijection from A to B such that for all x, y ∈ A,

log |f(x)− f(y)|
log |x− y| → 1 uniformly as |x− y| → 0.

It is proved in [18] that two self-conformal sets are quasi-Lipschitz equivalent

if and only if they have the same dimension. This result was developed by Wang

and Xi [14], [15], Xiong and Xi [22].

Li et al. [8] studied the quasi-Lipschitz equivalence for some homogeneous

Moran sets in line, a special class of Moran sets. For any Moran set in this class,

we have ck,1 = · · · = ck,nk
= ck and an additional assumption limk→∞

log n1···nk

log c1···ck =

s ∈ (0, 1). We see that the condition limk→∞
logn1···nk

log c1···ck = s is like (A3). But the

condition s < 1 plays an important role which is like the separation condition for

self-similar sets.

In this paper, we study the general Moran sets under the separation assumpt-

ion:

(A4): For any i1 · · · ik−1ik ∈ Σ̃∗,

log d(V̄i1···ik−1ik , F\V̄i1···ik−1ik)

log |V̄i1···ik−1
| → 1 uniformly as k → ∞.

Here d(A,B) is the least distance between compact sets A and B.

For s > 0, a class As of Moran sets is defined by

As =

{
{F : F is a Moran set satisfying (A1)–(A4)} if s ≥ 1,

{F : F is a Moran set satisfying (A1)–(A3)} if s < 1.
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Theorem 2. For every s > 0, any two Moran sets in As are quasi-Lipschitz

equivalent.

We pose the last assumption:

(A5): There exists a constant c > 0 such that for any i1 · · · ik−1ik ∈ Σ̃∗,

|V̄i1···ik−1ik |
|V̄i1···ik−1

| = ck,ik ≥ c and
minjk 6=ik d(V̄i1···ik−1ik , V̄i1···ik−1jk)

|V̄i1···ik−1
| ≥ c.

Then (A5) implies (A1)–(A2) (see Remark 3) and (A4).

Using Theorem 2, we have

Theorem 3. Fix s > 0. Suppose F1 and F2 are Moran sets satisfying (A3)

(with the same parameter s) and (A5), then they are quasi-Lipschitz equivalent.

Remark 6. In fact, (A3) and (A5) hold for self-similar sets satisfying the

strong separation condition. Then we obtain the result in [18]: two dust-like

self-similar sets are quasi-Lipschitz equivalent if and only if they have the same

dimension.

The paper is organized as follows. Section 2 is the preliminaries, including

the construction of the measure which plays an important role in this paper.

Section 3 is the proof of Theorem 1. In Section 4, we get Theorem 2 based on the

main result in [15]. In fact, [15] proved that if two compact sets are quasi Ahlfors–

David s-regular and quasi uniformly disconnected, then they are quasi-Lipschitz

equivalent.

2. Preliminaries

For σ = σ1 · · ·σk ∈ Σ̃∗, let |σ|(= k) denote its length. Write

(σ1 · · ·σk) ∗ σk+1 = σ1 · · ·σkσk+1.

We say that V̄σ is of rank k, if |σ| = k. Without loss of generality, we assume the

diameter

|V̄∅| = 1.

If σ = σ1 · · ·σk, then every V̄σ is similar to |V̄∅| with ratio c1,σ1c2,σ2 · · · ck,σk
and

|V̄σ| = c1,σ1c2,σ2 · · · ck,σk
. (2.1)
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2.1. Construction of measure. Fix s > 0. As in [2] by Dai et al., we can

define a probability measure supported on F depending on s.

Let µ(V̄∅) = 1, where ∅ is the empty word.

By induction, for every k ≥ 1 and V̄σ of rank (k − 1), we define

µ(V̄σ∗i) =
csk,i∑nk

j=1 c
s
k,j

µ(V̄σ) for 1 ≤ i ≤ nk.

In fact, if σ = σ1 · · ·σk, then

µ(V̄σ) =
|V̄σ|s∏k

i=1

(∑ni

j=1 c
s
i,j

) . (2.2)

More and more, we get a probability measure supported on F . In fact, we use

the condition (1.1) during the above construction of measure, as in the way by

Hutchinson [7] for the open set condition.

2.2. Disconnectedness and quasi-Lipschitz equivalence. As above, we int-

roduce the Moran set on the analogy of the self-similar sets satisfying the open set

condition. Now, we will give some property of disconnectedness on the analogy

of the self-similar sets satisfying the strong separation condition (SSC in short),

here SSC holds for E = ∪m
i=1Si(E), if

min
i 6=j

d(Si(E), Sj(E)) > 0,

where d(A,B) is the distance between A and B.

Definition 1 ([15]). We say that a subset K of Euclidean space is quasi uni-

formly disconnected if there is a function η : (0,+∞)→(0,+∞) with lim
t→0

log η(t)
log t =1

such that for any x ∈ K and r > 0, there is a subset B ⊂ K such that

K ∩B(x, η(r)) ⊂ B ⊂ B(x, r) and d(B,K \B) > η(r). (2.3)

We notice that if E is a self-similar set satisfying SSC, then E is quasi

uniformly disconnected. In fact, we can take

η(r) = (min
i

ri)
mini 6=j d(Si(E), Sj(E))

|E| · r.

The following two lemmas come from [15] by Wang and Xi.
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Lemma 1. Suppose that compact and quasi uniformly disconnected subsets

E1 and E2 of Euclidean spaces are quasi Ahlfors–David s -regular. Then E1 and

E2 are quasi Lipschitz equivalent.

Lemma 2. If E is quasi Ahlfors–David s-regular with s ∈ (0, 1), then E is

quasi uniformly disconnected.

In fact,Mattila and Saaranen [12] proved that if E is Ahlfors–David s-

regular with s ∈ (0, 1), then E is uniformly disconnected.

3. Quasi Ahlfors–David Regularity

In this section, we will prove Theorem 1. Now, fix

s = lim
k→∞

sk,

where
∏k

i=1

(∑ni

j=1 c
sk
i,j

)
= 1.

3.1. Measure of V̄σ. We will estimate the measure of V̄σ.

Lemma 3. There is a non-increasing function δ : N → R+ such that

limk→∞ δ(k) = 0 and for any basic interval Iσ,

|V̄σ|s+δ(|σ|) ≤ µ(V̄σ) ≤ |V̄σ|s−δ(|σ|).

Proof. Suppose |σ| = k. By (2.2), we only need to show

log
∏k

i=1

(∑ni

j=1 c
s
i,j

)

log |V̄σ|
→ 0 as k → ∞. (3.1)

In fact, using (2.1) and Dk = maxi ck,i, we have

∣∣log |V̄σ|
∣∣ ≥ | log(D1 · · ·Dk)|. (3.2)

On the other hand, since
∏k

i=1

(∑ni

j=1 c
sk
i,j

)
= 1, we have

∣∣∣∣ log
k∏

i=1

( ni∑

j=1

csi,j

)∣∣∣∣

=

∣∣∣∣ log
k∏

i=1

( ni∑

j=1

csi,j

)
− log

k∏

i=1

( ni∑

j=1

cski,j

)∣∣∣∣ = |g(s)− g(sk)|,
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where

g(x) =

k∑

i=1

log

( ni∑

j=1

cxi,j

)
.

By Mean value theorem, there exists ξk lying in the interval with endpoints s and

sk such that

|g(s)− g(sk)| = (sk − s)

k∑

i=1

∑ni

j=1 c
ξk
i,j log ci,j∑ni

j=1 c
ξk
i,j

. (3.3)

Write ˜ci,j =
c
ξk
i,j∑ni

j=1 c
ξk
i,j

, then
∑ni

j=1 ˜ci,j = 1 and

k∑

i=1

∑ni

j=1 c
ξk
i,j log ci,j∑ni

j=1 c
ξk
i,j

=
1

ξk
·

k∑

i=1

∑ni

j=1 c
ξk
i,j log c

ξk
i,j∑ni

j=1 c
ξk
i,j

=
1

ξk
·
( k∑

i=1

ni∑

j=1

˜ci,j log ˜ci,j +

k∑

i=1

log

ni∑

j=1

cξki,j

)
. (3.4)

Using the convexity of function f(x) = −x log x on [0, 1], we have

∣∣∣
ni∑

j=1

˜ci,j log ˜ci,j

∣∣∣ ≤ log ni and

k∏

i=1

Dξk
i ≤

k∏

i=1

ni∑

j=1

cξki,j ≤
k∏

i=1

ni. (3.5)

Then it follows from assumption (A2) and (3.3)-(3.5) that

lim
k→∞

∣∣ log∏k
i=1

(∑ni

j=1 c
s
i,j

)∣∣
log(D1 · · ·Dk)

= 0. (3.6)

Therefore, we get (3.1) by (3.2) and (3.6). ¤

3.2. Proof of Theorem 1. For x ∈ F and r small enough, now we shall estimate

log µ(B(x, r))

log r
.

Let Nr = min{k : d1 · · · dk ≤ r} → ∞ as r → 0. Let σ− be the father of σ, that

is σ = σ− ∗ i|σ| for some letter i|σ|.
(1) Lower bound :

Using assumption (A1) limk→∞
log dk

log(D1D2···Dk−1)
= 0, we have

lim
|σ|→∞

log |V̄σ|
log |V̄σ− | = 1, (3.7)
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then there exists a non-increasing function α : N→ (0,∞) with limk→∞ α(k) = 0

such that

|V̄σ− | ≥ |V̄σ| ≥ |V̄σ− |1+α(|σ|). (3.8)

Take a word σ such that

|V̄σ| ≤ r and |V̄σ− | > r, (3.9)

Then by Lemma 3, we have

µ(B(x, r)) ≥ µ(V̄σ) ≥ |V̄σ|s+δ(|σ|). (3.10)

It follows from (3.8), (3.9) and (3.10) that

µ(B(x, r)) ≥ |V̄σ− |(s+δ(|σ|))(1+α(|σ|)) > r(s+δ(Nr))(1+α(Nr)), (3.11)

where

(s+ δ(Nr))(1 + α(Nr)) → s as r → 0.

(2) Upper bound :

Let

Ωx,r = {σ : B(x, r) ∩ V̄σ 6= ∅ and |V̄σ| ≤ r, |V̄σ− | > r},

and lx,r := minσ∈Ωx,r |V̄σ| = minσ∈Ωx,r |Vσ|.
It follows from Lemma 3 that for σ ∈ Ωx,r,

µ(V̄σ) ≤ rs−δ(Nr). (3.12)

By (3.8), we have

lx,r ≥ r1+α(Nr) with α(Nr) → 0 as r → 0. (3.13)

Denote by Ln the Lebesgue measure on Rn. Since
⋃

σ∈Ωx,r
Vσ is a disjoint

union contained in B(x, 2r), we have

LnB(x, 2r) ≥ Ln(
⋃

σ∈Ωx,r

Vσ) =
∑

σ∈Ωx,r

Ln(Vσ)

=
∑

σ∈Ωx,r

Ln(V∅) ·
|Vσ|n
|V∅|n

≥ Ln(V∅)
|V∅|n

(#Ωx,r)(lx,r)
n.

This means the cardinality

#Ωx,r ≤ C1
rn

(lx,r)n
(3.14)
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for some constant C1 > 0.

For any y ∈ F ∩B(x, r), we can find a word σ with y ∈ V̄σ such that |V̄σ| ≤ r

and |V̄σ− | > r. That means

F ∩B(x, r) ⊂
⋃

σ∈Ωx,r

V̄σ. (3.15)

By (3.12)–(3.15), we have

µ(B(x, r)) = µ(F ∩B(x, r)) ≤ µ(
⋃

σ∈Ωx,r

V̄σ) ≤ #Ωx,r · max
σ∈Ωx,r

µ(V̄σ)

≤ C1
rn

(lx,r)n
max

σ∈Ωx,r

µ(V̄σ) ≤ C1 · rs−δ(Nr)−nα(Nr),

where

s− δ(Nr)− nα(Nr) → s as r → 0.

Then Theorem 1 follows from the estimates of lower and upper bounds.

4. Quasi-Lipschitz equivalence

In this section, we will prove Theorem 2.

For E1, E2 ∈ As, Theorem 1 implies that they are quasi Ahlfors–David s-

regular.

By Lemmas 1 and 2, we only need to show that for s ≥ 1 any set in F ∈ As

is quasi uniformly disconnected by using assumption (A4).

In fact, given F ∈ As with |V̄∅| = 1, the assumption (A4) shows that for

any V̄σ,

lim
|σ|→∞

log d(V̄σ, F\V̄σ))

log |V̄σ− | = 1. (4.1)

Using assumption (A1) limk→∞
log dk

log(D1D2···Dk−1)
= 0, we have

lim
|σ|→∞

log |V̄σ|
log |V̄σ− | = 1. (4.2)

By (4.1) and (4.2), we can take a non-increasing function ε : N → (0,∞) with

limk→∞ ε(k) = 0 such that

|V̄σ− | ≥ d(V̄σ, F\V̄σ)) ≥ |V̄σ− |1+ε(|σ|) (4.3)

and

|V̄σ− | ≥ |V̄σ| ≥ |V̄σ− |1+ε(|σ|). (4.4)
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Take

η(r) = r1+ε(Nr),

where Nr = min{k : d1 · · · dk ≤ r} → ∞ as r → 0 which implies

lim
r→0

log η(r)

log r
= 1.

For B(x, r) with x ∈ F and r small enough, take a word σ such that

|V̄σ| ≤ r and |V̄σ− | > r.

Then by (4.3)–(4.4), we have

F ∩B(x, η(r)) ⊂ V̄σ ⊂ B(x, r)

and

d(V̄σ, F\V̄σ) ≥ η(r).

Hence F is quasi uniformly disconnected.

Applying Lemma 1, we obtain Theorem 2.
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