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Introduction to generalized topological groups

By ZHAOWEN LI (Nanning) and SHIJIE LI (Nanning)

Abstract. In this paper, we introduce the concept of generalized topological gro-

ups as a generalization of topological groups and give their properties. Moreover, we

prove that every generalized topological group is a homogeneity space.

1. Introduction

Topological groups have the algebraic structure of groups and the topological

structure of topological spaces, which are linked by the requirement that the

multiplication and the inverse mappings are both generalized continuous. The

concept of topological groups is due to Leja (see [16]).

The theory of generalized topological spaces, which was founded by Császár

in recent years, is one of the most important development of general topology (see

[1], [2], [3], [4], [6], [7]).

The purpose of this paper is to consider generalized topological spaces com-

bining groups. We introduce the concept of generalized topological groups and

study their properties.
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2. Overview of groups and GTS’s

2.1. On groups. Let (X, ·) be a group. Let X × X be the cartesian product.

We denote two mappings ρ : X ×X → X and λ : X → X by

ρ(x, y) = xy for any x, y ∈ X,

λ(x) = x−1 for any x ∈ X.

Let A,B ⊂ X and x, y ∈ X. We denote the identity of X by e and denote

xA = {xa : a ∈ A}, Ax = {ax : a ∈ A}, xAy = {xay : a ∈ A},
AB = {ab : a ∈ A and b ∈ B}, A−1 = {a−1 : a ∈ A}.

Obviously, AB =
⋃

x∈A xB =
⋃

x∈B Ax.

Let H ⊂ X. H is called a subgroup of X, which is denoted by H ≤ X,

if (H, ·) is a group. H is called a normal subgroup of X, which is denoted by

H C X, if H ≤ X and Ha = aH for any x ∈ X.

Let H ≤ X and a ∈ X. Ha (resp. aH) is called a right (resp. left) coset of

H in X and a is the representative element of Ha (resp. aH). Define a relation

RH on X by

xRHy ⇔ xy−1 ∈ H for any x, y ∈ X.

Then RH is an equivalent relation on X and [x]RH
= Hx for any x ∈ X. {Hx :

x ∈ X} is called a quotient set of X with respect to RH . We denote it by X/H.

2.2. On GTS’s. LetX be a set and let τ be a family of subsets ofX. τ is called a

generalized topology on X, if ∅ ∈ τ and Gi ∈ τ for i ∈ I implies
⋃

i∈I Gi ∈ τ . The

pair (X, τ) is called a generalized topological space (briefly GTS). The elements

of τ are called g-open subsets of X and the complements are called g-closed

subsets of X.

Let X be a GTS and let H ⊂ X. The family of all g-open subsets of X

and the family of all g-closed subsets of X are denoted by τ(X) and F(X),

respectively. For x ∈ X and H ⊂ X, we denote τ(X,x) = {U ∈ τ(X) : x ∈ U},
F(X,x) = {F ∈ F(X) : x ∈ F} and τH = {U ∩H : U ∈ τ}. Obviously, τH is a

generalized topology of H with respect to X. Then the pair (H, τ(H)) is called

a generalized topological subspace of X.

Let (X, τ) be a generalized topological spaces. For A ⊂ X, the closure and

the interior of A are defined as the following:

cl(A) = ∩{F : F ∈ F(X) and A ⊂ F},
int(A) = ∪{V : V ∈ τ(X) and V ⊂ A}.
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Definition 2.1 ([3]). Let X and Y be two GTS’s and let f : X → Y be a

mapping. Then

(1) f is called generalized continuous, if f−1(V ) ∈ τ(X) for any V ∈ τ(Y ).

(2) f is called generalized continuous at x ∈ X, if for any V ∈ τ(Y, f(x)), there

exists U ∈ τ(X,x) such that f(U) ⊂ V .

(3) f is called open (resp. closed), if f(A) ∈ τ(Y ) (resp. f(A) ∈ F(Y )) for any

A ∈ τ(X) (resp. A ∈ F(X)).

(4) f is called homeomorphism, if f is bijection and f , f−1 are both generalized

continuous.

Let f : X → Y be generalized continuous and let H ⊂ X. It is easy to prove

that f |H : H → Y is generalized continuous.

Proposition 2.2 ([3]). Let X, Y be two GTS’s. Then a mapping f : X → Y

is generalized continuous if and only if f is generalized continuous at x for any

x ∈ X.

Proposition 2.3. Every homeomorphism mapping is open and closed.

Proof. Let X, Y be two GTS’s and let f : X → Y be homeomorphism.

Since f−1 is generalized continuous, f(A) = (f−1)−1(A) ∈ τ(Y ) for any A ∈
τ(X). Thus f is open.

Similarly, we can prove that f is closed. ¤

Definition 2.4 ([3]). Let X be a GTS and let B ⊂ X and x ∈ X. B is called

a neighborhood of x, if there exists U ∈ τ(X) such that x ∈ U ⊂ B.

Definition 2.5 ([3]). Let X be a GTS, let x ∈ X and let B ⊂ τ with x ∈ B

for any B ∈ B. B is called a open neighborhood basic of x in X, if for any

U ∈ τ(X,x), there exists B ∈ B such that B ⊂ U .

Let B ⊂ 2X satisfy ∅ ∈ B. Then all unions of some elements of B constitute

a GT, we denote it by τ(B). B is said to be a base for τ(B) (see [5]).

Let (X, τ) be a GTS, the union of all elements of τ is denoted by Mτ .

Definition 2.6 ([17]). Let {(Xi, τi) : i ∈ Γ} be a family of GTS’s and let

X =
∏

i∈Γ Xi be the Cartesian product. Let us consider all sets form
∏

i∈Γ Bi,

where Bi ∈ τi, and with the exception of a finite number of indices i, Bi = Mτi .

We denote B be the collection of all these sets. τ = τ(B) is called having B as

a base of the product of {τi : i ∈ Γ}. Then (X, τ) is called the product space of

{(Xi, τi) : i ∈ Γ}.
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Let f be a surjection from a GTS X to a set Y . It is easy to show that

τ(Y ) = {B ⊂ Y : f−1(B) ∈ τ(X)} is a generalized topology on Y .

Definition 2.7 ([10]). Let f be a surjection from a GTS X to a set Y . Then

τ(Y ) is called the quotient topology on Y with respect to f and (Y, τ(Y )) is called

the quotient space of (X, τ(X)) with respect to f .

Definition 2.8 ([10]). Let X and Y be two GTS’s, and let f : X → Y be a

surjection. f is called a quotient mapping, if τ(Y ) is the quotient topology on Y

with respect to f .

Definition 2.9 ([4]). Let X be a GTS and let A,B ⊂ X. A and B are called

separated in X, if A ∩ cl(B) = B ∩ cl(A) = ∅.
Definition 2.10 ([4]). Let X be a GTS and let Y ⊂ X.

(1) X is called a connected space, if there exist two separated sets A,B ⊂ X

such that X = A ∪B, then A = ∅ or B = ∅.
(2) Y is called a connected subset of X, if the subspace Y is a connected space.

Theorem 2.11 ([4]). Let X be a GTS. The following are equivalent:

(1) X is connected.

(2) There exist A,B ∈ τ(X)− {∅} such that A ∩B = ∅ and A ∪B = X.

Lemma 2.12 ([4]). Let X be a GTS and let A,B be separated in X. If H

is connected and H ⊂ A ∪B, then either H ⊂ A or H ⊂ B.

Theorem 2.13 ([4]). Let f be a generalized continuous mapping from a

connected space X to a GTG Y . Then f(X) is a connected subset of Y .

3. The concept of GTG’s

Definition 3.1 ([16]). Let (X, ·) be a group and let (X, τ) be a topological

space. LetX×X be the cartesian product. The pair (X, ·, τ) is called a topological

group, if ρ, λ are both continuous.

Definition 3.2. Let (X, ·) be a group and let (X, τ) be a GTS. Let X ×X be

the cartesian product. The pair (X, ·, τ) is called a generalized topological group

(briefly GTG), if ρ, λ are both generalized continuous.

Example 3.3. Let X = (−∞,+∞) and let “ · ” be the ordinary addition. The

identity of (X, ·) is 0 and x−1 = −x for any x ∈ (−∞,+∞). Then (X, ·) is a

group.
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Let B = {[a, b] : −∞ < a < b < +∞} and let τ(X) = {A : A =

∪B′ for some B′ ⊂ B} ∪ {∅}, where [a, b] is the general closed interval. Then

(X, τ(X)) is a GTS.

Let [a, b] ∈ τ(X). Then λ−1([a, b]) = [−b,−a] ∈ τ(X). Thus λ is generalized

continuous.

Let [a, b] ∈ τ(X). For any (x0, y0) ∈ ρ−1([a, b]), we have x0+y0 = ρ((x0, y0))∈
[a, b]. Put

4 = min{x0 + y0 − a, b− (x0 + y0)}.

Pick x1 = x0 − 1
44, x2 = x0 + 1

44, x3 = y0 − 1
44, x4 = y0 + 1

44. Then

x1 ≤ x0 ≤ x2, x3 ≤ y0 ≤ x4 and a ≤ x1+x3 ≤ x0+y0 ≤ x2+x4 ≤ b. So (x0, y0) ∈
[x1, x2] × [x3, x4]. For any w ∈ [x1, x2] × [x3, x4], there exist w1 ∈ [x1, x2] and

w2 ∈ [x3, x4] such that w = (w1, w2). Then a ≤ x1+x3 ≤ w1+w2 ≤ x2+x4 ≤ b.

So ρ(w) ∈ [a, b]. This implies that w ∈ ρ−1([a, b]). Thus [x1, x2] × [x3, x4] ⊂
ρ−1([a, b]). Since [x1, x2], [x3, x4] ∈ τ(X), then ρ−1([a, b]) ∈ τ(X ×X). Thus ρ is

generalized continuous.

Hence X is a GTG.

But τ(X) is not keeping intersection, so X is not a topological space. Thus X

is not a topological group.

Obviously, every group is a GTG when equipped with the discrete topology.

The following theorem gives the decision conditions of GTS’s.

Theorem 3.4. Let (X, ·) be a group and let (X, τ) be a GTS. Then the

following are equivalent.

(1) X is a GTG;

(2) The mapping µ : X×X → X is generalized continuous where µ(x, y) = xy−1;

(3) For any x, y ∈ X and any W ∈ τ(X,xy−1), there exist U ∈ τ(X,x) and

V ∈ τ(X, y) such that UV −1 ⊂ W ;

(4) (i) For any x, y ∈ X and any W ∈ τ(X,xy), there exist U ∈ τ(X,x) and

V ∈ τ(X, y) such that UV ⊂ W ,

(ii) For any W ∈ τ(X,x−1), there exists U ∈ τ(X,x) such that U−1 ⊂ W .

Proof. (1) ⇒ (4) (i) Let x, y ∈ X and W ∈ τ(X,xy). Since ρ is generalized

continuous, there exists L ∈ τ(X ×X, (x, y)) such that ρ(L) ⊂ W . Since (x, y) ∈
L ∈ τ(X×X), there exist U, V ∈ τ(X) such that (x, y) ∈ U×V ⊂ L. This implies

that U ∈ τ(X,x), V ∈ τ(X, y) and ρ(U × V ) ⊂ W . Note that ρ(U × V ) = UV .

Thus UV ⊂ W .
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(ii) Let W ∈ τ(X,x−1). Since λ is generalized continuous, λ−1(W ) ∈ τ(X).

Put U = λ−1(W ). Then U ∈ τ(X,x) and λ(U) = W . Note that λ(U) = U−1.

Thus U−1 ⊂ W .

(4) ⇒ (3) Let x, y ∈ X and W ∈ τ(X,xy−1). By (4)(i), there exist U ∈
τ(X,x) and V1 ∈ τ(X, y−1) such that UV ⊂ W . By (4)(ii), there exists V ∈
τ(X, y) such that V −1 ⊂ V1. Note that UV −1 ⊂ UV1. Thus UV −1 ⊂ W .

(3) ⇒ (2) Let (x, y) ∈ X × X and W ∈ τ(X,xy−1). By (3), there exist

U ∈ τ(X,x) and V ∈ τ(X, y) such that UV −1 ⊂ W . Put L = U × V . Then

L ∈ τ(X × X, (x, y)). Note that µ(L) = UV −1. Thus µ(L) ⊂ W . Hence µ is

generalized continuous.

(2) ⇒ (1) Since µ is generalized continuous, µ|{e}×X is generalized continu-

ous. Note that λ = µ|{e}×X . Thus λ is generalized continuous.

Denote g : X ×X → X ×X by (x, y) → (x, y−1). Then we have ρ = µ ◦ g.
Since µ is generalized continuous. To prove that ρ is generalized continuous, it is

suffice to show that g is generalized continuous.

Let W ∈ τ(X × X). For any (x, y) ∈ g−1(W ), g(x, y) = (x, y−1) ∈ W .

Since W ∈ τ(X ×X), there exist U, V ∈ τ(X) such that (x, y−1) ∈ U × V ⊂ W .

This implies that x ∈ U and λ(y) = y−1 ∈ V . Since λ is generalized continuous,

λ−1(V ) ∈ τ(X). Put U1 = U and V1 = λ−1(V ). Then U1, V1 ∈ τ(X) and

(x, y) ∈ U1 × V1.

For any (s, t) ∈ U1 × V1, s ∈ U1 and t ∈ V1. t ∈ V1 implies t−1 ∈ V . Then

g(s, t) = (s, t−1) ∈ U × V ⊂ W . Thus (s, t) ∈ g−1(W ). So U1 × V1 ⊂ g−1(W ).

By (x, y) ∈ U1 × V1 ⊂ g−1(W ), g−1(W ) ∈ τ(X × X). Thus g is generalized

continuous.

Hence X is a GTG. ¤

4. Some properties of GTG’s

In this section, we give some properties of GTG’s.

4.1. GTG’s and homogeneous spaces. In [9], Arhangel’skǐı considered the

homogeneity on topological spaces. Similarly, we can define the homogeneity on

GTS’s as follows.

Definition 4.1. A GTS X is called a homogeneous space, if for any a, b ∈ X,

there exists a homeomorphism mapping f : X → X such that f(a) = b.
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Let X be a GTG. For a ∈ X, we denote respectively the right multiplication

ra : X → X and the left multiplication la : X → X by

ra(x) = xa for any x ∈ X,

la(x) = ax for any x ∈ X.

Proposition 4.2. Let X be a GTG and let a ∈ X. Then ra and la are both

homeomorphism.

Proof. (1) For any x, y ∈ X with x 6= y. Suppose ra(x) = ra(y). Then

xa = ya. So (xa)(a−1) = (ya)(a−1). This implies that x = y, a contradiction.

Thus ra is a injection. For any y ∈ X, pick x = ya−1 ∈ X, we have ra(x) = y.

Then ra is a surjection. Hence ra is bijection.

Define a mapping ϕ : X → X ×X by ϕ(x) = (x, a).

Obviously, ra = ρ ◦ ϕ and r−1
a = ra−1 .

For any x ∈ X and any g-open neighborhood W of ϕ(x), there exist U, V ∈
τ(X) such that ϕ(x) ∈ U × V ⊂ W . Then x ∈ U and a ∈ V . Now ϕ(U) ⊂ W .

Thus ϕ is generalized continuous.

SinceX is a GTG, ρ is generalized continuous. By ra = ρ◦ϕ, ra is generalized

continuous.

Now r−1
a = ra−1 . Similarly, we can prove that r−1

a is generalized continuous.

Therefore ra is homeomorphism.

(2) Similarly, we can prove that la is homeomorphism. ¤

The following Theorem 4.3 is similar to Proposition 1.2 in [19].

Theorem 4.3. Every GTG is a homogeneous space.

Proof. Let X be a GTG and let a, b ∈ X. By Proposition 4.2, ra−1b is

homeomorphism. Obviously, ra−1b(a) = b. Thus X is a homogeneous space. ¤

4.2. Open or closed subsets of GTG’s.

Lemma 4.4. Let X be a group. Let A,B,C ⊂ X and x ∈ X. Then

(1) If A ⊂ B, then xA ⊂ xB and Ax ⊂ Bx.

(2) If A ⊂ B, then AC ⊂ BC and CA ⊂ CB.

(3) (Ax)−1 = x−1A and (xA)−1 = Ax−1.

Proof. This is obvious. ¤

Proposition 4.5. Let X be a GTG. Let A,B ⊂ X and x ∈ X. Then
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(1) If A ∈ τ(X) (resp. A ∈ F(X)), then Ax, xA ∈ τ(X) (resp. Ax, xA ∈ F(X)).

(2) If A ∈ τ(X), then AB,BA ∈ τ(X).

Proof. This is straightforward. ¤

Let X be a topological group and let A,B ⊂ X. If A ∈ F(X) and B is a

finite set, then AB,BA ∈ F(X). In GTG, this conclusion does not hold (See

Example 4.6).

Example 4.6. Let X be a GTG in Example 3.3. Pick A = (1, 2) ∈ F(X)

and B = {0, 1}. Then AB = BA = (1, 2) ∪ (2, 3). Since X − AB = X − BA =

(−∞, 1) ∪ {2} ∪ (3,+∞) 6∈ τ , Thus AB,BA 6∈ F(X).

Definition 4.7. Let (X, ·, τ) be a GTG and let B ⊂ τ and x ∈ X. B is called

a open neighborhood basic of x in (X, ·, τ), if B is a open neighborhood basic of x

in (X, τ).

Proposition 4.8. Let X be a GTG and let B be a open neighborhood basic

of e in X. Then

(1) If x ∈ U ∈ B, then there exists B ∈ B such that Bx ⊂ U .

(2) If U ∈ B and x ∈ X, then there exists B ∈ B such that x−1Bx ⊂ U .

Proof. (1) Since U ∈ τ(X), by Proposition 4.5, we have Ux−1 ∈ τ(X).

x ∈ U means e ∈ Ux−1. Thus there exists B ∈ B such that B ⊂ Ux−1. Hence

Bx ⊂ U .

(2) Define f : X → X by a → x−1ax. Then f is generalized continuous.

By U ∈ B, f−1(U) ∈ τ(X). Since f(e) = e ∈ U , e ∈ f−1(U). Then there exists

B ∈ B such that B ∈ f−1(U). This implies that x−1Bx ⊂ U . ¤

4.3. GTG’s and subgroups.

Proposition 4.9. Let (X, ·, τ) be a GTG and let H ≤ X. Then (H, ·, τH)

is a GTG.

Proof. Let f = ρ|H×H : H ×H → H and g = λ|H : H → H.

We only need to prove that f and g are both generalized continuous.

For any V ∈ τ(H), then there exists V1 ∈ τ(X) such that V = V1 ∩H. Since

H ≤ X, H ×H ⊂ ρ−1(H) and H ⊂ λ−1(H).

Note that ρ and λ are both generalized continuous. Then f−1(V ) = (H ×
H) ∩ ρ−1(V ) = (H ×H) ∩ ρ−1(V1) ∩ ρ−1(H) = (H ×H) ∩ ρ−1(V1) ∈ τ(H ×H)

and g−1(V ) = H ∩ λ−1(V ) = H ∩ λ−1(V1) ∩ λ−1(H) = H ∩ λ−1(V1) ∈ τ(H).

Hence f and g are generalized continuous. ¤
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By Proposition 3.6, we can give the following definition.

Definition 4.10. Let (X, ·, τ) be a GTG and let H ⊂ X.

(1) H is called a subgroup of (X, ·, τ), if H ≤ X.

(2) H is called a g-open (resp. g-closed) subgroup of (X, ·, τ), if H ≤ X and

H ∈ τ (resp. H ∈ F(X)).

Theorem 4.11. Let (X, ·, τ) be a GTG. Then

(1) Every g-open subgroup of X is g-closed in X.

(2) Every subgroup which contains some neighborhood of e is g-open in X.

Proof. (1) Let H be a g-open subgroup of X.

Claim. X −H =
⋃

b/∈H bH.

For any y ∈ X − H. Since y = ye and e ∈ H, y ∈ yH ⊂ ⋃
b/∈H bH. Thus

X −H ⊂ ⋃
b/∈H bH. For any y ∈ ⋃

b/∈H bH, there exists b /∈ H such that y ∈ bH.

Then y = bx for some x ∈ H. Thus b = yx−1. Suppose y ∈ H. Since H is a

group and x, y ∈ H, b ∈ H. This is a contradiction. Hence X −H ⊃ ⋃
b/∈H bH.

Then X −H =
⋃

b/∈H bH.

Since H ∈ τ(X), by Proposition 4.5, bH ∈ τ(X) for any b /∈ H. Thus

X −H ∈ τ(X). Hence H ∈ F(X).

(2) Let H be a subgroup of X with H contain some neighborhood of e. Then

there exists U ∈ τ(X, e) such that U ⊂ H. By Lemma 4.1, UH ⊂ HH = H.

Since e ∈ U ⊂ H, H = eH ⊂ ⋃
a∈U aH = UH. Then H ⊂ UH. This implies

H = UH. By Proposition 4.5, H ∈ τ(X). ¤

Let (X, ·, τ(X)) be a GTG and H ≤ X. Let X/H be the quotient set of X

with respect to RH where

xRHy ⇔ xy−1 ∈ H for any x, y ∈ X.

Put
ξ : X → X/H by x → Hx.

Then, we obtain the quotient space of X with respect to ξ. We denote it by

(X/H, τ(X/H)) or X/H where τ(X/H) is the quotient topology of X/H with

respect to ξ, that is

τ(X/H) = {B ⊂ X/H : ξ−1(B) ∈ τ(X)}.
In this case, ξ is a quotient mapping.

For convenience, X/H is called the coset space of X with respect to H.

Proposition 4.12. Let X be a GTG and let H ≤ X. Let X/H be the coset

space of X with respect to H. Then ξ is open.
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Proof. Let A ∈ τ(X). By Proposition 4.5, ξ(A) = HA ∈ τ(X/H). Thus ξ

is open. ¤

Let H C X and let X/H be a quotient set of X with respect to RH . Define

a binary operation on X/H by

Hx ∗Hy = Hxy, for any Hx,Hy ∈ X/H.

It is easy to prove that (X/H, ∗) is a group, which is called a quotient group

of X with respect to H.

Theorem 4.13. Let (X, ·, τ(X)) be a GTG and let H C X. Then

(X/H, ∗, τ(X/H)) is a GTG.

Proof. Define three mappings ρ1 : X/H×X/H → X/H, λ1 : X/H → X/H

and ξ1 : X ×X → X/H ×X/H by

ρ1(Hx,Hy) = Hxy for any Hx,Hy ∈ X/H,

λ1(Hx) = (Hx)−1 for any Hx ∈ X/H,

ξ1(x, y) = (Hx,Hy) for any x, y ∈ X.

We only need to prove that ρ1 and λ1 are both generalized continuous.

It is easy to prove that ρ1 ◦ ξ1 = ξ ◦ ρ and λ1 ◦ ξ = ξ ◦ λ. Since ρ, ξ, λ are

generalized continuous, we obtain that ξ ◦ ρ and ξ ◦ λ are generalized continuous.

Claim 1. ξ1(U × V ) ∈ τ(X/H ×X/H) for any U, V ∈ τ(X).

Let (z1, z2) ∈ ξ1(U×V ). Then there exists (x, y) ∈ U×V such that (z1, z2) =

ξ1(x, y). This implies that z1 = Hx, z2 = Hy. Since x ∈ U and y ∈ V , z1 ∈ ξ(U)

and z2 ∈ ξ(V ). Thus (z1, z2) ∈ ξ(U)×ξ(V ). Suppose ξ(U)×ξ(V )−ξ1(U×V ) 6= ∅.
Pick (w1, w2) ∈ ξ(U)× ξ(V )− ξ1(U × V ). Since w1 ∈ ξ(U) and w2 ∈ ξ(V ), there

exist a ∈ U and b ∈ V such that w1 = ξ(a) and w2 = ξ(b). (w1, w2) = (Ha,Hb) =

ξ1(a, b) ∈ ξ1(U × V ), a contradiction. Thus ξ(U)× ξ(V ) ⊂ ξ1(U × V ).

By Proposition 4.12, ξ is open, then ξ(U), ξ(V ) ∈ τ(X/H). Note that

(z1, z2) ∈ ξ(U)× ξ(V ) ⊂ ξ1(U × V ). Hence ξ1(U × V ) ∈ τ(X/H ×X/H).

Claim 2. ξ1 is open.

Let W ∈ τ(X ×X). Then there exist {Uα : α ∈ Γ}⋃{Vα : α ∈ Γ} ⊂ τ(X),

such that W =
⋃

α∈Γ(Uα × Vα).

Now ξ1(W ) =
⋃

α∈Γ ξ(Uα×Vα). By Claim 1, ξ1(Uα×Vα) ∈ τ(X/H ×X/H)

for any α ∈ Γ. Thus ξ1(W ) ∈ τ(X/H ×X/H). Hence ξ1 is open.

Let U ∈ τ(X/H). Now ρ1 ◦ ξ1 = ξ ◦ ρ. Since ξ ◦ ρ is generalized continuous,

(ξ−1
1 ◦ ρ−1

1 )(U) = (ρ1 ◦ ξ1)
−1(U) = (ξ ◦ ρ)−1(U) ∈ τ(X × X). By Claim 2, ξ1
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is open. Then ρ−1
1 (U) = ξ1((ξ

−1
1 ◦ ρ−1

1 )(U)) ∈ τ(X/H × X/H). Thus ρ1 is

generalized continuous.

Let V ∈ τ(X/H). Now λ1 ◦ ξ = ξ ◦ λ. Since ξ ◦ λ is generalized continuous,

(ξ−1 ◦ λ−1
1 )(V ) = (λ−1 ◦ ξ−1)(V ) = (ξ ◦ λ)−1 ∈ τ(X). By Claim 2, ξ is open.

Then λ−1
1 (V ) = ξ((ξ−1 ◦λ−1

1 )(V )) ∈ τ(X/H). Thus λ1 is generalized continuous.

Hence X/H is a GTG. ¤

4.4. Connectedness on GTG’s.

Theorem 4.14. Let (X, ·, τ(X)) be a GTG and let H ≤ X.

(1) If (X, τ(X)) is connected, then (X/H, τ(X/H)) is connected.

(2) If (H, τH) and (X/H, τ(X/H)) are connected, then (X, τ(X)) is connected.

Proof. (1) Since ξ is generalized continuous, by Theorem 2.13, X/H is

connected.

(2) Suppose that X is not connected. Then there exist two separated subsets

A,B ∈ τ(X) such that X = A ∪B.

Claim 1. A =
⋃{Ha : Ha ⊂ A and a ∈ X}.

To prove A =
⋃{Ha : Ha ⊂ A and a ∈ X}, we only need to show that

{Ha : Ha ⊂ A and a ∈ X} = {Ha : Ha ∩A 6= ∅ and a ∈ X}.
Obviously, {Ha : Ha ⊂ A, a ∈ X} ⊂ {Ha : Ha ∩A 6= ∅, a ∈ X}.
Conversely. Let F ∈ {Ha : Ha ∩ A 6= ∅ and a ∈ X}. Then F = Ha with

Ha∩A 6= ∅ and a ∈ X. Since ra is generalized continuous, ra|H is also generalized

continuous. Note thatH is connected. By Theorem 2.13, Ha = ra(H) = ra|H(H)

is also connected. Now Ha ⊂ X = A∪B and A ,B are separated. Then Ha ⊂ A

or Ha ⊂ B.

Suppose Ha ⊂ B. By Ha ∩ A 6= ∅. Pick x ∈ Ha ∩ A. Then x ∈ B and so

x ∈ A ∩B. This implies that A ∩B 6= ∅, a contradiction.

Then F = Ha ⊂ A. This implies that F ∈ {Ha : Ha ⊂ A and a ∈ X}. Thus
{Ha : Ha ⊂ A, a ∈ X} ⊃ {Ha : Ha ∩A 6= ∅, a ∈ X}.

Hence {Ha : Ha ⊂ A and a ∈ X} = {Ha : Ha ∩A 6= ∅ and a ∈ X}.
Claim 2. B =

⋃{Ha : Ha ⊂ B and a ∈ X}.
This is similar to the proof of Claim 1.

Claim 3. ξ(A) ∩ ξ(B) = ∅.
Suppose ξ(A) ∩ ξ(B) 6= ∅. Pick W ∈ ξ(A) ∩ ξ(B).

W ∈ ξ(A) implies W = ξ(x) for some x ∈ A. Since x ∈ A and A =
⋃{Ha :

Ha ⊂ A and a ∈ X}, there exists a ∈ X with Ha ⊂ A such that x ∈ Ha. So

x = h1a for some h1 ∈ H. Obviously, Hh1 = H. Then W = Hx = Hh1a = Ha.

Thus W ⊂ A. Similarly. W ∈ ξ(B) implies W ⊂ B.
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Now W ⊂ A ∩B. Thus A ∩B 6= ∅, a contradiction.

Hence ξ(A) ∩ ξ(B) = ∅.
Now X = A ∪ B. Then X/H = ξ(X) = ξ(A) ∪ ξ(B). Since ξ is open,

ξ(A), ξ(B) ∈ τ(X/H).

By ξ(A) ∩ ξ(B) = ∅, X/H is not connected. This is a contradiction.

Hence X is connected. ¤

Example 4.15. Let X be a GTG in Example 3.3. Pick A = (− ∈ fty, 0] and

B = (0,+∞). Then cl(A) = (−∞, 0] and cl(B) = (0,+∞). So A and B are

separated. Note that A ∪B = X and A,B 6= ∅. Thus X is not connected.
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