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On the capability of finite groups of class two
and prime exponent

By ARTURO MAGIDIN (Lafayette)

Abstract. We consider the capability of p-groups of class two and odd prime

exponent. We give a sufficient condition based only on the ranks of G/Z(G) and [G,G],

that shows that if [G,G] is sufficiently large relative to G/Z(G), then G is capable.

1. Introduction

In his landmark paper [10] on the classification of finite p-groups, P. Hall

remarked:

The question of what conditions a group G must fulfill in order that it

may be the central quotient group of another group H, G ∼= H/Z(H),

is an interesting one. But while it is easy to write down a number of

necessary conditions, it is not so easy to be sure that they are sufficient.

Following M. Hall and Senior [9], we make the following definition:

Definition 1.1. A group G is said to be capable if and only if there exists a

group H such that G ∼= H/Z(H).

Capability of groups was first studied explicitly by R. Baer in [2], where, as

a corollary of deeper investigations, he characterized the capable groups that are

direct sums of cyclic groups. Capability of groups has received renewed attention

in recent years, thanks to results of Beyl, Felgner, and Schmid [3] charac-

terizing the capability of a group in terms of its epicenter; and more recently to
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work of Graham Ellis [6] that describes the epicenter in terms of the nonabelian

tensor square of the group.

We will consider here the special case of nilpotent groups of class two and

exponent an odd prime p. This case was studied in [11], and also addressed else-

where (e.g., Proposition 9 in [6]). As noted in the final paragraphs of [1], currently

available techniques seem insufficient for a characterization of the capable finite

p-groups of class 2, but a characterization of the capable finite groups of class 2

and exponent p seems a more modest and possibly attainable goal. The present

work is a contribution towards achieving that goal.

The case of class two and exponent p seems tantalizing thanks to known

results. For example, it is not hard to use results from [3], [6] to reduce the

problem to groups G satisfying [G,G] = Z(G) that are not expressible as a

nontrivial direct or central product. Some sufficient conditions for capability are

known in this situation (e.g., Proposition 9 in [6]). Nonetheless, the matter is

not as straightfoward as it might appear at this point, since every finite group

of class two and odd prime exponent can be embedded into groups G1 and G2,

both of class two and prime exponent and satisfying [Gi, Gi] = Z(Gi), neither

expressible as a nontrivial direct or central product, and with G1 capable and G2

non-capable [14]. This suggests that a more ‘holistic’ approach must be taken.

Our main result is a sufficient condition that guarantees that such a group is

capable provided that its commutator subgroup is sufficiently large. This result

is a nice counterpart to the result of Heineken and Nikolova [11, Theorem 1],

which says that if G satisfies Z(G) = [G,G], is capable of exponent p and class

two, and the rank of Z(G) is k, then the rank of G/[G,G] is at most 2k+
(
k
2

)
; we

can view this condition as saying that if G is capable, then [G,G] cannot be too

small.

In a sense, the general thrust of all of these results (and other known sufficient

conditions for capability in this class) suggest that a group is capable if it is

“nonabelian enough”; though of course that is not a precise condition.

In the next section we will give basic definitions and our notational conven-

tions, as well as summarize previous results as they relate to the situation we

are considering. In Section 3 we we describe a “canonical witness” to the ca-

pability of a group G; that is, we show that given a group G of class two and

exponent p, there is a group K of class three that is generated by elements of

exponent p, which can be described in terms of a presentation of G, and such that

G is capable if and only if K/Z(K) ∼= G. In Section 4 we recast the problem in

terms of certain linear transformations. In Section 5 we establish our main result,

Theorem 5.28. Section 6 contains our final remarks.
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We should mention that the approach of using linear algebra and geometry to

study groups of class two and exponent p is hardly new. In particular, the work of

Brahana [4], [5] exploits geometry in a striking manner to classify certain groups

in this class in terms of equivalence classes of points, lines, planes and subspaces in

a projective space under the action of a linear group. We can also relate the work

done here, and particularly Corollary 3.3, with work of Graham Ellis [6]. One

way to think of the connection is to let F be the relatively free group of class two

and exponent p; both the current work and Ellis’s work look at [F, F ]∧F ab, and

ask which elements map to a certain subspace of the form A+B. In the present

work, we attempt to simplify the situation by moding out by B and considering

images in the quotient, whereas in [6] the quotient is taken modulo A. We will not

go into the details because of length considerations. Likewise, we only mention

that our set-up can be used to establish other results, such as those in [6], [11],

and [14].

2. Definitions and previous results

Throughout the paper p will be an odd prime, and Fp will denote the field

with p elements. All groups will be written multiplicatively, and the identity

element will be denoted by e; if there is danger of ambiguity or confusion, we

will use eG to denote the identity of the group G. The center of G is denoted by

Z(G). Recall that if G is a group, and x, y ∈ G, the commutator of x and y is

defined to be [x, y] = x−1y−1xy; we use xy to denote the conjugate y−1xy. We

write commutators left-normed, so that [x, y, z] = [[x, y], z]. Given subsets A and

B of G we define [A,B] to be the subgroup of G generated by all elements of

the form [a, b] with a ∈ A, b ∈ B. The terms of the lower central series of G are

defined recursively by letting G1 = G, and Gn+1 = [Gn, G]. A group is nilpotent

of class at most c if and only if Gc+1 = {e}, if and only if Gc ⊂ Z(G). We usually

drop the “at most” clause, it being understood. The class of all nilpotent groups

of class at most c is denoted by Nc. Though we will sometimes use indices to

denote elements of a family of groups, it will be clear from context that we are

not referring to the terms of the lower central series in those cases.

The following commutator identities are well known, and may be verified by

direct calculation:

Proposition 2.1. Let G be any group. Then for all x, y, z ∈ G,

(a) [xy, z] = [x, z][x, z, y][y, z].

(b) [x, yz] = [x, z][z, [y, x]][x, y].
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(c) [x, y, z][y, z, x][z, x, y] ≡ e (mod G4) (the Hall–Witt identity).

(d) [xr, ys] ≡ [x, y]rs[x, y, x]s(
r
2)[x, y, y]r(

s
2) (mod G4).

(e) [yr, xs] ≡ [x, y]−rs[x, y, x]−r(s2)[x, y, y]−s(r2) (mod G4).

Here,
(
n
2

)
= n(n−1)

2 for all integers n.

As in [13], our starting tool will be the nilpotent product of groups; specifi-

cally the 2-nilpotent and 3-nilpotent product of cyclic groups. We restrict Golovin’s

original definition [7] to the situation we will consider:

Definition 2.2. Let A1, . . . , An be nilpotent groups of class at most c. The

c-nilpotent product of A1, . . . , An, denoted by A1⨿Nc · · ·⨿Nc An, is defined to be

the group G = F/Fc+1, where F is the free product of the Ai, F = A1 ∗ · · · ∗An,

and Fc+1 is the (c+ 1)-st term of the lower central series of F .

From the definition it is clear that the c-nilpotent product is the coproduct

in the variety Nc, so it will have the usual universal property. In particular, if

c < p (the “small class” case), then the c-nilpotent product of n cyclic groups

of order p yields the relatively free group in the variety of c-nilpotent groups of

exponent p. Moreover, when c ≤ p, we may write each element of this nilpotent

product uniquely as a product of basic commutators of weight at most c on the

generators, as shown in Theorem 3 of [17]; see §12.3 of [8] for the definition of

basic commutators which we will use. Our investigation is restricted to the case

of odd primes and to the 2-nilpotent and 3-nilpotent product of cyclic groups of

order p, so that the normal form in terms of basic commutators applies.

If G is a p-group of exponent p and class exactly two, then we can express

G as G = K ⊕ Cn
p , where Cp is the cyclic group of order p, n is a nonnegative

integer, and K is a group satisfying Z(K) = [K,K]. It is easy to verify that G

is capable if and only if K is nontrivial and capable. Because of this, we may, if

convenient, assume that G satisfies [G,G] = Z(G), though in many of the results

this condition is not strictly required.

If G is a group (finite or not, p-group or not), the epicenter of G, Z∗(G) is

the smallest normal subgroup of G with the property that G/Z∗(G) is capable.

The epicenter was introduced by Beyl, Felgner, and Schmid [3], as a measure

of the obstruction to G being capable. From the definition, it is clear that G is

capable if and only if Z∗(G) is trivial; and since G/Z(G) is always capable, we

must have Z∗(G) ⊆ Z(G).
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3. A canonical witness

Given a group G, we attempt to construct a witness for the capability of G;

meaning a group H such that H/Z(H) ∼= G. The relations among the elements

of G force in turn relations among the elements of H. When G is not capable,

this will manifest itself as undesired relations among the elements of H, forcing

certain elements whose image should not be trivial in G to be central in H.

Information about G can be used to deduce information about H; for example, if

G is nilpotent of class exactly c, then the potential witness H will necessarily be

nilpotent of class exactly c+ 1. Any reductions that can be done in the starting

potential witness group H will yield dividens of simplicity later on; this is the

main goal of the following result, which holds in full generality for any group G

(not necessarily nilpotent, not necessarily finite). The proof that the witness may

be chosen to be finite when G is finite comes from Lemma 2.1 of [12], and the

argument for condition (ii) appears en passant in the proof of Theorem 1 in [11].

Theorem 3.1. Let G be a group, generated by g1, . . . , gn. If G is capable,

then there exists a groupH, such thatH/Z(H) ∼= G, and elements h1, . . . , hn ∈ H

which map onto g1, . . . , gn, respectively, under the isomorphism such that:

(i) H = ⟨h1, . . . , hn⟩, and
(ii) The order of hi is the same as the order of gi, i = 1, . . . , n.

Moreover, if G is finite, then H can be chosen to be finite as well.

Proof. If G is capable, then there exists a group K such that K/Z(K)∼=G.

Pick k1, . . . , kn ∈ K mapping to g1, . . . , gn, respectively, and let M be the sub-

group of K generated by k1, . . . , kn. Since MZ(K) = K, it follows that Z(M) =

M ∩ Z(K), hence M/Z(M) ∼= K/Z(K) ∼= G. Thus, replacing K by M if neces-

sary, we may assume that K is generated by k1, . . . , kn, mapping onto g1, . . . , gn,

respectively.

Next we establish the clause on the orders of the generators. Let C be a

free abelian group of rank n generated by elements x1, . . . , xn, and for each i,

1 ≤ i ≤ n, let ai be the order of gi if gi is torsion, and ai = 0 if gi is not a torsion

element. Now letM = (K×C)/N , whereN is the subgroup ofK×C generated by

the elements (kai
i , x

−ai
i ), i = 1, . . . , n. Note that since the commutator subgroup

of K ×C is [K,K]×{1}, we must have that the intersection N ∩ [K ×C,K ×C]

is trivial (by considering the C-component of an element of N). Therefore, if

(k, c) maps to the center of M then [(k, c),K ×C] ⊆ ([K,K]× {1})∩N), and so

[(k, c),K × C] is trivial; hence in fact we have k ∈ Z(K). That is, Z(M) is the

image of Z(K)×C in M ; since kai
i ∈ Z(K) owing to the fact that K/Z(K) ∼= G,
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it therefore follows that N ⊆ Z(K)× C and hence

M

Z(M)
∼=

(K × C)/N

(Z(K)× C)/N
∼=

K × C

Z(K)× C
∼=

K

Z(K)
∼= G.

Note that under the isomorphism, the image of (kj , x
r) is gj for all integers r. Now

let hi be the image of (ki, x
−1
i ) in M for i = 1, . . . , n, and let H be the subgroup

of M generated by h1, . . . , hn. Then once again we have that M = HZ(M),

hence H/Z(H) ∼=M/Z(M) ∼= G, and the map H → H/Z(H) ∼= G maps hi to gi.

Moreover, the order of hi is ai, and so we have obtained a group H with central

quotient G, generated by elements h1, . . . , hn that map to g1, . . . , gn, and with

o(hi) = o(gi), as desired.

Finally, if G is finite, then H is finitely generated and Z(H) is of finite

index, hence by Schreier’s theorem [15] Z(H) is finitely generated. We can

write Z(H) as Ztor ⊕ F , where Ztor is the torsion part of Z(H), hence finite,

and F is free abelian. We know that Z(H)/F ⊆ Z(H/F ); to prove equality, if

[x,H] ⊆ F , then [x, h] is central for every h. Therefore, from 2.1(b) it follows

that the map h 7→ [x, h] is a group homomorphism from H to F . Now, Z(H)

is contained in the kernel of this homomorphism, and since H/Z(H) is finite,

then the image is a finite subgroup of a free abelian group, and hence trivial.

Thus, [x,H] is trivial, so x ∈ Z(H), proving that Z(H/F ) = Z(H)/F . Hence,

(H/F )/Z(H/F ) ∼= H/Z(H) ∼= G. Note that since G is finite all generators are of

finite order, so none of the cyclic subgroups ⟨hi⟩ intersects F , so we may replace

H with H/F if necessary to obtain that H may be chosen finite when G is finite

without altering the orders of the generators. �

When G is a group of class two, we further know that a potential witness H

is of class three, and so we can start from the c-nilpotent product of cyclic groups

of appropriate order. In our situation of interest, with G of class two and prime

exponent, this now allows us to give a very specific “canonical witness” to the

capability of G.

Theorem 3.2. Let G be a finite noncyclic group of class at most two and

exponent an odd prime p. Let g1, . . . , gn be elements of G that project onto

a basis for G/[G,G], and let F be the 3-nilpotent product of n cyclic groups of

order p generated by x1, . . . , xn, respectively. LetN be the kernel of the morphism

ψ : F → G induced by mapping xi 7→ gi, i = 1, . . . , n. Then G is capable if and

only if

G ∼= (F/[N,F ])
/
Z (F/[N,F ]) .
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Proof. Sufficiency is immediate. For the necessity, assume that G is capa-

ble, and let H be the group guaranteed by Theorem 3.1 such that G ∼= H/Z(H).

Note that H is of class at most three. Let θ : H/Z(H) → G be an isomorphism

that maps hiZ(H) to gi.

Since h1, . . . , hn are of order p, there exists a (unique surjective) morphism

φ : F → H induced by mapping xi to hi, i = 1, . . . , n. If π : H → H/Z(H) is the

canonical projection, then we must have θπφ = ψ by the universal property of

the coproduct. Thus, φ(N) = ker(π) = Z(H), so [N,F ] ⊂ ker(φ), and φ factors

through F/[N,F ]; surjectivity of φ implies that φ(Z(F/[N,F ])) ⊂ Z(H), hence

G ∼= H/Z(H) is a quotient of (F/[N,F ])
/
Z(F/[N,F ]).

On the other hand, N [N,F ] ⊆ Z(F/[N,F ]), so G ∼= F/N = F/N [N,F ] has

(F/[N,F ])
/
Z(F/[N,F ]) as a quotient.

Thus we have that G has (F/[N,F ])
/
Z(F/[N,F ]) as a quotient, which in

turn has G as a quotient. Since G is finite, the only possibility is that the central

quotient of F/[N,F ] is isomorphic to G, as claimed. �

Corollary 3.3. Let G be a finite noncyclic group of class at most two and

exponent an odd prime p. Let g1, . . . , gn be elements of G that project onto a

basis for G/[G,G], and let F be the 3-nilpotent product of n cyclic groups of

order p generated by x1, . . . , xn, respectively. Let ψ : F → G be the map induced

by sending xi to gi, i = 1, . . . , n. Finally, let C be the subgroup of F generated

by the commutators [xj , xi], 1 ≤ i < j ≤ n. If X is the subgroup of C such that

ker(ψ) = X ⊕ F3, then G is capable if and only if {c ∈ C | [c, F ] ⊂ [X,F ]} = X.

Proof. Let N = ker(ψ). By Theorem 3.2, G is capable if and only if G is

isomorphic to the central quotient of F/[N,F ]. Thus, G is capable if and only if

the center of F/[N,F ] is N/[N,F ], and no larger.

An element h[N,F ] ∈ F/[N,F ] is in Z(F/[N,F ]) if and only if [h, F ] is

contained in [N,F ]. Since G is of exponent p, F3 ⊆ N ⊆ F2 and so [N,F ] =

[X,F ] ⊆ F3. In particular, we deduce that if h[N,F ] is central, then h must lie

in F2. Write h = cf , with c ∈ C and f ∈ F3. Then [h, F ] = [c, F ], so h[N,F ] is

central if and only if [c, F ] ⊂ [X,F ].

If {c ∈ C | [c, F ] ⊂ [X,F ]} = X, then it follows that h[N,F ] is central if and

only if h = cf with c ∈ X and f ∈ F3, which means that h[N,F ] is central if and

only if h ∈ N . Hence, the center of F/[N,F ] is N/[N,F ], and G is capable.

Conversely, assume that G is capable. Then the center of F/[N,F ] is equal

to N/[N,F ]. Therefore, X ⊆ {c ∈ C | [c, f ] ⊂ [X,F ]} ⊆ N ∩ C = X, giving

equality. �

One advantage of the description just given is the following: both F2 and
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F3 are vector spaces over Fp, and the maps [−, x] : F2 → F3 are linear transfor-

mations for each x ∈ F ; hence, the condition just described can be restated in

terms of vector spaces, subspaces, and linear transformations. While all the work

can still be done at the level of groups and commutators, the author, at any rate,

found it easier to think in terms of linear algebra. In addition, once the problem

has been cast into linear algebra terms, there is a host of tools (such as geometric

arguments) that can be brought to bear on the issue.

We will discuss this translation and more results on capability below, after a

brief abstract interlude on linear algebra.

4. Some linear algebra

We set aside groups and capability temporarily to describe the general con-

struction that we will use in our analysis.

Definition 4.1. Let V and W be vector spaces over the same field, and let

{ℓi}i∈I be a nonempty family of linear transformations from V to W . Given a

subspace X of V , let X∗ be the subspace of W defined by:

X∗ = span
(
ℓi(X) | i ∈ I

)
.

Given a subspace Y of W , let Y ∗ be the subspace of V defined by:

Y ∗ =
∩
i∈I

ℓ−1
i (Y ).

It will be clear from context whether we are talking about subspaces of V or W .

It is clear that X ⊂ X ′ ⇒ X∗ ⊂ X ′∗ for all subspaces X and X ′ of V , and

likewise Y ⊂ Y ′ ⇒ Y ∗ ⊂ Y ′∗ for all subspaces Y , Y ′ of W .

Theorem 4.2. Let V and W be vector spaces over the same field and let

{ℓi}i∈I be a nonempty family of linear transformations from V to W . The op-

erator on subspaces of V defined by X 7→ X∗∗ is a closure operator; that is, it

is increasing, isotone, and idempotent. Moreover, (X∗∗)∗ = (X∗)∗∗ = X∗ for all

subspaces X of V .

Proof. Since ℓi(X) ⊆ X∗ for all i, it follows that X ⊂ X∗∗, so the operator

is increasing. If X ⊂ X ′, then X∗ ⊂ X ′∗, hence X∗∗ ⊂ X ′∗∗, and the operator

is isotone. The equality of (X∗∗)∗ and (X∗)∗∗ is immediate. Since X ⊂ X∗∗, we
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haveX∗ ⊂ (X∗∗)∗. And by construction ℓi(X
∗∗) ⊂ X∗ for each i, so (X∗∗)∗ ⊂ X∗

giving equality.

Thus, (X∗∗)∗∗ = (X∗∗∗)∗ = (X∗)∗ = X∗∗, so the operator is idempotent,

finishing the proof. �

It may be worth noting that while this closure operator is algebraic (the

closure of a subspace X is the union of the closures of all finitely generated

subspaces X ′ contained in X), it is not topological (in general, the closure of the

subspace generated by X and X ′ is not equal to the subspace generated by X∗∗

and X ′∗∗).

We note that the dual result holds for subspaces of W , giving an interior

operator that is algebraic but not topological.

Given a family of linear transformations {ℓi : V → W}i∈I , we will say a

subspace X of V is {ℓi}i∈I-closed (or simply closed if the family is understood

from context) if and only if X = X∗∗.

It is easy to verify that the closure operator determined by a nonempty family

{ℓi}i∈I of linear transformations is the same as the closure operator determined

by the subspace of L(V,W ) (the space of all linear transformations from V to W )

spanned by the ℓi. Likewise, the following observation is straightforward:

Proposition 4.3. Let V and W be vector spaces, and X be a subspace

of V . Let {ℓi}i∈I be a nonempty family of linear transformations from V to W ,

and let ψ ∈ Aut(V ). If we use ∗∗ to denote the {ℓi}i∈I closure operator, then

the {ℓiψ−1}i∈I -closure of ψ(X) is ψ(X∗∗). In particular, X is {ℓi}-closed if and

only if ψ(X) is {ℓiψ−1}-closed. If {ℓi} and {ℓiψ−1} span the same subspace of

L(V,W ), then X is closed if and only if ψ(X) is closed.

Back to capability. To tie the construction above back to the problem of ca-

pability, we introduce specific vector spaces and linear transformations based on

Corollary 3.3. We fix an odd prime p throughout.

Definition 4.4. Let n > 1. We let U(n) denote a vector space over Fp of

dimension n. We let V (n) denote the vector space U(n)∧U(n) of dimension
(
n
2

)
.

Finally, we let W (n) be the quotient (V (n) ⊗ U(n))/J , where J is the subspace

spanned by all elements of the form (a ∧ b)⊗ c+ (b ∧ c)⊗ a+ (c ∧ a)⊗ b, with

a,b, c ∈ U . The vector space W (n) has dimension 2
(
n+1
3

)
. If there is no danger

of ambiguity and n is understood from context, we will simply write U , V , andW

to refer to these vector spaces.

To specify our closure and interior operators on V and W , we define the

following family of linear transformations:
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Definition 4.5. Let n > 1. We embed U into L(V,W ) as follows: given u ∈ U

and v ∈ V , we let φu(v) = v ⊗ u, where x denotes the image in W of a vector

x ∈ V ⊗U . If x1, . . . , xn is a given basis for U and i is an integer, 1 ≤ i ≤ n, then

we will use φi to denote the linear transformation φxi .

The closure operator we will consider is given by the family {φu | u ∈ U}.
As noted above, if x1, . . . , xn is a basis for U , then this closure operator is also

determined by the family {φ1, . . . , φn}.
Going back to the problem of capability, let F be the 3-nilpotent product of

cyclic groups of order p generated by x1, . . . , xn. We can identify F2 with V ⊕W

by identifying xj ∧ xi with [xj , xi] and (xj ∧ xi)⊗ xk with [xj , xi, xk]; this also

identifies W with F3.

Let G be a noncyclic group of class at most two and exponent p, and let

g1, . . . , gn be elements of G that project onto a basis for G/[G,G]. If we let

ψ : F → G be the map induced by mapping xi 7→ gi and N = ker(ψ), then as

above we can write N = X ⊕ F3, where X is a subgroup of

C = ⟨[xj , xi] | 1 ≤ i < j ≤ n⟩.

Thus, we can identify X with a subspace of V by identifying the latter with the

subgroup C; abusing notation somewhat, we call this subspace X as well.

Theorem 4.6. Let G, F , U , V , W , C, and X be as in the preceding para-

graphs. Then G is capable if and only if X is {φu | u ∈ U}-closed.

Proof. We know G is capable if and only if {c ∈ C | [c, F ] ⊂ [X,F ]} = X.

Identifying C with V and F3 with W , note that φi is a map from C to F3,

corresponding to [−, xi]. Thus, X∗ ⊆ W corresponds to [X,F ] ⊆ F3, and X∗∗

corresponds to the set {c ∈ C | [c, F ] ⊂ [X,F ]}. Therefore, G is capable if and

only if

X = {v ∈ V | φu(v) ∈ X∗ for all u ∈ U} = X∗∗,

as claimed. �

In other words, the closure operator codifies exactly the condition we want to

check to test the capability of G. Thus the question “What n-generated p-groups

of class two and exponent p are capable?” is equivalent to the question “What

subspaces of V (n) are {φu | u ∈ U}-closed?”
Of course, different subspaces may yield isomorphic groups. In particular,

if we let GL(n, p) act on U , then this action induces an action of GL(n, p) on

V = U ∧ U ; if X and X ′ are on the same orbit relative to this action, then the
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groups G and H that correspond to X and X ′, respectively, are isomorphic. By

Proposition 4.3 the closures of X and X ′ will also be in the same orbit under the

action and G will be capable if and only if H is capable.

Also of interest is the description of the closure of X when G is not capable.

It is clear that the quotient of G determined by X∗∗ is the largest quotient of G

that is capable. That is, X∗∗/X is isomorphic to Z∗(G), the epicenter of G.

5. Dimension counting

In this section, we first obtain some basic consequences of our set-up, be-

fore establishing our main result. We will let x1, . . . , xn generated cyclic groups

of order p, and let F be the 3-nilpotent product of the cyclic groups ⟨x1⟩,
⟨x3⟩, . . . , ⟨xn⟩. If p > 3, then this will be the relatively free group of class 3

and exponent p. We identify V with the subgroup of F2 with basis [xj , xi],

1 ≤ i < j ≤ n, and W with F3, which has basis given by the commutators

[xj , xi, xk] with 1 ≤ i < j ≤ n, i ≤ k ≤ n. Our linear maps are φk : V → W ,

k = 1, . . . , n, given by φk(v) = v ∧ xk = [v, xk] (identifying V with the corre-

sponding commutator subgroup). Since we are thinking of V and W as vector

spaces over Fp, we will use additive notation rather than multiplicative notation

for them. Thus, we have

φk([xj , xi]) =

{
[xj , xi, xk] if k ≥ i,

[xj , xk, xi]− [xi, xk, xj ] if k < i.
.

Lemma 5.1. Fix n > 1, and let k be an integer, 1 ≤ k ≤ n.

(i) φk is one-to-one, and W = ⟨φ1(V ), . . . , φn(V )⟩.
(ii) The trivial and total subspaces of V are closed.

Definition 5.2. Let i, j, k be integers, i ≤ i < j ≤ n, i ≤ k ≤ n. We let

πji : V → ⟨[xj , xi]⟩ and πjik : W → ⟨[xj , xi, xk]⟩ be the canonical projections. For

1 ≤ i ≤ n, we let Πi be the canonical projection from V to the subspace spanned

by all [xi, xk] and [xj , xi], with 1 ≤ k < i < j ≤ n.

Lemma 5.3. Let w∈φk(V ). If πrst(w) ̸=0, with 1≤ s< r≤n, s≤ t≤n,

then s ≤ k ≤ t, and at most one of the inequalities is strict.

Proof. It is enough to prove the result for w an element of a basis of φk(V ).

Such a basis is given by the vectors [xj , xi, xk] with 1 ≤ i < j ≤ n, i ≤ k ≤ n, and

the vectors [xj , xk, xi]− [xi, xk, xj ] with 1 ≤ i < j ≤ n and 1 ≤ k < i. Considering
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these basis vectors, we see that the first class has r = j, s = i, t = k, so s ≤ k = t.

The second class of vectors will yield either r = j, s = k, t = i, with s = k < t;

or else r = i, s = k, t = j, with s = k < t. This proves the lemma. �

Lemma 5.4. Let i, j be integers, 1 ≤ i < j ≤ n, and r an integer such that

1 ≤ r ≤ n. For v ∈ V , πjij(φr(v)) ̸= 0 if and only if πji(v) ̸= 0 and r = j.

Likewise, πjii(φr(v)) ̸= 0 if and only if πji(v) ̸= 0 and r = i.

Proof. The vectors [xj , xi, xj ] occurs in the image of a φr exactly when

r = j and it is applied a vector with nontrivial πji projection. Thus, if πjij(v) ̸= 0

then πji(v) ̸= 0. The converse is immediate, and the case of πjii is settled in the

same manner. �

Lemma 5.5. Fix i, j, 1 ≤ i < j ≤ n. If πji(X) = {0}, then πji(X∗∗) = {0}.

Proof. Since πji(X) = {0}, it follows that πjii(X∗) = {0} by Lemma 5.3.

Therefore, if v ∈ V has πji(v) ̸= 0 then φi(v) /∈ X∗, hence v /∈ X∗∗. �

We will now proceed to establish our main result. The idea is the following:

given a subspace X of V , we will find a lower bound for the dimension of X∗

in terms of n and the dimension of X. If all subspaces X ′ of V of dimension

strictly larger than that of X yield subspaces X ′∗ of dimension strictly larger than

dim(X∗), then it will follow that X must be closed since X∗ = (X∗∗)∗. In order

to establish these bounds, we will consider the images φ1(X), φ2(X), . . . , φn(X);

since each φi is one-to-one, the dimension of X∗ will depend on how much “over-

lap” there is among these subspaces of W .

Lemma 5.6. Fix n > 1, and let i and j be integers, 1 ≤ i < j ≤ n. Then

φi(V ) ∩ φj(V ) = {0}.

Proof. Let φi(v) ∈ φj(V ), and assume that πsr(v) ̸= 0, 1 ≤ r < s ≤ n.

If r ≤ i, then πsri(φi(v)) ̸= 0, and since φi(v) ∈ φj(V ), Lemma 5.3 implies

r ≤ j ≤ i, contradicting the choice of i and j. If i < r, then πsir(φi(v)) ̸= 0. By

Lemma 5.3, we must have i < j = r. We also have πris(φi(v)) ̸= 0, and since

φi(v) ∈ φj(V ), this time we deduce i < j = s. But then we have j = r = s, and

this is impossible. Thus, πsr(v) = 0 for all 1 ≤ r < s ≤ n. �

Lemma 5.7. Fix n > 1 and r ≤ n. Let i1, . . . , ir be pairwise distinct

integers, 1 ≤ i1, . . . , ir ≤ n. Then φ−1
i1

(⟨
φi2(V ), . . . , φir (V )

⟩)
is of dimension(

r−1
2

)
, with basis given by the vectors [xa, xb], with a, b ∈ {i2, . . . , ir}, b < a. In

particular, the intersection φi1(V )∩
⟨
φi2(V ), . . . , φir (V )

⟩
has a basis made up of
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vectors of the form [xa, xb, xi1 ] with a, b ∈ {i2, . . . , ir}, b < a and b < i1; and

vectors of the form [xa, xi1 , xb]− [xb, xi1 , xa], with a, b ∈ {i2, . . . , ir}, i1 < b < a.

Proof. By Proposition 4.3, it is enough to consider the case where i1 = 1.

Let A denote the pullback described in the statement.

Given a, b ∈ {i2, . . . , ir}, a > b, we have [xa, xb] ∈ A:

φi1([xa, xb]) = [xa, xi1 , xb]− [xb, xi1 , xa]

= φb([xa, xi1 ])− φa([xb, xi1 ]) ∈ ⟨φi2(V ), . . . , φir (V )⟩.

Conversely, let v ∈ A, and a, b be integers, 1 ≤ b < a ≤ n, such that πab(v) ̸= 0.

We can write
φi1(v) = φi2(v2) + · · ·+ φir (vr).

Since i1 = 1, πa1b(φi1(v)) = −πb1a(φi1(v)) ̸= 0, and therefore we must have

πa1b(φij (vj)) ̸= 0 for some j ≥ 2. This implies 1 ≤ ij ≤ b, with at most one

inequality strict by Lemma 5.3. Since 1 = i1 ̸= ij , we have ij = b. Considering

πb1a instead, we deduce that a = ik for some k ≥ 2, so a, b ∈ {i2, . . . , ir}.
Therefore, A ⊆ ⟨[xa, xb] | a, b ∈ {i2, . . . , ir}, a > b⟩. This proves equality.

Since the vectors described are linearly independent, they form a basis. Map-

ping them via φi1 , which is one-to-one, proves the final clause. �

Corollary 5.8. Let n > 1, r ≤ n, and let 1 ≤ i1 < i2 < · · · < ir ≤ n be

integers. Then

dim (⟨φi1(V ), . . . , φir (V )⟩) = r

(
n

2

)
−
(
r

3

)
.

Proof. For simplicitly, let Y = ⟨φi1(V ), . . . , φir (V )⟩. We have:

dim(Y ) =

(
r∑

k=1

dim(φik(V ))

)
−

(
r∑

k=2

dim
(
φik(V )∩

⟨
φi1(V ), . . . , φik−1

(V )
⟩))

= r

(
n

2

)
−

(
r∑

k=2

(
k − 1

2

))
= r

(
n

2

)
−
(
r

3

)
,

as claimed. �

Definition 5.9. Fix n > 1. We define Φ : V n →W to be

Φ(v1, . . . ,vn) = φ1(v1) + · · ·+ φn(vn).

If there is danger of ambiguity, we use Φn to denote the map associated to the

spaces corresponding to the particular choice of n.
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Note that if X is a subspace of V , then Φ(Xn) = X∗.

The following proposition essentially says that the only overlaps in the maps

F2 → F3 given by v 7→ [v,u] are consequences of the Hall–Witt identity.

Proposition 5.10. The kernel of Φ is of dimension
(
n
3

)
. A basis for ker(Φ)

is given as follows: each choice of integers a, b, c, 1 ≤ a < b < c ≤ n, gives an

element (v1, . . . ,vn) ∈ V n of the basis, with:

vi =


[xc, xb] if i = a,

−[xc, xa] if i = b,

[xb, xa] if i = c,

0 otherwise.

Proof. Denote the element corresponding to a < b < c by v(abc). Note that

v(abc) is in ker(Φ):

Φ(v(abc)) = φa([xc, xb]) + φb(−[xc, xa]) + φc([xb, xa])

= [xc, xa, xb]− [xb, xa, xc]− [xc, xa, xb] + [xb, xa, xc] = 0.

Since Φ is surjective, dim(W ) = ndim(V )− dim(ker(Φ)), hence

dim(ker(Φ)) = n

(
n

2

)
− 2

(
n+ 1

3

)
=

(
n

3

)
,

so the proposition will be established in full if we prove that the elements v(abc)

of V n are linearly independent.

Let
∑
βabcv(abc) = (0, . . . ,0) be a linear combination equal to zero. If we

look at the ith coordinate of these n-tuples, we have:∑
1≤r<s<i≤n

βrsi[xs, xr]−
∑

1≤r<i<s≤n

βris[xs, xr] +
∑

1≤i<r<s≤n

βirs[xs, xr] = 0.

Each basis vector [xs, xr] occurs only once. Thus, if i ∈ {a, b, c}, then βabc = 0.

This holds for each choice of i, hence βabc = 0 for all choices of a, b, c. This proves

the v(abc) are linearly independent. �

Theorem 5.11. Let (v1, . . . ,vn) ∈ ker(Φ). Write

vk =
∑

1≤i<j≤n

α
(k)
ji [xj , xi], α

(k)
ij ∈ Fp.
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(i) If i = k or j = k, then α
(k)
ji = 0; i.e., Πk(vk) = 0.

(ii) If 1 ≤ a < b < c ≤ n, then α
(c)
ba = α

(a)
cb = −α(b)

ca .

(iii) Fix i, j, 1 ≤ i < j ≤ n. Then

Πi(vj) =

i−1∑
r=1

(
−α(i)

jr

)
[xi, xr] +

j−1∑
r=i+1

α
(i)
jr [xr, xi] +

n∑
r=j+1

(
−α(i)

rj

)
[xr, xi],

Πj(vi) =
i−1∑
r=1

(
−α(j)

ir

)
[xj , xr] +

j−1∑
r=i+1

α
(j)
ri [xj , xr] +

n∑
r=j+1

(
−α(j)

ri

)
[xr, xj ].

Proof. Part (i) holds for the basis elements described in Proposition 5.10,

hence holds for all vectors in the kernel. For (ii), note that if 1 ≤ a < b < c ≤ n,

then

πbac
(
φ1(v1) + · · ·+ φn(vn)

)
=
(
α
(c)
ba − α

(a)
cb

)
[xb, xa, xc],

πcab
(
φ1(v1) + · · ·+ φn(vn)

)
=
(
α(b)
ca + α

(a)
cb

)
[xc, xa, xb].

Since both are equal to zero, we deduce that α
(c)
ba = α

(a)
cb and α

(b)
ca = −α(a)

cb .

Finally, for (iii), we know that Πi(vi) = Πj(vj) = 0 from (i), so we can write:

Πi(vj) =

i−1∑
r=1

α
(j)
ir [xi, xr] +

j−1∑
r=i+1

α
(j)
ri [xr, xi] +

n∑
r=j+1

α
(j)
ri [xr, xi],

Πj(vi) =
i−1∑
r=1

α
(i)
jr [xj , xr] +

j−1∑
r=i+1

α
(i)
jr [xj , xr] +

n∑
r=j+1

α
(i)
rj [xr, xj ],

and applying (ii) gives the desired identities. �

Corollary 5.12. Let v ∈ ker(Φ). If Πj(vi) = 0, then Πi(vj) = 0. In par-

ticular, if vi = 0, then Πi(vj) = 0 for all j.

Proof. The second assertion follows immediately from the first. The first

assertion is trivial if i = j; and if i ̸= j, then α
(i)
jr = 0 for all r < j and α

(i)
rj = 0

for j < r, so by Theorem 5.11(iii) it follows that Πi(vj) = 0. �

Corollary 5.13. Let v ∈ ker(Φ), v ̸= (0, . . . ,0). If v = (v1, . . . ,vn) then

the dimension of ⟨v1, . . . ,vn⟩ is at least 3.
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Proof. Write

v =
∑

1≤a<b<c≤n

βabcv(abc).

Fix a, b, c such that 1 ≤ a < b < c ≤ n, βabc ̸= 0. We claim that va, vb, and vc

are linearly independent. Indeed, note that Πa(va) = Πb(vb) = Πc(vc) = 0, and

πcb(va) ̸= 0. Therefore, if αava+αbvb+αcvc = 0, then we must have αa = 0. A

symmetric argument looking at πca shows that αb = 0, and considering πba shows

that αc = 0. �

Corollary 5.14. Fix n> 1, and let X be a subspace of V . If dim(X)= 1,

then dim(X∗) = n; if dim(X) = 2, then dim(X∗) = 2n. That is, if dim(X) ≤ 2,

then Xn ∩ ker(Φ) = {0}.

Proof. We prove the contrapositive.

Since dim(X∗) = ndim(X) − dim(Xn ∩ ker(Φ)), if dim(X∗) < ndim(X),

then Xn ∩ ker(Φ) ̸= {0}.
Let v = (v1, . . . ,vn) ∈ Xn ∩ ker(Φ), v ̸= 0. Then vi ∈ X for i = 1, . . . , n, so

by Corollary 5.13, dim(X) ≥ 3, as claimed. �

We now proceed along the lines outlined above; the first proposition makes

the conclusion depend on X, and the second only on dim(X) (though with a

stronger hypothesis).

Proposition 5.15. Let X < V . Assume that for all subspaces Y of V , if Y

properly contains X then Y ∗ properly contains X∗. Then X = X∗∗.

Proof. If X∗∗ properly contains X, then X∗∗∗ would properly contain X∗.

But X∗∗∗ = X∗, a contradiction. �

Proposition 5.16. Let n > 1 and let m be an integer with 0 < m <
(
m
2

)
.

If for every subspaces X,Y < V (n) with dim(X) = m and dim(Y ) = m + 1 we

have dim(X∗) < dim(Y ∗), then X is closed.

We are therefore searching for a function f(k, n), for k with 1 ≤ k ≤
(
n
2

)
,

such that for all Y < V (n), if dim(Y ) = k then dim(Y ∗) ≥ nk− f(k, n). That is:

f(k, n) = max
{
dim(Xn ∩ ker(Φn)) | X < V, dim(X) = k}.

Our objective is to find an expression for f(k, n) in terms of k and n; in fact,

it turns out that the value is independent of n. The main workhorse in our

calculations is Lemma 5.18 below. The idea is to find dim(Xn ∩ ker(Φn)) by

examining the “partial intersections”; namely, the intersections of the form⟨
(0, . . .0,vi,vi+1, . . . ,vn) | vj ∈ X

⟩∩
ker(Φn),
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as i ranges from 1 to n − 2 (when i = n − 1 or i = n, the intersection is trivial

by Corollary 5.13). For a fixed i, we can consider the subspace of X consisting of

all vectors vi which can be “completed” to an element of ker(Φ) by taking and

n-tuple with i− 1 copies of 0, followed by vi, followed by some vectors in X; this

is the same as considering the pullbacks X ∩ φ−1
i (⟨φi+1(X), . . . , φn(X)⟩). It is

easy to verify that the sum of the dimensions of these pullbacks is equal to the

dimension of Xn ∩ ker(Φn). We will first use the dimension of these pullbacks to

establish a lower bound for the dimension of X; then we will turn around and use

these calculations to give an upper bound for the dimension of the pullbacks in

terms of the dimension of X.

Making the bounds as precise as possible, however, requires one to keep

track of a lot of information; this in turn requires the use of multiple indices

and subindices in the proof, for which I apologize in advance. To illustrate the

ideas and help the reader navigate through the proof, we will first present an

illustration. This is not an example in the sense of a specific X, but rather a run-

through the main part of the analysis we will perform below, but with specific

values for some of the indices and some of the variables to make it more concrete

and easier to digest.

Example 5.17. Set n = 6, and let X be a subspace of V . We will be interested

in bounding above the dimension of Zi in terms of dim(X), where

Zi = X ∩ φ−1
i

(
⟨φi+1(X), . . . , φ6(X)⟩

)
;

i.e., Zi consists of all v ∈ X for which there exist vi+1, . . . ,v6 in X such that

(0, . . . ,0,v,vi+1, . . . ,v6) ∈ X6 ∩ ker(Φ6).

To do this, we will obtain a lower bound for dim(X) in terms of dim(Zi). To

further fix ideas, set i = 2. Note that by Theorem 5.11(i) and (ii), we must have

Π1(Z2) = Π2(Z2) = 0. Order all pairs (j, i) lexicographically from right to left, so

(j, i) < (b, a) if and only if i < a, or i = a and j < b. Doing Gaussian elimination,

we can find a basis v1,2, v2,2, . . . ,vk,2 for Z2 (the second index refers to the

fact that these vectors are in the second component of an element of ker(Φ6)),

satisfying that the “leading pair” (smallest nonzero component) of each is strictly

smaller than that of its successors, and all other vectors have zero component for

that pair. For example, suppose that dim(Z2) = 4, and that the basis has the

form:

v1,2 = [x4, x3] + α1[x5, x3] + α2[x6, x4], v3,2 = [x5, x4] + γ[x6, x4],
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v2,2 = [x6, x3] + β[x6, x4], v4,2 = [x6, x5],

for some coefficients α1, α2, β, γ ∈ Fp. We know there exist vectors vi,3, vi,4,

vi,5, vi,6 such that (0,vi,2,vi,3,vi,4,vi,5,vi,6) ∈ X6 ∩ ker(Φ6) for i = 1, 2, 3, 4.

Naturally, X contains all twenty vectors, but there will normally be some linear

dependencies between them: some may even be equal to 0. We want to extract, in

some systematic manner, a subset that we can guarantee is linearly independent.

First let us consider the information we can obtain about these vectors from our

knowledge of the vectors vi,2.

Since (0,vi,2,vi,3,vi,4,vi,5,vi,6) lies in ker(Φ), we can use Theorem 5.11(iii)

to describe the Πk-image of each vector vi,j , where k ≤ 2 and j > 2. The

Π1-image must be trivial, and for the Π2 image we obtain the following:

Π2(v1,3) = [x4, x2] + α1[x5, x2], Π2(v2,3) = [x6, x2],

Π2(v1,4) = −[x3, x2] + α2[x6, x2], Π2(v2,4) = β[x6, x2],

Π2(v1,5) = −α1[x3, x2], Π2(v2,5) = 0,

Π2(v1,6) = −α2[x4, x2]. Π2(v2,6) = −[x3, x2]− β[x4, x2].

Π2(v3,3) = 0, Π2(v4,3) = 0,

Π2(v3,4) = [x5, x2] + γ[x6, x2], Π2(v4,4) = 0,

Π2(v3,5) = −[x4, x2], Π2(v4,5) = [x6, x2],

Π2(v3,6) = −γ[x4, x2] Π2(v4,6) = −[x5, x2].

One way to obtain these without too much confusion is as follows: to find Π2(vj,k),

go through the expression for vj,2 replacing all indices k by 2, remembering that

[xa, xb] = −[xb, xa]. Any [xb, xa] in which neither a nor b are equal to k are simply

removed.

To extract systematically a set of linearly independent vectors, we proceed in

the following manner: consider all the pairs which correspond to leading terms of

the basis vectors vi,2; in this case, (4, 3), (6, 3), (5, 4), and (6, 5). The individual

indices that occur are 3, 4, 5, and 6. For each of them, we identify the smallest

pair in which it occurs. Thus, 3 first occurs in pair number one, as does 4. The

index 5 first occurs in pair number three, and 6 first occurs in pair number two.

Since the first pair in which 3 appears is the first pair (corresponding to the

first basis vectors v1,2), which is (4, 3) where it is paired with 4, we will select the

vector v1,4; this vector has first nontrivial term corresponding to (3, 2). The next
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index is 4, again in the first pair, paired with 3; so this time we select v1,3. This

has nontrivial (4, 2) component, and trivial (j, i) component for all (j, i) < (4, 2).

The next index is 5, which first occurs in the third pair (corresponding to v3,2)

paired with 4. So we select v3,4, a vector with trivial (j, i) component for all

(j, i) < (5, 2), and nontrivial (5, 2) component. Next we go to the index 6, that

first occurs in the second pair together with 3; so we select the vector v2,3, a vector

with nontrivial (6, 2) component, and trivial (j, i) component for all (j, i) < (6, 2).

In summary, we want to consider our original basis vectors v1,2, v2,2, v3,2,

and v4,2, plus the vectors we have selected based on the location of the indices,

to wit the vectors v1,4,v1,3,v3,4,v2,3 corresponding, respectively, to the indices

3, 4, 5, and 6. The choices we have made ensure that the Π2-images of these

latter four vectors are linearly independent, and so the vectors themselves must

be linearly independent. Since Π2(Z2) = 0, the full collection of eight vectors

is linearly independent, and so we can conclude that X must have dimension at

least 8.

What is more, note that none of the four vectors v1,4, v1,3, v3,4, and v2,3

will occur in a similar analysis involving Z3 (or more generally Zk with k > 2):

when performing a similar analysis, all vectors will have trivial Πk-image when

k < 3, and these vectors have nontrivial Π2-image. Note as well that the number

of indices, in this case 4, must satisfy dim(Z2) ≤
(
4
2

)
, since we need to be able to

obtain at least dim(Z2) pairs out of the indices that occur.

Thus we have seen that if dim(Z2) = 4, then dim(X) ≥ 8. If we move on to

Z3, we will obtain new vectors that must lie in X; while the vectors in the basis

for Z2 may again occur in that analysis, the vectors v1,4, v1,3, v3,4, and v2,3 will

not, and so by keeping track of them we can give an even better lower bound for

dim(X). �

What ensures that this process will work the way we want is how we choose

the vectors of the basis and the vectors that “correspond” to each index. The

former count towards the value of dim(Xn∩ker(Φn)), while the latter may be re-

moved from consideration when we move on to Zi+1. This is all done in generality

in the proof of the following promised lemma:

Lemma 5.18. Fix n > 1, and let X be a subspace of V . For each i,

1 ≤ i ≤ n, let

Zi = X ∩ φ−1
i

(
⟨φi+1(X), . . . , φn(X)⟩

)
;

i.e., Zi consists of all v ∈ X for which there exist vi+1, . . . ,vn in X such that

(0, . . . ,0,v,vi+1, . . . ,vn) ∈ Xn ∩ ker(Φ).
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If dim
(
X ∩ ⟨[xs, xr] | i ≤ r < s ≤ n⟩

)
= di and dim(Zi) = ri, then ri ≤

(
di−ri

2

)
.

Morevoer, if si is the smallest positive integer such that ri ≤
(
si
2

)
, then we must

have di+1 ≤ di − si.

Proof. Fix i0, 1 ≤ i0 ≤ n. For simplicity, write r = ri0 . By Theorem 5.11,

if v ∈ Zi0 then Πi(v) = 0 for all i ≤ i0.

Let v1i0 , . . . ,vri0 be a basis for Zi0 . We will modify it as follows:

Order all pairs (j, i), i0 < i < j ≤ n by letting (j, i) < (b, a) if and only if

i < a or i = a and j < b (lexicographically from right to left). Let (j1, i1) be

the smallest pair for which πj1i1(vki0) ̸= 0 for some k, 1 ≤ k ≤ r. Reordering if

necessary we may assume k = 1. Replacing v1i0 with a scalar multiple of itself

and adding adequate multiples to the remaining vki0 if necessary we may also

assume that

πj1i1 (vki0) =

{
[xj1 , xi1 ] if k = 1;

0 if k ̸= 1.

Let (j2, i2) be the smallest pair for which πj2i2(vki0) ̸= 0 for some k with

2 ≤ k ≤ r. Again we may assume k = 2, and that

πj2i2 (vki0) =

{
[xj2 , xi2 ] if k = 2;

0 if k ̸= 2.

Proceeding in the same way for k = 3, . . . , r, we obtain an ordered list of

pairs (j1, i1) < (j2, i2) < · · · < (jr, ir) and a basis v1i0 , . . . ,vri0 such that

πjℓiℓ (vki0) =

{
[xjℓ , xiℓ ] if ℓ = k,

0 if ℓ ̸= k;

and such that πba(vki0) = 0 for all (b, a) < (jk, ik). Write

vki0 =
∑

i0<i<j≤n

α
(k,i0)
ji [xj , xi].

From the above we have:

α
(k,i0)
ji =

{
1 if (j, i) = (jk, ik),

0 if (j, i) < (jk, ik).

For k = 1, . . . , r and i = i0 + 1, . . . , n, let vki be vectors in X such that

(0, . . . ,0,vki0 ,vki0+1, . . . ,vkn) ∈ ker(Φ) ∩Xn.
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By Theorem 5.11(iii) we have

Πi0 (vkj) =

j−1∑
m=i0+1

α
(k,i0)
jm [xm, xi0 ]−

n∑
m=j+1

α
(k,i0)
mj [xm, xi0 ].

For simplicity, set α
(k,i0)
ji = −α(k,i0)

ij , and α
(k,i0)
jj = 0; then we can rewrite the

above expression as:

Πi0 (vkj) =
n∑

m=i0+1

α
(k,i0)
jm [xm, xi0 ]. (5.19)

Let s be the cardinality of the set {i1, j1, . . . , ir, jr}; that is, s is the number

of distinct indices that occur in the list (j1, i1), . . . , (jr, ir). Note that r ≤
(
s
2

)
.

Let a1 < a2 < · · · < as be the list of these distinct indices. For each ℓ with

1 ≤ ℓ ≤ s, let (jk(ℓ), ik(ℓ)) be the smallest pair among (j1, i1), . . . , (jr, ir) that has

aℓ ∈ {ik(ℓ), jk(ℓ)}. If aℓ = ik(ℓ), let bℓ = jk(ℓ); if aℓ = jk(ℓ), let bℓ = ik(ℓ). Consider

the following list of vectors from X:

v1i0 ,v2i0 , . . . ,vri0 ,vk(1)b1 ,vk(2)b2 , . . . ,vk(s)bs .

Note that all of these vectors lie in X ∩ ⟨[xj , xi] | i0 ≤ i < j ≤ n⟩. We will

show that these vectors are linearly independent. Since v1i0 , . . . ,vri0 are lin-

early independent and Πi0(vki0) = 0 for k = 1, . . . , r, it suffices to show that

Πi0(vk(1)b1), . . . ,Πi0(vk(s)bs) are linearly independent.

First, from (5.19) we have πaℓi0(vk(m)bm) = α
(k(m),i0)
bmaℓ

. We claim that if

ℓ < m, then α
(k(m),i0)
bmaℓ

= 0. By construction, this claim will follow if we can show

that either aℓ = bm, or else the pair made up of bm and aℓ is strictly smaller than

the pair made up of am and bm (which is equal to (jk(m), ik(m))); the claim will

then follow because α
(k,i0)
ba = 0 whenever (b, a) < (jk, ik). Indeed, we know that

aℓ < am. If am = ik(m) and bm = jk(m), then replacing am in the pair (bm, am)

with something smaller (namely aℓ) gives a smaller pair: (bm, aℓ) < (bm, am). If,

on the other hand, we have am = jk(m) and bm = ik(m), then if aℓ > bm we have

(aℓ, bm) < (am, bm), and if aℓ < bm then we also have (bm, aℓ) < (am, bm). The

only remaining possibility is aℓ = bm, which is of course no trouble.

Thus, we conclude that α
k(m),i0
bmaℓ

= 0 whenever ℓ < m. To see that the vectors

Π2(vk(1)b1), . . . ,Π2(vk(s)bs) are linearly independent, note that

πaℓi0

(
vk(m)bm

)
= α

(k(m),i0)
bmaℓ

[xaℓ
, xi0 ] =

{
0 if ℓ < m,

[xbℓ , xaℓ
] if m = ℓ.
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Therefore, if β1Πi0(vk(1)b1)+ · · ·+ βsΠi0(vk(s)bs) = 0, then β1 = 0 since the only

vector with nontrivial (a1, i0)-component is Πi0(vk(1)b1). Hence β2 = 0, because

the only remaining vector with nontrivial (a2, i0)-component is Πi0(vk(2)b2); and

continuing this way we conclude βj = 0 for all j. So the vectors are indeed linearly

independent. Thus we have established that

v1i0 ,v2i0 , . . . ,vri0 ,vk(1)b1 ,vk(2)b2 , . . . ,vk(s)bs

is a collection of linearly independent vectors in X ∩ ⟨[xs, xr] | i0 ≤ r < s ≤ n⟩.
Thus we conclude that di0 ≥ r + s. Since r ≤

(
s
2

)
, it follows that

r ≤
(
s

2

)
≤
(
di0 − r

2

)
,

as claimed.

To complete the proof, it only remains to establish the upper bound on di0+1.

We have di0 = di0+1 + dim(⟨[xj , xi] | i0 ≤ i < j ≤ n⟩ ∩ {v ∈ X | Πi0(v) ̸= 0}).
Since the vectors vk(1)b1 , . . . ,vk(s)bs are linearly independent, have nontrivial Πi0

projection, and lie in X ∩ ⟨[xj , xi] | i0 ≤ i < j ≤ n⟩, we have di0 ≥ di0+1 + s.

Moreover, since r ≤
(
s
2

)
, we also have si0 ≤ s; therefore, di0+1 ≤ di0−s ≤ di0−si0 ,

as desired. �

Note that Zn−1 and Zn are always trivial. To match the computations above,

we want to define r(d), depending on d, to be the largest nonnegative integer such

that r(d) ≤ d and r(d) ≤
(
d−r(d)

2

)
. Adding r − r(d) to both sides of the latter

inequality leads to the following definition:

Definition 5.20. Let d be a nonnegative integer. We define r(d) to be the

largest integer such that r(d) ≤ d ≤
(
d−r(d)+1

2

)
.

The definition above makes it somewhat difficult to compute the function

r(d). After computing the first few values by hand, I consulted the On-line ency-

clopedia of integer sequences [16] and discovered that it was related to sequence

A083920. This readily gives the following alternative descriptions, which are easy

to establish:

Proposition 5.21 (cf. sequence A083920 in [16]). Let d be a positive in-

teger. Then r(d) is the number of nontriangular numbers strictly less than d.

Equivalently, if we write d =
(
t
2

)
+ s, with 0 < s ≤ t, then r(d) =

(
t−1
2

)
+ (s− 1);

alternatively,

r(d) = d−
⌈
−1 +

√
8d+ 1

2

⌉
where ⌈x⌉ is the smallest integer greater than or equal to x.
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Definition 5.22. For n > 0 and integerm, 0 ≤ m ≤
(
n
2

)
, we let f(m,n) denote

the largest possible value of
∑

dim(Zk) for a subspace X of V with dim(X) = m;

equivalently,

f(m,n) = max
{
dim(Xn ∩ ker(Φn)) | X < V (n), dim(X) = m

}
.

Remark 5.23. As we will see below, the value of f(m,n) does not depend on

n; meaning that if m ≤
(
n
2

)
and n ≤ N , then f(m,n) = f(m,N). It is easy to

verify that f(m,n) ≤ f(m,N): if X is a subspace of V (n) of dimension m, we can

also consider it as a subspace of V (N). If the dimension of X∗ with respect to

{φi}ni=1 is nm− r, then the dimension of X∗ with respect to {φi}Ni=1 is Nm− r;

so we have

dim(Xn ∩ ker(Φn)) = dim(XN ∩ ker(ΦN )).

Intuitively, the reason the reverse inequality also holds is that the largest value

of f(m,n) occurs when the vectors in Zi use fewer indices rather than more.

Because more indices means a larger value of s in the proof of Lemma 5.18, which

means more vectors are “taken out of circulation” for Zi+1, which in turn yields

a smaller possible value for X ∩ ⟨vrs | i < r < s < n⟩. So the “best” strategy for

larger intersection with ker(Φn) is to keep X confined to as small a number of

indices as possible. The proof below will formalize this intuition, and show that

indeed the value of f depends only on m.

Theorem 5.24. Let m > 0, and write m =
(
T
2

)
+ s, 0 ≤ s ≤ T . If m ≤

(
n
2

)
,

then

f(m,n) =

(
T

3

)
+

(
s

2

)
.

Remark 5.25. Although there is some ambiguity in the expression for m,

since
(
T
2

)
+ T =

(
T+1
2

)
, note that the values

(
T
3

)
+
(
T
2

)
and

(
T+1
3

)
+
(
0
2

)
are equal,

so the given value of f(m) is well-defined.

Proof. By replacing
(
T+1
2

)
with

(
T
2

)
+T if necessary, we may assume s > 0.

Note that we must have T < n. First we show that f(m,n) ≥
(
T
3

)
+
(
s
2

)
.

Let X be the m-dimensional coordinate subspace of V (n) generated by all

[xj , xi] with 1 ≤ i < j ≤ T , and the vectors [xT+1, x1], . . . , [xT+1, xs]. Then X
∗ is

the coordinate subspace of W (n) generated by all vectors of the form [xj , xi, xk]

with 1 ≤ i < j ≤ T , i ≤ k ≤ n; plus the vectors of the form [xT+1, xi, xk] with

1 ≤ i ≤ s, i ≤ k ≤ n. There are 2
(
T+1
2

)
+(n−T )

(
n
2

)
vectors of the first kind, and

n+ (n− 1) + (n− 2) + · · ·+ n− (s− 1) = sn−
(
s

2

)
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of the second kind. Thus dim(X∗) = 2
(
T+1
2

)
+ (n − T )

(
T
2

)
+ sn −

(
s
2

)
; and we

have:

ndim(X)− dim(X∗) = T

(
T

2

)
− 2

(
T + 1

3

)
+

(
s

2

)
= (T − 2)

(
T

2

)
− 2

(
T

3

)
+

(
s

2

)
=

(
T

3

)
+

(
s

2

)
.

Therefore, f(m,n) ≥
(
T
3

)
+
(
s
2

)
.

For the reverse inequality, we will apply induction. Assume the result for

any subspace X ′ of V (n) with dim(X ′) < m. Write m =
(
T
2

)
+ s with 0 < s ≤ T ,

and T < n, and let X be a subspace of V of dimension m. We want to show

that
∑

dim(Zi) is bounded above by
(
T
3

)
+
(
s
2

)
. If all Zi are trivial, this follows.

Otherwise, assume i is the smallest index with nontrivial Zi, and dim(Zi) = k > 0.

Then k ≤ r(m), and if ℓ is the smallest positive integer such that k ≤
(
ℓ
2

)
then

dim
(
X ∩ ⟨[xs, xr] | i < r < s ≤ n⟩

)
≤ m− ℓ.

So the sum of the dimensions of the Zj with j > i is at most f(m− ℓ, n); that is,

the sum over all k is bounded:∑
dim(Zk) ≤ k + f(m− ℓ, n).

We want to show that k+ f(m− ℓ, n) ≤
(
T
3

)
+
(
s
2

)
for all k and ℓ that satisfy the

relevant conditions. It is easy to show that for m = 1, 2, 3, 4, and 5, all values

of the form k + f(m − ℓ, n), k ≤ r(m) and ℓ as above are less than or equal

to
(
T
3

)
+
(
s
2

)
.

If ℓ = T = m− r(m), then since k ≤ r(m) we have

k + f(m− ℓ, n) ≤ r(m) + f(r(m), n)

=

(
T − 1

2

)
+ (s− 1) + f

((
T − 1

2

)
+ (s− 1), n

)
=

(
T − 1

2

)
+ (s− 1) +

(
T − 1

3

)
+

(
s− 1

2

)
=

(
T

3

)
+

(
s

2

)
;

If ℓ < T , since k ≤
(
ℓ
2

)
, it is enough to to show that for 1 < ℓ < T ,(
ℓ

2

)
+ f(m− ℓ, n) ≤

(
T

3

)
+

(
s

2

)
.
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If 2 ≤ ℓ ≤ s, then:(
ℓ

2

)
+ f(m− ℓ, n) =

(
ℓ

2

)
+ f

((
T

2

)
+ (s− ℓ), n

)
=

(
ℓ

2

)
+

(
T

3

)
+

(
s− ℓ

2

)
≤
(
T

3

)
+

(
s

2

)
.

The last inequality follows since
(
ℓ
2

)
+
(
s−ℓ
2

)
is the number of two element subsets

of {1, . . . , s}, where either both elements are less than or equal to ℓ, or both

strictly larger than ℓ.

If s < ℓ < T , then write ℓ = s+ a, a > 0. We then have

m− ℓ =

(
T

2

)
+ s− (s+ a) =

(
T − 1

2

)
+ (T − 1− a),

so (
ℓ

2

)
+ f(m− ℓ, n) =

(
ℓ

2

)
+

(
T − 1

3

)
+

(
T − 1− a

2

)
.

Since ℓ+ 1− T ≤ 0 and a > 0, we must have

6a(s+ a+ 1− T ) ≤ 0.

Rewriting and introducing suitable terms we have:

6as+ 3a2 − 3a− 3T 2 + 9T − 6 + 3T 2 − 9T − 6aT + 9a+ 3a2 + 6 ≤ 0

In turn, this can be rewritten as

6as+ 3a2 − 3a− 3(T − 1)(T − 2) + 3(T − a− 1)(T − a− 2) ≤ 0.

This gives:

3(s2 + 2as+ a2 − s− a)− 3(T − 1)(T − 2) + 3(T − a− 1)(T − a− 2) ≤ 3(s2 − s),

and so

3((s+ a)2 − (s+ a))− 3(T − 1)(T − 2) + 3(T − a− 1)(T − a− 2) ≤ 3(s2 − s).

Substituting ℓ for s+ a and adding T (T − 1)(T − 2) to both sides we have

3(ℓ2−ℓ)+(T−3)(T−2)(T−1)+3(T−a−1)(T−a−2) ≤ T (T−1)(T−2)+3(s2−s);

dividing through by 6 yields the desired inequality:(
ℓ

2

)
+ f(m− ℓ, n) ≤

(
ℓ

2

)
+

(
T − 1

3

)
+

(
T − 1− a

2

)
≤
(
T

3

)
+

(
s

2

)
.

We therefore conclude that f(m,n) ≤
(
T
3

)
+
(
s
2

)
, which completes the proof.

Note that indeed, the value of n is not relevant to the value of f(m,n), so long

as n is large enough to satisfy m ≤
(
n
2

)
. �
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Since the value of f(m,n) does not depend on n, we drop the second argument

and simply call this function f(m). It is not hard to verify that T =
⌊
1+

√
1+8m
2

⌋
,

where ⌊x⌋ is the largest integer greater than or equal to x, so that f(m) ∼
√
2
3 m

3/2

asymptotically (or more precisely, m
12 (4

√
2m+ 1− 9) ≤ f(m) ≤ m

6 (
√
8m+ 1− 3)

for all m). The value of T can be used to obtain a (rather complicated) explicit

expression for f(m) in terms of m. The sequence of values of f(m) is sequence

A111138 in [16].

The result above implies:

Theorem 5.26. Fix n > 1 and let X be a subspace of V . Write dim(X) =(
T
2

)
+ s, 0 ≤ s ≤ T . Then

ndim(X)−
(
T

3

)
−
(
s

2

)
≤ dim(X∗) ≤ min

{
ndim(X), 2

(
n+ 1

3

)}
.

Corollary 5.27. Fix n > 1 and let X be a subspace of V with dim(X) = m.

If dim(X∗) = nm− t and n+ t > f(m+ 1), then X is closed.

Proof. Suppose X is as in the statement, and let Y be any subspace of V

of dimension m+ 1. From the definition of f we know that

dim(Y ∗) ≥ n(m+ 1)− f(m+ 1),

so dim(Y ∗) − dim(X∗) ≥ n + t − f(m + 1) > 0. Therefore every Y strictly

larger than X must have dim(X∗) < dim(Y ∗), which shows that X is closed by

Proposition 5.15. �

In terms of groups, we conclude:

Theorem 5.28. Fix n > 1. Let G is a group of class two and exponent p,

where p is an odd prime, such that |G/Z(G)| = pn, and let r be the largest integer

such that f(r) < n; finally, let m =
(
n
2

)
− r. If |[G,G]| ≥ pm, then G is capable.

We can think of m as a “co-rank” condition on the commutator subgroup

of G: the commutator subgroup is of order at most p(
n
2), and r measures how

much smaller than this [G,G] can be and still guarantee capability of G.

Table 1 combines Theorem 5.28 with the necessary condition given in Prop. 9

of [11] for the first few values of n. If G is a group with |G/Z(G)| = pn, then

|[G,G]| ≥ pk is necessary for the capability of G, and |[G,G]| ≥ pm is sufficient

for the capability of G. Note that for |G/Z(G)| = p3, we cannot have |[G,G]| = p;

however, if |G/[G,G]| = p3, then |[G,G]| = p still yields a capable group; this

explains why the necessary conditions seems more restrictive than the sufficient

one on the table for n = 3.
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n k m n k m n k m

2 1 1 7 3 14 12 4 55

3 2 1 8 3 20 13 4 67

4 2 2 9 3 28 14 4 79

5 2 4 10 4 37 15 5 93

6 3 8 11 4 45 16 5 108

Table 1. If |G/Z(G)| = pn, |[G,G]| ≥ pk is necessary and |[G,G]| ≥ pm

is sufficient for the capability of G; we always have |[G,G]| ≤ p(
n
2).

6. Final remarks

In the case where G is 5-generated (that is, it can be generated by 5 elements,

though it may require fewer), there is nontrivial work of Brahana [4] classifying

the corresponding p-groups that yield a very satisfying result when combined

with Theorem 5.28. By combining the conditions we have derived on the rank

of [G,G], and considering the different possible subspaces Brahana lists, we may

obtain the following result. We note that the exceptions to capability have long

been known; the interesting content of the result is that these are in fact the only

exceptions at least as far as the 5-generated groups are concerned:

Theorem 6.1. Let G be a 5-generated group of class at most 2 and expo-

nent p. Then G is one and only one of the following:

(i) Nontrivial cyclic; or

(ii) A nontrivial central product AB, with [A,A] ∩ [B,B] ∼= Cp; or

(iii) Capable.

Unfortunately, as is evident from Table 1, proceeding along these lines be-

comes ever more problematic, as more and more cases need to be considered

individually to determine if the corresponding group is capable. And for k ≥ 6,

I am not aware of any work like Brahana’s that classifies the corresponding p-

groups.
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