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Co-commutators with generalized derivations in prime
and semiprime rings

By BASUDEB DHARA (Medinipur) and VINCENZO DE FILIPPIS (Messina)

Abstract. Let R be a prime ring of characteristic different from 2 with Utumi

quotient ring U and extended centroid C, F and G two nonzero generalized derivations

of R, I an ideal of R and f(x1, . . . , xn) be a multilinear polynomial over C which is not

central valued on R. If

F 2(f(x1, . . . , xn))f(x1, . . . , xn)− f(x1, . . . , xn)G2(f(x1, . . . , xn)) = 0

for all x1, . . . , xn ∈ I, then one of the following holds:

(1) F (x) = xa and G(x) = xb for all x ∈ R with a2 = b2 ∈ C;

(2) F (x) = xa and G(x) = bx for all x ∈ R with a2 = b2;

(3) F (x) = ax and G(x) = xb for all x ∈ R with a2 = b2 ∈ C;

(4) F (x) = ax and G(x) = xb for all x ∈ R with a2 = b2 and f(x1, . . . , xn)2 is central

valued on R;

(5) F (x) = ax and G(x) = bx for all x ∈ R, with a2 = b2 ∈ C.

We finally extend the result to a semiprime ring R in case F 2(x)x − xG2(x) = 0

for all x ∈ R.

Throughout this paperR always denotes an associative prime ring with center

Z(R), extended centroid C and U its Utumi quotient ring. The Lie commutator

of x and y is denoted by [x, y] and defined by [x, y] = xy − yx for x, y ∈ R. An
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additive mapping d : R→ R is called a derivation if d(xy) = d(x)y + xd(y) holds

for all x, y ∈ R. An additive subgroup L of R is said to be a Lie ideal of R if

[L,R] ⊆ L. An additive mapping F : R → R is called a generalized derivation

if there exists a derivation d : R → R such that F (xy) = F (x)y + xd(y) holds

for all x, y ∈ R. Evidently, any derivation is a generalized derivation. Thus, the

generalized derivation covers both the concepts of derivation and left multiplier

mapping. The left multiplier mapping means an additive mapping F : R → R

such that F (xy) = F (x)y holds for all x, y ∈ R. We denote by s4 the standard

identity in four variables.

A well known result of Posner [22] states that if d is a derivation of R such

that d(x)x− xd(x) ∈ Z(R) for all x ∈ R, then either d = 0 or R is commutative.

Several authors generalized Posner’s theorem. For instance, Brešar proved in

[3] that if d and δ are two derivations of R such that d(x)x − xδ(x) ∈ Z(R) for

all x ∈ R, then either d = δ = 0 or R is commutative. Later Lee and Wong

[19] consider the situation d(x)x − xδ(x) ∈ Z(R) for all x in some noncentral

Lie ideal L of R and obtained the result that either d = δ = 0 or R satisfies

s4. In [15], Lee and Shiue consider the situation d(x)x − xδ(x) ∈ C for all

x ∈ {f(x1, . . . , xn) | x1, . . . , xn ∈ R}, where f(x1, . . . , xn) is any polynomial over

C and obtained that either d = δ = 0, or δ = −d and f(x1, . . . , xn)2 is central

valued on RC, except when char(R) = 2 and dimC RC = 4.

In [8], the first author and Sharma studied the case when R is a prime ring of

char(R) 6= 2, d a derivation of R, f(x1, . . . , xn) a multilinear polynomial over C

and I a right ideal of R such that d2(x)x−xd2(x) = 0 for all x ∈ {f(x1, . . . , xn) |
x1, . . . , xn ∈ I}, then either [f(x1, . . . , xn), xn+1]xn+2 is satisfied by I, or there

exists b ∈ U such that d(x) = [b, x] for all x ∈ R, with b2 = 0 and bI = (0).

Recently, in [1] Argac and the second author of this paper, studied the case

F (x)x − xG(x) = 0 for all x ∈ {f(x1, . . . , xn) | x1, . . . , xn ∈ I}, where F and G

two generalized derivations of R and I is an ideal of R and then determined the

structure of the maps.

In the present paper, we shall study the situation F 2(x)x − xG2(x) = 0 for

all x ∈ {f(x1, . . . , xn) | x1, . . . , xn ∈ I}, where F and G are two generalized

derivations of R and I is an ideal of R.

Lemma 1 ([1, Lemma 1]). Let R be a noncommutative prime ring, a, b∈U ,

p(x1, . . . , xn) be any polynomial over C, which is not an identity for R. If ap(r)−
p(r)b = 0 for all r = (r1, . . . , rn) ∈ Rn, then one of the following holds:

(1) a = b ∈ C,

(2) a = b and p(x1, . . . , xn) is central valued on R,



Co-commutators with generalized derivations in prime and semiprime rings 341

(3) char(R) = 2 and R satisfies s4

Lemma 2 ([1, Lemma 3]). Let R be a noncommutative prime ring with

Utumi quotient ring U and extended centroid C, and f(x1, . . . , xn) be a multi-

linear polynomial over C, which is not central valued on R. Suppose that there

exist a, b, c, q ∈ U such that (af(r) + f(r)b)f(r)− f(r)(cf(r) + f(r)q) = 0 for all

r = (r1, . . . , rn) ∈ Rn. Then one of the following holds:

(1) a, q ∈ C and q − a = b− c = α ∈ C;

(2) f(x1, . . . , xn)2 is central valued on R and there exists α ∈ C such that q−a =

b− c = α;

(3) char(R) = 2 and R satisfies s4.

In particular, from above Lemma, we have the followings:

Lemma 3. Let R be a noncommutative prime ring of characteristic different

from 2 with Utumi quotient ring U and extended centroid C, and f(x1, . . . , xn) be

a multilinear polynomial over C, which is not central valued on R. Suppose that

there exist c, q ∈ U such that f(r)(cf(r)+f(r)q) = 0 for all r = (r1, . . . , rn) ∈ Rn.

Then q = −c ∈ C.

Lemma 4. Let R be a noncommutative prime ring of characteristic different

from 2 with Utumi quotient ring U and extended centroid C, and f(x1, . . . , xn)

be a multilinear polynomial over C, which is not central valued on R. Suppose

that there exist c ∈ U such that f(r)cf(r) = 0 for all r = (r1, . . . , rn) ∈ Rn. Then

c = 0.

Lemma 5. Let R be a noncommutative prime ring of characteristic different

from 2 with Utumi quotient ring U and extended centroid C, and f(x1, . . . , xn) be

a multilinear polynomial over C, which is not central valued on R. Suppose that

there exist a, b ∈ U such that (af(r)+f(r)b)f(r) = 0 for all r = (r1, . . . , rn) ∈ Rn.

Then −a = b ∈ C.

Lemma 6 (Lemma 1 in [6]). Let C be an infinite field and m ≥ 2. If

A1, . . . , Ak are not scalar matrices in Mm(C) then there exists some invertible

matrix P ∈ Mm(C) such that any matrices PA1P
−1, . . . , PAkP

−1 have all non-

zero entries.

Proposition 1. Let R = Mm(C) be the ring of all m×m matrices over the

infinite field C, f(x1, . . . , xn) a non-central multilinear polynomial over C and

a, a′, b, b′, c, q, q′ ∈ R. If

a′f(r)2 + 2af(r)bf(r) + f(r)b′f(r)− 2f(r)cf(r)q − f(r)2q′ = 0
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for all r = (r1, . . . , rn) ∈ Rn, then either a or b and either c or q are central.

Proof. By our assumption R satisfies the generalized identity

a′f(x1, . . . , xn)2 + 2af(x1, . . . , xn)bf(x1, . . . , xn) + f(x1, . . . , xn)b′f(x1, . . . , xn)

−2f(x1, . . . , xn)cf(x1, . . . , xn)q − f(x1, . . . , xn)2q′. (1)

We assume first that a /∈ Z(R) and b /∈ Z(R). Now we shall show that this case

leads a contradiction.

Since a /∈ Z(R) and b /∈ Z(R), by Lemma 6 there exists a C-automorphism

φ of Mm(C) such that a1 = φ(a), b1 = φ(b) have all non-zero entries. Clearly a1,

b1, c1 = φ(c), a′1 = φ(a′), b′1 = φ(b′), q1 = φ(q) and q′1 = φ(q′) must satisfy the

condition (). Without loss of generality we may replace a, a′, b, b′, c, q, q′ with

a1, a′1, b1, b′1, c1, q1, q′1 respectively.

Here ekl denotes the usual matrix unit with 1 in (k, l)-entry and zero else-

where. Since f(x1, . . . , xn) is not central, by [17] (see also [20]), there exist

u1, . . . , un ∈ Mm(C) and γ ∈ C − {0} such that f(u1, . . . , un) = γekl, with

k 6= l. Moreover, since the set {f(r1, . . . , rn) : r1, . . . , rn ∈ Mm(C)} is invariant

under the action of all C-automorphisms of Mm(C), then for any i 6= j there exist

r1, . . . , rn ∈Mm(C) such that f(r1, . . . , rn) = eij . Hence by () we have

2aeijbeij + eijb
′eij − 2eijceijq = 0 (2)

and then left multiplying by eij , it follows 2eijaeijbeij = 0, which is a contradic-

tion, since a and b have all non-zero entries. Thus we conclude that either a or b

are central.

Similarly we can prove that c or q are central. �

Proposition 2. Let R = Mm(C) be the ring of all matrices over the field C

with char(R) 6= 2 and f(x1, . . . , xn) a non-central multilinear polynomial over C

and a, a′, b, b′, c, q, q′ ∈ R. If

a′f(r)2 + 2af(r)bf(r) + f(r)b′f(r)− 2f(r)cf(r)q − f(r)2q′ = 0

for all r = (r1, . . . , rn) ∈ Rn, then either a or b and either c or q are central.

Proof. If one assumes that C is infinite, then the conclusions follow by

Proposition 1.

Now let C be finite and K be an infinite field which is an extension of the

field C. Let R = Mm(K) ∼= R ⊗C K. Notice that the multilinear polynomial
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f(x1, . . . , xn) is central-valued on R if and only if it is central-valued on R. Con-

sider the generalized polynomial

P (x1, . . . , xn) = a′f(x1, . . . , xn)2 + 2af(x1, . . . , xn)bf(x1, . . . , xn)

+ f(x1, . . . , xn)b′f(x1, . . . , xn)

− 2f(x1, . . . , xn)cf(x1, . . . , xn)q − f(x1, . . . , xn)2q′ (3)

which is a generalized polynomial identity for R.

Moreover, it is a multi-homogeneous of multi-degree (2, . . . , 2) in the inde-

terminates x1, . . . , xn.

Hence the complete linearization of P (x1, . . . , xn) is a multilinear generalized

polynomial Θ(x1, . . . , xn, y1, . . . , yn) in 2n indeterminates, moreover

Θ(x1, . . . , xn, x1, . . . , xn) = 2nP (x1, . . . , xn).

Clearly the multilinear polynomial Θ(x1, . . . , xn, y1, . . . , yn) is a generalized poly-

nomial identity for R and R too. Since char(C) 6= 2 we obtain P (r1, . . . , rn) = 0

for all r1, . . . , rn ∈ R and then conclusion follows from Proposition 1. �

Lemma 7. Let R be a noncommutative prime ring of characteristic different

from 2 with Utumi quotient ring U and extended centroid C, and f(x1, . . . , xn)

be a multilinear polynomial over C, which is not central valued on R. Suppose

that for some a, b, c, q ∈ U , F (x) = ax+xb and G(x) = cx+xq for all x ∈ R such

that

F 2(f(x1, . . . , xn))f(x1, . . . , xn)− f(x1, . . . , xn)G2(f(x1, . . . , xn)) = 0

for all x1, . . . , xn ∈ R. Then one of the following holds:

(1) F (x) = x(a+b) and G(x) = x(c+q) for all x ∈ R with (a+b)2 = (c+q)2 ∈ C;

(2) F (x) = x(a+ b) and G(x) = (c+ q)x for all x ∈ R with (a+ b)2 = (c+ q)2;

(3) F (x) = (a+b)x and G(x) = x(c+q) for all x ∈ R with (a+b)2 = (c+q)2 ∈ C;

(4) F (x) = (a + b)x and G(x) = x(c + q) for all x ∈ R with (a + b)2 = (c + q)2

and f(x1, . . . , xn)2 is central valued on R;

(5) F (x) = (a+b)x and G(x) = (c+q)x for all x ∈ R, with (a+b)2 = (c+q)2 ∈ C.

Proof. By hypothesis, we have

h(x1, . . . , xn) = a2f(x1, . . . , xn)2 + 2af(x1, . . . , xn)bf(x1, . . . , xn)

+ f(x1, . . . , xn)(b2 − c2)f(x1, . . . , xn)− 2f(x1, . . . , xn)cf(x1, . . . , xn)q

− f(x1, . . . , xn)2q2 = 0 (4)
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for all x1, . . . , xn ∈ R. Since R and U satisfy same generalized polynomial iden-

tity (see [4]), U satisfies h(x1, . . . , xn) = 0. Suppose that h(x1, . . . , xn) is a

trivial GPI for U . Let T = U ∗C C{x1, x2, . . . , xn}, the free product of U and

C{x1, . . . , xn}, the free C-algebra in noncommuting indeterminates x1, x2, . . . , xn.

Then, h(x1, . . . , xn) is zero element in T = U ∗C C{x1, . . . , xn}. This implies that

{a2, a, 1} is a linearly dependent over C. Let αa2 + βa + γ = 0. If α = 0, then

β 6= 0, and hence a ∈ C. If α 6= 0, then a2 = λa + µ for some λ, µ ∈ C. In this

case our identity reduces to

(λa+ µ)f(x1, . . . , xn)2 + 2af(x1, . . . , xn)bf(x1, . . . , xn)

+ f(x1, . . . , xn)(b2 − c2)f(x1, . . . , xn)− 2f(x1, . . . , xn)cf(x1, . . . , xn)q

− f(x1, . . . , xn)2q2 = 0. (5)

If a /∈ C, then

λaf(x1, . . . , xn)2 + 2af(x1, . . . , xn)bf(x1, . . . , xn) = 0 (6)

that is

af(x1, . . . , xn)(λ+ 2b)f(x1, . . . , xn) = 0. (7)

This implies λ+ 2b = 0. Since char(R) 6= 2, this implies b ∈ C. Thus we conclude

that either a ∈ C or b ∈ C.

Similarly we can prove that either c ∈ C or q ∈ C.

Next suppose that h(x1, . . . , xn) is a non-trivial GPI for U . In case C is

infinite, we have h(x1, . . . , xn) = 0 for all x1, . . . , xn ∈ U ⊗C C, where C is the

algebraic closure of C. Since both U and U ⊗C C are prime and centrally closed

[9, Theorems 2.5 and 3.5], we may replace R by U or U ⊗C C according to C

finite or infinite. Then R is centrally closed over C and h(x1, . . . , xn) = 0 for all

x1, . . . , xn ∈ R. By Martindale’s theorem [21], R is then a primitive ring with

nonzero socle soc(R) and with C as its associated division ring. Then, by Jacob-

son’s theorem [11, p. 75], R is isomorphic to a dense ring of linear transformations

of a vector space V over C. Assume first that V is finite dimensional over C, that

is, dimC V = m. By density of R, we have R ∼= Mm(C). Since f(r1, . . . , rn) is

not central valued on R, R must be noncommutative and so m ≥ 2. In this case,

by Lemma 6, we get that a or b and c or q are in C. If V is infinite dimensional

over C, then for any e2 = e ∈ soc(R) we have eRe ∼= Mt(C) with t = dimC V e.

We want to show that in this case also a or b and c or q are in C. To prove this, let

at least one of a and b and at least one of c and q are not in C. Then at least one

of a and b and at least one of c and q does not centralize the nonzero ideal soc(R).

Hence there exist h1, h2, h3, h4 ∈ soc(R) such that either [a, h1] 6= 0 or [b, h2] 6= 0
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and [c, h3] 6= 0 or [q, h4] 6= 0. By Litoff’s theorem [10], there exists idempotent

e ∈ soc(R) such that ah1, h1a, bh2, h2b, ch3, h3c, qh4, h4q, h1, h2, h3, h4 ∈ eRe. We

have eRe ∼= Mk(C) with k = dimC V e. Since R satisfies generalized identity

e{a2f(ex1e, . . . , exne)
2 + 2af(ex1e, . . . , exne)bf(ex1e, . . . , exne)

+ f(ex1e, . . . , exne)(b
2 − c2)f(ex1e, . . . , exne)

− 2f(ex1e, . . . , exne)cf(ex1e, . . . , exne)q − f(ex1e, . . . , exne)
2q2}e = 0, (8)

the subring eRe satisfies

ea2ef(x1, . . . , xn)2 + 2eaef(x1, . . . , xn)ebef(x1, . . . , xn)

+ f(x1, . . . , xn)e(b2 − c2)ef(x1, . . . , xn)

− 2f(x1, . . . , xn)ecef(x1, . . . , xn)eqe− f(x1, . . . , xn)2eq2e = 0. (9)

Then by the above finite dimensional case, either eae or ebe and either ece

or eqe are central elements of eRe. Thus ah1 = (eae)h1 = h1eae = h1a or

bh2 = (ebe)h2 = h2(ebe) = h2b and ch3 = (ece)h3 = h3(ece) = h3c or qh4 =

(eqe)h4 = h4eqe = h4q, a contradiction.

Thus up to now, we have proved that either a or b and c or q are in C. Thus

we have the following four cases:

Case-I: a, c ∈ C.

In this case, we have

f(x1, . . . , xn)(a2+b2+2ab)f(x1, . . . , xn)−f(x1, . . . , xn)2(c2+2cq+q2) = 0 (10)

that is

f(x1, . . . , xn){(a2+b2+2ab)f(x1, . . . , xn)−f(x1, . . . , xn)(c2+2cq+q2)} = 0 (11)

for all x1, . . . , xn ∈ R. Then by Lemma 3, we have a2+b2+2ab = c2+2cq+q2 ∈ C,

that is (a + b)2 = (c + q)2 ∈ C. Hence we obtain that F (x) = x(a + b) and

G(x) = x(c+ q) with (a+ b)2 = (c+ q)2 ∈ C, which is our conclusion (1).

Case-II: a, q ∈ C.

In this case, we have,

f(x1, . . . , xn)(a2 + b2 + 2ab− q2 − 2cq − c2)f(x1, . . . , xn) = 0 (12)

for all x1, . . . , xn ∈ R. Then by Lemma 4, a2 + b2 + 2ab− q2 − 2cq− c2 = 0, that

is (a + b)2 = (c + q)2. Thus we have F (x) = x(a + b) and G(x) = (c + q)x with

(a+ b)2 = (c+ q)2.
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Case-III: b, c ∈ C.

In this case, we have

(a2 + 2ab+ b2)f(x1, . . . , xn)2 − f(x1, . . . , xn)2(c2 + 2cq + q2) = 0 (13)

for all x1, . . . , xn ∈ R. Then by Lemma 1, we have any one of the following two

cases:

• (a + b)2 = (c + q)2 ∈ C. Then F (x) = (a + b)x and G(x) = x(c + q) for all

x ∈ R.

• (a+ b)2 = (c+ q)2 and f(x1, . . . , xn)2 is central valued on R. Then F (x) =

(a+ b)x and G(x) = x(c+ q) for all x ∈ R.

Case-IV: b, q ∈ C.

In this case, we have

(a2+ 2ab+b2)f(x1, . . . , xn)2−f(x1, . . . , xn)(c2+2cq+q2)f(x1, . . . , xn) = 0 (14)

that is

{(a2+2ab+ b2)f(x1, . . . , xn)−f(x1, . . . , xn)(c2+2cq+q2)}f(x1, . . . , xn)= 0 (15)

for all x1, . . . , xn ∈ R. Then by Lemma 5, we have a2+2ab+b2 = c2+2cq+q2 ∈ C,

which is (a+ b)2 = (c+ q)2 ∈ C. Thus F (x) = (a+ b)x and G(x) = (c+ q)x for

all x ∈ R, with (a+ b)2 = (c+ q)2 ∈ C. �

Lemma 8. Let R be a noncommutative prime ring of characteristic different

from 2 and f(x1, . . . , xn) a multilinear polynomial over C. If for any i = 1, . . . , n,[ n∑
i=0

f(x1, . . . , ti, . . . , xn), f(x1, . . . , xn)

]
= 0 (16)

for all ti, x1, . . . , xn ∈ R, then the polynomial f(x1, . . . , xn) is central-valued on R.

Proof. Let a be a noncentral element of R. Then replacing ti with [a, xi],

we have that [ n∑
i=0

f(x1, . . . , [a, xi], . . . , xn), f(x1, . . . , xn)

]
= 0 (17)

which gives,

[a, f(x1, . . . , xn)]2 = 0 (18)

for all x1, . . . , xn ∈ R implying f(x1, . . . , xn) is central-valued on R [16, Theorem].

�
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Theorem 1. Let R be a prime ring of characteristic different from 2 with

Utumi quotient ring U and extended centroid C, F and G two nonzero generalized

derivations of R, I an ideal of R and f(x1, . . . , xn) a multilinear polynomial over

C which is not central valued on R. If

F 2(f(x1, . . . , xn))f(x1, . . . , xn)− f(x1, . . . , xn)G2(f(x1, . . . , xn)) = 0

for all x1, . . . , xn ∈ I, then one of the following holds:

(1) F (x) = xa and G(x) = xb for all x ∈ R with a2 = b2 ∈ C;

(2) F (x) = xa and G(x) = bx for all x ∈ R with a2 = b2;

(3) F (x) = ax and G(x) = xb for all x ∈ R with a2 = b2 ∈ C;

(4) F (x) = ax and G(x) = xb for all x ∈ R with a2 = b2 and f(x1, . . . , xn)2 is

central valued on R;

(5) F (x) = ax and G(x) = bx for all x ∈ R, with a2 = b2 ∈ C.

Proof. In [14, Theorem 3], Lee proved that every generalized derivation g

on a dense right ideal of R can be uniquely extended to a generalized deriva-

tion of U and thus can be assumed to be defined on the whole U with the

form g(x) = ax + d(x) for some a ∈ U and d is a derivation of U . In light

of this, we may assume that there exist a, b ∈ U and derivations d, δ of U such

that F (x) = ax + d(x) and G(x) = bx + δ(x). Since I, R and U satisfy the

same generalized polynomial identities (see [4]) as well as the same differential

identities (see [17]), without loss of generality, to prove our results, we may as-

sume F 2(f(x1, . . . , xn))f(x1, . . . , xn)−f(x1, . . . , xn)G2(f(x1, . . . , xn)) = 0 for all

x1, . . . , xn ∈ U , where d, δ are two derivations on U .

If F and G both are inner generalized derivations of R, the by Lemma 7 we

obtain our conclusions. Thus we assume that not both of F and G are inner.

Hence U satisfies

{F (a)f(x1, . . . , xn) + 2ad(f(x1, . . . , xn)) + d2(f(x1, . . . , xn))}f(x1, . . . , xn)

− f(x1, . . . , xn){G(b)f(x1, . . . , xn) + 2bδ(f(x1, . . . , xn))

+ δ2(f(x1, . . . , xn))} = 0. (19)

By assumption, d and δ can not be both inner derivations of U . Assume that d

and δ are C-dependent modulo inner derivations of U , say d = λδ + adp, where

λ ∈ C, p ∈ U and adp(x) = [p, x] for all x ∈ R. Then δ can not be inner derivation

of U . Moreover,

d2(x) = d(λδ(x) + [p, x]) = d(λ)δ(x) + λdδ(x) + [d(p), x] + [p, d(x)]

= d(λ)δ(x) + λ2δ2(x) + 2λ[p, δ(x)] + [d(p), x] + [p, [p, x]]. (20)
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From (19), we obtain that U satisfies{
F (a)f(x1, . . . , xn) + 2λaδ(f(x1, . . . , xn)) + 2a[p, f(x1, . . . , xn)]

+ d(λ)δ(f(x1, . . . , xn)) + λ2δ2(f(x1, . . . , xn)) + 2λ[p, δ(f(x1, . . . , xn))]

+ [d(p), f(x1, . . . , xn)] + [p, [p, f(x1, . . . , xn)]]
}
f(x1, . . . , xn)

− f(x1, . . . , xn)
{
G(b)f(x1, . . . , xn)

+ 2bδ(f(x1, . . . , xn)) + δ2(f(x1, . . . , xn))
}

= 0. (21)

This gives{
F (a)f(x1, . . . , xn) + (2λa+ d(λ))

(
fδ(x1, . . . , xn) +

∑
i

f(x1, . . . , δ(xi), . . . , xn)
)

+ 2a[p, f(x1, . . . , xn)] + λ2
(
fδ

2

(x1, . . . , xn) + 2
∑
i

fδ(x1, . . . , δ(xi), . . . , xn)

+
∑
i

f(x1, . . . , δ
2(xi), . . . , xn) +

∑
i 6=j

f(x1, . . . , δ(xi), . . . , δ(xj), . . . , xn)
)

+ 2λ
[
p, fδ(x1, . . . , xn) +

∑
i

f(x1, . . . , δ(xi), . . . , xn)
]

+ [d(p), f(x1, . . . , xn)]

+ [p, [p, f(x1, . . . , xn)]]
}
f(x1, . . . , xn)− f(x1, . . . , xn)

{
G(b)f(x1, . . . , xn)

+ 2b
(
fδ(x1, . . . , xn) +

∑
i

f(x1, . . . , δ(xi), . . . , xn)
)

+ fδ
2

(x1, . . . , xn) +2
∑
i

fδ(x1, . . . , δ(xi), . . . , xn) +
∑
i

f(x1, . . . , δ
2(xi), . . . , xn)

+
∑
i 6=j

f(x1, . . . , δ(xi), . . . , δ(xj), . . . , xn)
}

= 0. (22)

Then by Kharchenko’s theorem [12], we have that U satisfies{
F (a)f(x1, . . . , xn) + (2λa+ d(λ))

(
fδ(x1, . . . , xn) +

∑
i

f(x1, . . . , yi, . . . , xn)
)

+ 2a[p, f(x1, . . . , xn)] + λ2(fδ
2

(x1, . . . , xn) + 2
∑
i

fδ(x1, . . . , yi, . . . , xn)

+
∑
i

f(x1, . . . , ti, . . . , xn) +
∑
i 6=j

f(x1, . . . , yi, . . . , yj , . . . , xn))

+ 2λ
[
p, fδ(x1, . . . , xn) +

∑
i

f(x1, . . . , yi, . . . , xn)
]

+ [d(p), f(x1, . . . , xn)]
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+ [p, [p, f(x1, . . . , xn)]]
}
f(x1, . . . , xn)− f(x1, . . . , xn)

{
G(b)f(x1, . . . , xn)

+ 2b(fδ(x1, . . . , xn) +
∑
i

f(x1, . . . , yi, . . . , xn))

+ fδ
2

(f(x1, . . . , xn)) + 2
∑
i

fδ(x1, . . . , yi, . . . , xn) +
∑
i

f(x1, . . . , ti, . . . , xn)

+
∑
i 6=j

f(x1, . . . , yi, . . . , yj , . . . , xn)
}

= 0. (23)

In particular, U satisfies the blended component{
λ2
∑
i

f(x1, . . . , ti, . . . , xn)
}
f(x1, . . . , xn)

− f(x1, . . . , xn)
{∑

i

f(x1, . . . , ti, . . . , xn)
}

= 0. (24)

In particular, when t1 = x1 and t2 = · · · = tn = 0, we have from above that

(λ2 − 1)f(x1, . . . , xn)2 = 0. (25)

This implies that λ2 = 1. Then (24) becomes{∑
i

f(x1, . . . , ti, . . . , xn)
}
f(x1, . . . , xn)

− f(x1, . . . , xn)
{∑

i

f(x1, . . . , ti, . . . , xn)
}

= 0. (26)

In this case by Lemma 8, f(x1, . . . , xn) is central valued on R, a contradiction.

The situation when δ = λd+ adq is similar.

Next assume that d and δ are C-independent modulo inner derivations of U .

Let fd(x1, . . . , xn) and fd
2

(x1, . . . , xn) be the polynomials obtained from

f(x1, . . . , xn) replacing each coefficients ασ with d(ασ) and d2(ασ) respectively.

Then we have

d(f(x1, . . . , xn)) = fd(x1, . . . , xn) +
∑
i

f(x1, . . . , d(xi), . . . , xn)

and

d2(f(x1, . . . , xn)) = fd
2

(x1, . . . , xn) + 2
∑
i

fd(x1, . . . , d(xi), . . . , xn)

+
∑
i

f(x1, . . . , d
2(xi), . . . , xn) +

∑
i 6=j

f(x1, . . . , d(xi), . . . , d(xj), . . . , xn). (27)
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Then we have from (19) that U satisfies{
F (a)f(x1, . . . , xn) + 2afd(x1, . . . , xn) + 2a

∑
i

f(x1, . . . , d(xi), . . . , xn)

+fd
2

(x1, . . . , xn)+2
∑
i

fd(x1, . . . , d(xi), . . . , xn)+
∑
i

f(x1, . . . , d
2(xi), . . . , xn)

+
∑
i 6=j

f(x1, . . . , d(xi), . . . , d(xj), . . . , xn)
}
f(x1, . . . , xn)

− f(x1, . . . , xn)

{
G(b)f(x1, . . . , xn) + 2bfδ(x1, . . . , xn)

+ 2b
∑
i

(f(x1, . . . , δ(xi), . . . , xn)) + fδ
2

(x1, . . . , xn)

+ 2
∑
i

fδ(x1, . . . , δ(xi), . . . , xn) +
∑
i

f(x1, . . . , δ
2(xi), . . . , xn)

+
∑
i 6=j

f(x1, . . . , δ(xi), . . . , δ(xj), . . . , xn)

}
= 0. (28)

Since neither d nor δ is inner, by Kharchenko’s theorem [12], we have from above

that U satisfies{
F (a)f(x1, . . . , xn) + 2afd(x1, . . . , xn) + 2a

∑
i

f(x1, . . . , yi, . . . , xn)

+ fd
2

(x1, . . . , xn) + 2
∑
i

fd(x1, . . . , yi, . . . , xn)

+
∑
i

f(x1, . . . , ti, . . . , xn) +
∑
i6=j

f(x1, . . . , yi, . . . , yj , . . . , xn)
}
f(x1, . . . , xn)

− f(x1, . . . , xn)
{
G(b)f(x1, . . . , xn) + 2bfδ(x1, . . . , xn)

+ 2b
∑
i

(f(x1, . . . , yi, . . . , xn)) + fδ
2

(x1, . . . , xn) + 2
∑
i

fδ(x1, . . . , yi, . . . , xn)

+
∑
i

f(x1, . . . , ti, . . . , xn) +
∑
i6=j

f(x1, . . . , yi, . . . , yj , . . . , xn)
}

= 0. (29)

In particular U satisfies the blended component{∑
i

f(x1, . . . , ti, . . . , xn)
}
f(x1, . . . , xn)

− f(x1, . . . , xn)
{∑

i

f(x1, . . . , ti, . . . , xn)
}

= 0. (30)

Then by Lemma 8, f(x1, . . . , xn) is central valued on R, a contradiction. �
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As a reduction of previous Theorem we also have:

Theorem 2. Let R be a prime ring of characteristic different from 2 with

Utumi quotient ring U and extended centroid C, F and G two nonzero generalized

derivations of R, a, b ∈ U and f , g derivations of R such that F (x) = ax+ f(x),

G(x) = bx + g(x), for all x ∈ R. If F 2(x)x − xG2(x) = 0 for all x ∈ R, then

a2 = b2 and either R is commutative or one of the following holds:

(1) F (x) = xa and G(x) = xb for all x ∈ R with a2 ∈ C;

(2) F (x) = xa and G(x) = bx for all x ∈ R;

(3) F (x) = ax and G(x) = xb for all x ∈ R with a2 ∈ C;

(4) F (x) = ax and G(x) = bx for all x ∈ R, with a2 ∈ C.

Proof. By applying Theorem 1, we have that either R is commutative or

one of the following holds:

• F (x) = xa and G(x) = xb for all x ∈ R with a2 = b2 ∈ C;

• F (x) = xa and G(x) = bx for all x ∈ R with a2 = b2;

• F (x) = ax and G(x) = xb for all x ∈ R with a2 = b2 ∈ C;

• F (x) = ax and G(x) = bx for all x ∈ R, with a2 = b2 ∈ C.

Therefore, in order to prove the present Theorem, we now assume that R is

commutative and then show that a2 = b2.

By our assumption, R satisfies the following differential identity

a2x+ 2af(x) + f(a)x+ f2(x)− b2x− 2bg(x)− g(b)x− g2(x) = 0. (31)

Notice that, if both f and g are inner derivations of R, then relation (31) implies

that (a2− b2)R = (0) and so we are done. Hence we assume that at least one of f

and g is not an inner derivation of R.

First, we assume that f and g are linearly C-independent modulo inner

derivations, that is, f and g are linearly C-independent modulo 0. Thus, by

Kharchenko’s Theorem [12], we have from (31) that R satisfies

a2x1 + 2ax2 + f(a)x1 + x3 − b2x1 − 2bx4 − g(b)x1 − x5 = 0. (32)

In particular, we have 2ax2 = 2bx4. Since char(R) 6= 2, it follows a = b and so

a2 = b2.

Next we assume that f and g are linearly C-dependent modulo 0, that is,

there exists 0 6= λ ∈ C such that f(x) = λg(x), for all x ∈ R. Then by (31), R
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satisfies

a2x+ 2λag(x) + λg(a)x+ λg(λ)g(x)

+ λ2g2(x)− b2x− 2bg(x)− g(b)x− g2(x) = 0. (33)

In light of previous comments, we may also assume g 6= 0, i.e. g is not inner.

Again by Kharchenko’s Theorem [12], R satisfies

a2x1+ 2λax2+λg(a)x1+λg(λ)x2+λ2x3− b2x1 − 2bx2− g(b)x1−x3 = 0. (34)

For x1 = x2 = 0, we have λ2x3 = x3 for all x3 ∈ R, that is, λ2x = x for all x ∈ R.

In particular λ2g(x) = g(x) for all x ∈ R. This implies that

g(x) = g(λ2x) = g(λ2)x+ λ2g(x) = g(λ2)x+ g(x),

which implies

0 = g(λ2)x = 2λg(λ)x ∀x ∈ R.

This gives λg(λ) = 0. Thus (34) reduces to

a2x1 + 2λax2 + λg(a)x1 − b2x1 − 2bx2 − g(b)x1 = 0. (35)

In particular, R satisfies 2λax2 − 2bx2 = 0. Therefore b = λa, so that b2 =

(λa)2 = λ2a2 = a2, and the proof is complete. �

Remark 1. By [14, Theorem 3], every generalized derivation F on R can be

uniquely extended to a generalized derivation of U and there exist a ∈ U and a

derivation f : U → U such that F (x) = ax + f(x), for all x ∈ U . Starting from

this, we may trivially write F (x) = ax + xa − xa + f(x) = xa + [a, x] + f(x) =

xa+f ′(x), where f ′ : U → U is a derivation defined as f ′(x) = f(x)−[x, a], for all

x ∈ U . Thus, for any generalized derivation F there exist two derivations f and f ′

of U (associated with F ), such that both F (x) = ax+f(x) and F (x) = xa+f ′(x).

In light of this, we may state Theorem 2 as follows: Let f , f ′ be the associated

derivations with F and g, g′ the associated ones with G. Denote F (x) = ax +

f(x) = xa+ f ′(x) and G(x) = bx+ g(x) = xb+ g′(x), for all x ∈ R.If F 2(x)x−
xG2(x) = 0 for all x ∈ R, then a2 = b2 and either R is commutative or one of

the following holds:

(1) f ′ = 0, g′ = 0, F (x) = xa and G(x) = xb for all x ∈ R with a2 ∈ C;
(2) f ′ = 0, g = 0, F (x) = xa and G(x) = bx for all x ∈ R;
(3) f = 0, g′ = 0, F (x) = ax and G(x) = xb for all x ∈ R with a2 ∈ C;
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(4) f = 0, g = 0, F (x) = ax and G(x) = bx for all x ∈ R, with a2 ∈ C.

We finally examine the case of 2-torsion free semiprime rings. The first result

we obtained is the following:

Lemma 9. Let R be a semiprime ring of characteristic different from 2 with

Utumi quotient ring U , extended centroid C and center Z(R) 6= (0). Let F and

G be two nonzero generalized derivations of R respectively defined as F (x) =

ax + f(x), G(x) = bx + g(x), for f and g derivations of R and a, b ∈ U . If

F 2(x)x− xG2(x) = 0, for all x ∈ R, then a2 = b2.

Proof. Since R is semiprime, by Proposition 2.5.1 in [2], the derivations f

and g can be uniquely extended on U . Since U and R satisfy the same differential

identities (see [17]), then F 2(x)x − xG2(x) = 0, for all x ∈ U . Let B be the

complete boolean algebra of idempotents in C and M be any maximal ideal of B.

Since U is a B-algebra orthogonal complete (see for insatnce (2) of Fact 1

in [5], page 42), MU is a prime ideal of U , which is both f -invariant and g-

invariant. Denote U = U/MU and f the derivation induced by f on U and g

the derivation induced by g on U . In particular, U is a prime ring and so, by

Theorem 2, a2 − b2 = 0 in U . This implies that, for any maximal ideal M of B,

a2 − b2 ∈MU , therefore a2 − b2 ∈
⋂
M MU = 0. �

Theorem 3. Let R be a semiprime ring of characteristic different from 2

with Utumi quotient ring U , extended centroid C and center Z(R) 6= (0). Let

F and G be two nonzero generalized derivations of R respectively defined as

F (x) = ax + f(x), G(x) = bx + g(x), for f and g derivations of R and a, b ∈ U .

If F 2(x)x − xG2(x) = 0, for all x ∈ R, then a2 = b2 and either R contains

a non-zero central ideal or f(Z(R)) = f ′(Z(R)) = g(Z(R)) = g′(Z(R)) = (0),

f(a) = f ′(a) = g(b) = g′(b) = 0, ff ′(R) = f ′f(R) = gg′(R) = g′g(R) = (0)

and Z(R)(G2(x) − a2x) = Z(R)(F 2(x) − xa2) = (0) for all x ∈ R, or one of the

following holds:

(1) F (x) = xa and G(x) = xb for all x ∈ R with a2 ∈ C;

(2) F (x) = xa and G(x) = bx for all x ∈ R;

(3) F (x) = ax and G(x) = xb for all x ∈ R with a2 ∈ C;

(4) F (x) = ax and G(x) = bx for all x ∈ R, with a2 ∈ C.

Proof. By Lemma 9, a2 = b2. In the sequel we assume that R does not

contain any non-zero central ideal.

In light of Remark 1 we may write F (x) = ax + f(x) = xa + f ′(x) and

G(x) = bx+ g(x) = xb+ g′(x), for all x ∈ R.
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Firstly we consider the case when both F and G are centralizers. Hence

either f(R) = (0) or f ′(R) = (0) and either g(R) = (0) or g′(R) = (0). In other

words either F (x) = ax or F (x) = xa and either G(x) = bx or G(x) = xb, for

any x ∈ R.

Let P be a prime ideal of R, set R = R/P and write r = r + P ∈ R, for all

r ∈ R. We notice that in any case F (P ) ⊆ P and G(P ) ⊆ P . Thus F : R → R

and G : R→ R are generalized derivations of R = R/P , for any ideal P . By the

prime case it follows that one of the following cases must occur:

(1) F (x) = ax and G(x) = bx, for all x ∈ R. Thus 0 = a2x2 − xb2x = [a2x, x],

for all x ∈ R and by Lemma 3.2 in [7] and since R is not commutative, we

have that a2 ∈ Z(R);

(2) F (x) = xa and G(x) = bx, for all x ∈ R. In this case we are done, since

a2 = b2.

(3) F (x) = ax and G(x) = xb, for all x ∈ R. Thus 0 = a2x2−x2b2 = [a2, x2] and

by Main Theorem in [13] and since R does not contain any non-zero central

ideal, it follows a2 ∈ Z(R);

(4) F (x) = xa and G(x) = xb, for all x ∈ R. In this case 0 = xa2x − x2b2 =

[xa2, x], for all x ∈ R. Once again, by Lemma 3.2 in [7] we have that

a2 ∈ Z(R).

By the previous argument, we now assume that either F or G is not a centralizer,

without loss of generality we consider the case g(R) 6= (0). We will prove that

f(Z(R)) = f ′(Z(R)) = g(Z(R)) = g′(Z(R)) = (0), f(a) = f ′(a) = g(b) =

g′(b) = 0, ff ′(R) = f ′f(R) = gg′(R) = g′g(R) = (0) and Z(R)(G2(x) − a2x) =

Z(R)(F 2(x)− xa2) = (0) for all x ∈ R.

As above, let P be a prime ideal of R, set R = R/P and write r = r+P ∈ R
for all r ∈ R. We start from

F 2(r)r − rG2(r) = 0, ∀r = r + x ∈ R, x ∈ P (36)

and by computations we get(
a2r + af(r) + 2af(x) + f(ar) + f2(r) + f2(x)

)
r

−r
(
b2r + bg(r) + 2bg(x) + g(br) + g2(r) + g2(x)

)
∈ P, ∀x ∈ P, r ∈ R. (37)

Replace x with xy in (37), for any y ∈ P , then it follows(
a2r + af(r) + f(ar) + f2(r) + 2f(x)f(y)

)
r

−r
(
b2r + bg(r) + g(br) + g2(r) + 2g(x)g(y)

)
∈ P, ∀x, y ∈ P, r ∈ R. (38)
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By comparing (37) with (38) we get(
f2(x) + 2af(x)− 2f(x)f(y)

)
r − r

(
g2(x) + 2bg(x)− 2g(x)g(y)

)
∈ P,

∀x, y ∈ P, r ∈ R. (39)

We divide our argument into three cases:

Case 1. f(P ) ⊆ P , g(P ) 6⊆ P .

In this case g(P ) is a non-zero ideal of R. Moreover by (39) we have that

r
(
g2(x) + 2bg(x)− 2g(x)g(y)

)
∈ P, ∀x, y ∈ P, r ∈ R. (40)

Replace y with ys in (40), for any s ∈ R, then it follows

r
(
g2(x) + 2bg(x)− 2g(x)g(y)s

)
∈ P, ∀x, y ∈ P, r, s ∈ R. (41)

On the other hand, replacing y with sy in (40) we also have

r
(
g2(x) + 2bg(x)− 2g(x)sg(y)

)
∈ P, ∀x, y ∈ P, r, s ∈ R. (42)

Hence by (41) and (42) we get rg(x)[s, g(y)] ∈ P , that is Rg(P )[R, g(P )] = (0).

Since g(P ) is a non-zero ideal of the prime ring R, we conclude that g(P ) ⊆ Z(R),

that is R is commutative.

An analogous argument shows that if g(P ) ⊆ P and f(P ) 6⊆ P , then R is com-

mutative (we omit it for brevity).

Case 2. f(P ) 6⊆ P and g(P ) 6⊆ P .

Notice that both f(P ) and g(P ) are non-zero ideals of R. Also in this case

we start from (39) and replace here y with ys, for any s ∈ R. Thus(
f2(x) + 2af(x)− 2f(x)f(y)s

)
r − r

(
g2(x) + 2bg(x)− 2g(x)g(y)s

)
∈ P,

∀x, y ∈ P, r, s ∈ R. (43)

On the other hand, replacing y with sy in (39) we have(
f2(x) + 2af(x)− 2f(x)sf(y)

)
r − r

(
g2(x) + 2bg(x)− 2g(x)sg(y)

)
∈ P,

∀x, y ∈ P, r, s ∈ R (44)

and comparing (43) with (44) it follows

f(x)[f(y), s]r − rg(x)[g(y), s] ∈ P, ∀x, y ∈ P, r, s ∈ R (45)
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that is

f(x)[f(y), s]r − rg(x)[g(y), s] = 0, ∀r, s ∈ R, x, y,∈ P. (46)

Denote u = f(x)[f(y), s] and v = g(x)[g(y), s], so that ur−rv = 0, for any r ∈ R.

In this case, it is well known that u = v ∈ Z(R), which means

f(x)[f(y), s] ∈ Z(R), ∀s ∈ R, x, y,∈ P. (47)

For s = rt in (47) and since f(P )R ⊆ f(P ), it follows that

f(x)[f(y), r]t ∈ Z(R), ∀r, t ∈ R, x, y,∈ P. (48)

By the primeness of R, either t ∈ Z(R) for any t ∈ R, or f(x)[f(y), r] = 0, for

any r ∈ R and x, y,∈ P . Therefore we may assume that

f(x)[f(y), t] = 0, ∀t ∈ R, x, y,∈ P. (49)

By using Theorem 1 in [18], one has that either f(x) = 0 or f(y) ∈ Z(R). In

any case we have f(P ) ⊆ Z(R). Since f(P ) is a non-zero ideal of the prime ring

R, it follows that R is commutative.

Case 3. f(P ) ⊆ P and g(P ) ⊆ P .

In this case we remark that f , f ′, g, g′ induce canonical derivations f , f ′,

g and g′ on R. It follows from the prime case and Remark 1 that either R is

commutative, or the following holds simultaneously:

(1) either f(R) ⊆ P or f ′(R) ⊆ P ;

(2) either g(R) ⊆ P or g′(R) ⊆ P .

The argument contained in Cases 1, 2, 3 implies that:

[f(R)f ′(R), R] ⊆
⋂
i

Pi = (0), [f(R), f ′(R)] ⊆
⋂
i

Pi = (0),

[f(f ′(R)), R] ⊆
⋂
i

Pi = (0). (50)

and also

[g(R)g′(R), R] ⊆
⋂
i

Pi = (0), [g(R), g′(R)] ⊆
⋂
i

Pi = (0),

[g(g′(R)), R] ⊆
⋂
i

Pi = (0). (51)

In the next step we prove that f(R)f ′(R) = (0). To do this, by contradiction

we consider the case f(R)f ′(R) 6= (0).
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For all x, y, t ∈ R and since f(R)f ′(R) ⊆ Z(R) we have both f(x)f ′(yt) ∈
Z(R) and f(xy)f ′(t) ∈ Z(R) that is

f(x)f ′(y)t+ f(x)yf ′(t) ∈ Z(R)

and

f(x)yf ′(t) + xf(y)f ′(t) ∈ Z(R).

Comparing these last two relations we get

f(x)f ′(y)t− xf(y)f ′(t) ∈ Z(R), ∀x, y, t ∈ R. (52)

In case f(Z(R)) = (0), we have for all y, t ∈ R,

0 = f

(
f(y)f ′(t)

)
= f2(y)f ′(t) + f(y)(ff ′)(t), (53)

which implies f(y)(ff ′)(t) ∈ Z(R), since f2(y)f ′(t) ∈ Z(R). Moreover, by (50)

we also have that (ff ′)(R) ⊆ Z(R). Suppose that there exists t ∈ R such that

0 6= α = (ff ′)(t) ∈ Z(R), then αf(y) ∈ Z(R) for all y ∈ R. Moreover, f(α) = 0

implies f(αy) = αf(y) ∈ Z(R), that is f(αR) ⊆ Z(R). Therefore R must contain

a non-zero central ideal, which is a contradiction, unless when (0) = f(αR) =

αf(R). In this last case, since α ∈ f(R), it follows the contradiction α2 = 0.

Thus the previous argument shows that (ff ′)(R) = (0), and so by (53) we get

f2(y)f ′(t) = 0, ∀y, t ∈ R. (54)

Replace y with yf ′(t)y in (54) and then get 0 = f(y)f ′(t)f(y)f ′(t) = β2, for

β = f(y)f ′(t) 6= 0, which is again a contradiction.

Assume now f(Z(R)) 6= (0) and let 0 6= z ∈ Z(R) be such that f(z) = β 6= 0.

Replacing x with zx in (52) and using again (52), we have βxf ′(y)t ∈ Z(R) for

all x, y, t ∈ R, that is R(βf ′(R))R ⊆ Z(R). Therefore, R contains a non-zero

central ideal which is a contradiction, unless when βf ′(R) = (0). On the other

hand f ′(z) = [a, z] + f(z) = β, thus 0 = βf ′(z) = β2, a contradiction again.

In light of previous contradictions, it is proved that, if R does not con-

tain any non-zero central ideal, then f(R)f ′(R) = (0) (similarly one can prove

f ′(R)f(R) = (0)).

Thus f(R)Rf ′(R) = (0) and (0) = f(a)Rf ′(a) = f(a)Rf(a) implying f(a) = 0

and also f ′(a) = 0. Similarly, for any z ∈ Z(R), 0 = f(z)Rf ′(z) = f(z)Rf(z)

implying f(Z(R)) = (0) and also f ′(Z(R)) = (0). Moreover, for any x, y ∈ R,

0 = f(f(x)f ′(y)) = f2(x)f ′(y) + f(x)ff ′(y) = f(x)ff ′(y). Replacing x with
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f ′(y), we have that (ff ′(y))2 = 0 for all y ∈ R. Since by (50), ff ′(R) ⊆ Z(R), it

follows that ff ′(R) = (0). Analogously f ′f(R) = (0).

In a similar way g(b) = g′(b) = 0, g(Z(R)) = g′(Z(R)) = (0), g(R)g′(R) =

g′(R)g(R) = (0), gg′(R) = (0) and g′g(R) = (0).

By using all the previous conditions, we have

F 2(x) =
(
xa+ f ′(x)

)
a+ f ′

(
xa+ f ′(x)

)
= xa2 + 2f ′(x)a+ f ′2(x)

and

G2(x) = b
(
bx+ g(x)

)
+ g
(
bx+ g(x)

)
= a2x+ 2bg(x) + g2(x)

so that, for all x ∈ R,

0 = F 2(x)x− xG2(x) = 2f ′(x)ax+ f ′2(x)x− 2xbg(x)− xg2(x). (55)

Replace x with x+ y for any y ∈ Z(R) in (55), we have

y
(
F 2(x)−G2(x) + [a2, x]

)
= 0. (56)

Right multiplying (56) by x and since F 2(x)x = xG2(x), we have

Z(R)[G2(x)− a2x, x] = 0, ∀x ∈ R. (57)

Denote ∆(x) = G2(x)− a2x = 2bg(x) + g2(x). By computations we get

∆(xy) = G2(xy)− a2xy = G2(x)y + 2G(x)g(y) + xg2(y)− a2xy

= ∆(x)y + 2G(x)g(y) + xg2(y). (58)

Moreover, by using G(x) = xb+ g′(x) and g′(R)g(R) = (0) in (58), it follows

∆(xy) = ∆(x)y + 2(xb+ g′(x))g(y) + xg2(y)

= ∆(x)y + 2xbg(y) + xg2(y) = ∆(x)y + x∆(y). (59)

This implies that ∆ is a derivation of R satisfying Z(R)[∆(x), x] = (0) for

all x ∈ R. In particular, ∆(zx) = z∆(x) for all z ∈ Z(R), then [∆(zx), zx] =

z2[∆(x), x] = 0, for all x ∈ R. This means that ∆ is commuting on the non-zero

ideal zR of R, for any 0 6= z ∈ Z(R). Since R does not contain any non-

zero central ideal, by [13] it follows ∆(zR) = (0), that is z∆(R) = (0) and

Z(R)(G2(x)− a2x) = (0) for all x ∈ R, as required.

We finally remark that, starting again from (56) and left multiplying by x,

we obtain Z(R)[F 2(x) − xa2, x] = (0) for all x ∈ R. The same above argument

shows that Z(R)(F 2(x)− xa2) = (0) for all x ∈ R. �
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