
Publ. Math. Debrecen

85/3-4 (2014), 361–372

DOI: 10.5486/PMD.2014.5976

Strong limit theorems in the multi-color generalized
allocation scheme

By ALEXEY CHUPRUNOV (Kazan) and ISTVÁN FAZEKAS (Debrecen)

Abstract. The generalized allocation scheme is studied. Its extension for coloured

balls is defined. Some analogues of the Law of the Iterated Logarithm and the Strong

Law of Large Numbers are obtained for the number of boxes containing fixed numbers

of balls.

1. Introduction

The generalized allocation scheme is widely studied (see [4], [5], [7]). The

scheme contains several special cases such as the usual allocation scheme (see [9],

[8], [6]) and the random forests (see [4], [7]).

In the generalized scheme of allocations of balls into boxes, the distribution

of the contents of the boxes is represented as the conditional distribution of inde-

pendent random variables given that their sum is fixed. More precisely, the gen-

eralized allocation scheme is defined as follows. Let η1, . . . , ηN be non-negative

integer-valued random variables. If there exist independent random variables

ξ1, . . . , ξN such that the joint distribution of η1, . . . , ηN admits the representation

P{η1 = k1, . . . , ηN = kN} = P{ξ1 = k1, . . . , ξN = kN | ξ1 + · · ·+ ξN = n}, (1.1)

where k1, . . . , kN are arbitrary non-negative integers with k1 + · · ·+ kN = n, we

say that the distribution of η1, . . . , ηN is represented by a generalized allocation
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scheme with parameters n and N , and independent random variables ξ1, . . . , ξN .

In view of independence of the random variables ξ1, . . . , ξN , the study of several

questions of the generalized allocation scheme can be reduced to problems of

sums of independent random variables. Let µsnN be the number of the random

variables η1, . . . , ηN being equal to s, s = 0, 1, . . . , n. Observe that

µsnN =
∑N

j=1
I{ηj=s} (1.2)

is the number of boxes containing s balls. Here I{.} denotes the indicator of a set.

In [3] an exponential inequality for the tail of the conditional expectation of

sums of centered independent random variables was obtained. That inequality

was applied to prove analogues of the Law of the Iterated Logarithm and the

Strong Law of Large Numbers for conditional expectations. As corollaries, certain

strong theorems for the generalized allocation scheme were obtained.

In the present paper we introduce the multi-colour version of the generalized

allocation scheme. Then we prove analogues of the Law of the Iterated Logarithm

and Law of Large Numbers for the numbers of boxes containing fixed numbers of

balls. Our theorems are extensions of the results of [3]. To prove our theorems,

we use some basic inequalities of [3].

2. The multi-colour scheme and the main results

Now we introduce the multi-colour version of the generalized allocation

scheme. Let K be a fixed positive integer, it will denote the number of differ-

ent colours. ni denotes the number of balls of ith colour, i = 1, 2, . . . ,K. Then

n = n1+ · · ·+nK is the total number of balls. Let N denote the number of boxes.

The generalized allocation scheme of allocation n balls into N boxes when there

are K different colours among the balls is the following.

Let ξi1, . . . , ξiN , 1 ≤ i ≤ K, be an array of independent non-negative integer

valued random variables. Denote by η1, . . . ,ηN a set of K-dimensional random

vectors with the following property. The joint distribution of η1, . . . ,ηN admits

representation

P{η1 = k1, . . . ,ηN = kN}

=

K∏
i=1

P{ξi1 = ki1, . . . , ξiN = kiN | ξi1 + · · ·+ ξiN = ni}, (2.1)

for arbitrary non-negative integers valued vectors kj = (k1j , k2j , . . . , kKj), 1 ≤
j ≤ N with ki1 + · · · + kiN = ni, i = 1, . . . ,K. Then we say that ηi1, . . . , ηiN ,
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i = 1, . . . ,K, obey a multi-colour generalized allocation scheme of placing of ni

ith colour balls (1 ≤ i ≤ K) into N boxes. ηij = kij means that after allocating

n balls into N boxes, in the jth box there are kij balls of ith colour.

The number of boxes containing si balls of ith colour for any 1 ≤ i ≤ K, is

µsnN =
N∑
j=1

I{ηj=s} =
N∑
j=1

K∏
i=1

I{ηij=si} (2.2)

where s = (s1, s2, . . . , sK) and n = (n1, n2, . . . , nK).

Let i be fixed. Let the random variables ξi1, . . . , ξiN be identically dis-

tributed. In Kolchin’s generalized allocation scheme usually power law distri-

butions are considered (see [2]). For our model it means that the random vari-

ables ξi1, . . . , ξiN are distributed as follows: qik = P{ξi1 = k} = (bikθ
k)/(k!Bi(θ))

where bi0, bi1, . . . is a certain sequence of non-negative numbers, and Bi(θ) =∑∞
k=0 bikθ

k/k! for each fixed i ∈ {1, 2, . . . ,K}.

Example 2.1. The usual (that is not generalized) multi-colour allocation.

Let ξij have Poisson distribution, i.e. for each i and j let P(ξij = k) =
λk
i

k! e
−λi ,

k = 0, 1, . . . . Then

K∏
i=1

P{ξi1 = ki1, . . . , ξiN = kiN | ξi1 + · · ·+ ξiN = ni} =

K∏
i=1

ni!

ki1! . . . kiN !

(
1

N

)ni

if ki1 + · · ·+ kiN = ni. That is for each fixed i the vector {ηi1, . . . , ηiN} has poly-

nomial distribution. Now {ηi1 = ki1, . . . , ηiN = kiN} means that the box contents

are ki1, . . . , kiN after allocating ni balls into N boxes during the usual random

allocation procedure. Moreover, the allocations of balls of different colours are

independent. We see that µsnN is the number of boxes containing si balls of ith

colour (i = 1, 2, . . . ,K).

We see that the parameter θ used in the generalized allocation scheme is the

same as λ in the above usual allocation procedure.

We remark that in [1] using direct methods, we proved the following. If

n,N → ∞ so that n/N → λ0, then

µrnN

N
→ λr

0

r!
e−λ0 (2.3)

almost surely. Here µrnN is the number of boxes with r balls (after allocating n

balls into N boxes in the usual random allocation procedure). In [2] we extended

this result to generalized allocations.
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In what follows, we consider sequences of non-negative numbers bi0, bi1, . . .

with bi0 > 0, bi1 > 0 and assume that the convergence radius Ri of the series

Bi(θ) =
∑∞

k=0

bikθ
k

k!
(2.4)

is positive for each fixed i. Let us introduce the integer-valued random variable

ξi(θ) (where θ > 0) with distribution

P{ξi(θ) = k} =
bikθ

k

k!Bi(θ)
, k = 0, 1, 2, . . . . (2.5)

By [4], one has

mi(θ) = Eξi(θ) =
θB′

i(θ)

Bi(θ)

and

σ2
i (θ) = D2ξi(θ) =

θ2B′′
i (θ)

Bi(θ)
+

θB′
i(θ)

Bi(θ)
− θ2(B′

i(θ))
2

(Bi(θ))2
. (2.6)

The last equality implies that

σ2
i (θ) = θm′

i(θ). (2.7)

Let 0 < θ′i < θ′′i < Ri. If σ2
i (θ) = 0 for some θ ∈ [θ′i, θ

′′
i ], then the random

variable ξi(θ) is a constant. Since bi0 > 0, bi1 > 0, the random variable ξi(θ) is

not a constant. Therefore σ2
i (θ), θ ∈ [θ′i, θ

′′
i ] is a positive continuous function.

Consequently,

0 < C1 = inf
θ∈[θ′

i,θ
′′
i ]
σ2
i (θ) ≤ sup

θ∈[θ′
i,θ

′′
i ]

σ2
i (θ) = C2 < ∞, 1 ≤ i ≤ K. (2.8)

By (2.7) and (2.8), we have

0 <
C1

θ′′i
= inf

θ∈[θ′
i,θ

′′
i ]
m′

i(θ) ≤ sup
θ∈[θ′

i,θ
′′
i ]

m′
i(θ) =

C2

θ′i
< ∞, 1 ≤ i ≤ K.

So mi(θ), θ ∈ [θ′i, θ
′′
i ], is a positive, continuous, strictly increasing function. We

will denote by m−1
i the inverse function of mi.

We see that the random variable ξi(θ) has all moments, if θ < Ri.

Throughout the paper let ξi1(θ), . . . , ξiN (θ) be independent copies of ξi(θ)

where ξi(θ) has distribution (2.5).

We shall prove limit theorems when the number of boxes and the number of

balls converge to infinity (the number of colours is fixed).
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First we study the asymptotic behaviour along a fixed subsequence. The

subsequence will be indexed by t (t can be considered as the discrete time t =

1, 2, . . . , and t will go to ∞).

Let nit denote the number of balls of ith colour at time t. Let nt =

(n1t, . . . nKt). Let Nt be the number of boxes at time t, assume that Nt < Nt+1,

t ∈ N. Let αt = (α1t, . . . , αKt) = (n1t/Nt, . . . , nKt/Nt) be the ratios of the

numbers of balls and the number of boxes, and let θit = m−1
i (αit),

pst =
K∏
i=1

bisiθ
si
it

si!Bi(θit)
, σ2

st = pst(1− pst) and µst =

Nt∑
i=1

I{ηi=s}. (2.9)

At time t, µst is the number of boxes containing s1, s2, . . . , sK balls of colours

1, 2, . . . ,K, respectively.

We remark that if bisi = 0 for some 1 ≤ i ≤ K, then µst = 0. So we can

concentrate on the case bisi > 0 for all 1 ≤ i ≤ K.

We will prove the following analogue of the Law of the Iterated Logarithm

for µst.

Theorem 2.1. Let 0 < α′
i < α′′

i be such that m−1
i (α′′

i ) < Ri, 1 ≤ i ≤ K.

Suppose that 0 < α′
i < αit < α′′

i for all t ∈ N, 1 ≤ i ≤ K. Let s be fixed and we

assume that bisi > 0 for each fixed 1 ≤ i ≤ K. Then we have

lim sup
t→∞

|µst − Eµst|√
Nt ln(Nt)σst

≤ 4

√
1 +

K

2
almost surely.

Now, we turn to a version of the previous theorem. We shall consider the

asymptotic behaviour in a sector instead of along a subsequence. More precisely,

the number of boxes and the numbers of balls will tend to infinity, while their

ratios remain bounded. Let αi = ni/N be the ratio of the number of balls of ith

colour and the number of boxes, and let θiαi = m−1
i (αi), i = 1, 2, . . . ,K. We

shall use the notation

psnN =
K∏
i=1

bisiθ
si
iαi

si!Bi(θiαi)
, σ2

snN = psnN (1− psnN ). (2.10)

We can again concentrate on the case bisi > 0 for all 1 ≤ i ≤ K.

Theorem 2.2. Let 0 < α′
i < α′′

i be such that m−1
i (α′′

i ) < Ri, 1 ≤ i ≤ K.

Let s be fixed and assume that bisi > 0, 1 ≤ i ≤ K. Then for µsnN defined in

(2.2), we have

lim sup
n→∞, N→∞,

α′
i<αi<α′′

i , 1≤i≤K

|µsnN − EµsnN |√
N ln(N)σsnN

≤ 4

√
1 +

3K

2
almost surely. (2.11)
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Corollary 2.1. Let 0 < α′
i < α′′

i be such that m−1
i (α′′

i ) < Ri, 1 ≤ i ≤ K.

Let s be fixed. Assume that bisi > 0, 1 ≤ i ≤ K. Let dN ∈ R, N ∈ N be such

that limN→∞

√
N ln(N)

dN
= 0. Then for µsnN defined in (2.2) we have

lim
n, N→∞,

α′
i<αi<α′′

i , 1≤i≤K

µsnN − EµsnN

dN
= 0 almost surely.

Using Corollary 2.1, we obtain the following SLLN.

Theorem 2.3. Let N → ∞, ni → ∞ such that ni/N = αi → αi0,

mi(θαi0) = αi0 and 0 < θαi0 < Ri, 1 ≤ i ≤ K. Then for µsnN defined in (2.2),

we have

1

N
µsnN →

K∏
i=1

bisiθ
si
αi0

si!Bi(θαi0)
(2.12)

almost surely as N → ∞, ni → ∞ such that ni/N = αi → αi0, 1 ≤ i ≤ K.

Example 2.2. We apply Theorem 2.3 to the usual (that is not generalized)

multi-colour allocation mentioned in Example 2.1. Let ξij have Poisson distribu-

tion with parameter λ. Then bij = 1, Bi(λ) = eλ. As mi(λ) = Eξi1 = λ, the

parameter ni/N = αi coincides with λi. Therefore, by (2.12),

1

N
µsnN →

K∏
i=1

λsi
i0

si!eλi0
,

as N → ∞, ni → ∞ such that ni/N = λi0.

Example 2.3. Consider the allocation of n1 + n2 balls into N boxes with the

following method. First we allocate n1 indistinguishable balls into N boxes. Then

we allocate n2 distinguishable balls into the same N boxes. Assume that the two

allocations are independent. So we have the following allocation scheme

P{η1 = k1, . . . ,ηN = kN} =
2∏

i=1

P{ξi1 = ki1, . . . , ξiN = kiN | ξi1+· · ·+ξiN = ni}.

We know, that the first allocation is the same as the partition of the positive

integer number n into N positive integer addends. Therefore it is easy to prove

(see [4], Example 1.2.2) that in the generalized allocation scheme

P{η11 = k11, . . . , η1N = k1N}=P{ξ11 = k11, . . . , ξ1N = k1N | ξ11 + · · ·+ ξ1N = n1},
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we should choose geometrical random variables ξ1j , j = 1, . . . , N . That is with

the usual notation P{ξ1j = k} = pk(1 − p), k = 0, 1, 2 . . . , 0 < p < 1. Therefore

b1k = k!, B1(p) = 1/(1 − p), m1(p) = Eξ1j = 1/p. So the relation of our

parameters is θ = 1/α. The second allocation scheme

P{η21 = k1, . . . , η2N = kN} = P{ξ21 = k21, . . . , ξ2N = kiN | ξ21 + · · ·+ ξ2N = n2},

is the usual one with Poisson random variables ξ2j . That is P{ξ2j = k} = e−λ λk

k! ,

k = 0, 1, 2 . . . , 0 < λ. Therefore, by Theorem 2.3, we have

1

N
µsnN →

(
1

α10

)s1 (
1− 1

α10

)
e−α20

αs2
20

s2!
almost surely,

as ni, N → ∞ such that ni/N = αi → αi0, i = 1, 2, where 1 < α10, 0 < α20.

Remark 2.1. For each fixed i ∈ {1, 2, . . . ,K} let ζij , j ∈ N, be independent

identically distributed random variables with finite expectation mi = Eζij . As-

sume that {ζij : j ∈ N}, 1 ≤ i ≤ K, are independent sets of random variables.

By the Kolmogorov Law of Large Numbers we have

1

N

N∑
j=1

K∏
i=1

ζij →
K∏
i=1

mi, almost surely as N → ∞.

Theorem 2.3 is an analogue of this assertion for an independent sequence of sets

of dependent indicators.

Now return to scheme (2.1). Let s be a fixed non-negative integer number.

Denote by µsnN the number of boxes containing altogether s balls regardless of

their colour. Then we have

µsnN =
∑

s=(s1,s2,...,sK),s1+s2+···+sK=s

µsnN

=
∑

s1+s2+···+sK=s

N∑
j=1

K∏
i=1

I{ηij=si}. (2.13)

Since the number of vectors s = (s1, s2, . . . , sK) such that s1 + s2 + · · ·+ sK = s

is finite, Theorem 2.3 implies the following.

Corollary 2.2. Let N → ∞, ni → ∞ such that ni/N = αi → αi0 and

mi(θαi0) = αi0 for some 0 < θαi0 < Ri, 1 ≤ i ≤ K. Then for µsnN defined in

(2.13), we have

1

N
µsnN →

∑
s1+s2+···+sK=s

K∏
i=1

bisiθ
si
αi0

si!Bi(θαi0)
(2.14)

almost surely as N → ∞, ni → ∞ such that ni/N = αi → αi0, 1 ≤ i ≤ K.
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Remark 2.2. Consider again the usual (i.e. non-generalized) allocation. That

is the case when ξij has Poisson distribution with parameter λ. Then bij = 1,

Bi(λ) = eλ, mi(λ) = λ. Therefore the limit in (2.14) has the following form

∑
s1+s2+···+sK=s

K∏
i=1

λsi
i0

si!eλi0
= e−(λ10+λ20+···+λK0)

(λ10 + λ20 + · · ·+ λK0)
s

s!
.

This limit coincides with the limit of 1
N µsnN at the usual random allocation of n

balls into N boxes when n
N → λ10 + λ20 + · · ·+ λK0 (see (2.3)).

So the following problem arises: what kind of distributions of ξij = ξij(θ)

satisfy the above property. More precisely: which power series distributions sat-

isfy that for each K the multi-colour limit in (2.14) is the same as the single

colour limit when n
N → α10 + α20 + · · ·+ αK0.

If it is valid, then for Bi = B, s = 0 and α10 = α20 = · · · = αK0 = α
K using

(2.14), we obtain (
b0

B
(
α
K

))K

=
b0

B(α)
. (2.15)

Since (
b0

B
(
α
K

))K

→ e−(b1/b0)α, as K → ∞,

from (2.15) it follows that B(α) = b0e
(b1/b0)α, therefore ξij has a Poisson distri-

bution.

Remark 2.3. Now we show that in scheme (1.1) the distribution of η1, . . . , ηN
determines the underlying power series distribution (up to a multiplicative con-

stant). To this end consider scheme (1.1) both with P(ξi = k) = bkθ
k

k!B(θ) and

P (ξi = k) = b̃kθ
k

k!B̃(θ)
. Let n,N → ∞ such that n

N → α, where α < ∞. By

Theorem 2.3, with K = 1, 1
N µ0nN → b0

B(α) almost surely and at the same time

1
N µ0nN → b̃0

B̃(α)
almost surely as n,N → ∞ such that n/N → α. So b0

B(α) =
b̃0

B̃(α)

which implies B(α) = (b0/b̃0)B̃(α).

3. Proofs

In order to prove Theorem 2.1 we need the following lemma. Consider the

events

AiN (ni) = {ξi1(θiαi) + ξi2(θiαi) + · · ·+ ξiN (θiαi) = ni} (3.1)

where θiαi = m−1
i (αi), αi = ni/N .
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Lemma 3.1 (Lemma 3.1 in [2]). Let 0 < α′
i < α′′

i be such that m−1
i (α′′

i ) <

Ri. Then there exists N0 ∈ N with the following property: if ni, N are positive

integers such that N > N0 and α′
i ≤ αi ≤ α′′

i , then we have

P(AiN (ni)) >
1

4σi(θiαi
)
√
N

, (3.2)

where σi(θ) is defined by (2.6).

Proof of Theorem 2.1. We want to apply Theorem 3.1 of [3]. By the

independence of the random variables ξij , 1 ≤ i ≤ K, 1 ≤ j ≤ N , and by (2.1),

we see that the general framework of that theorem covers our model.

Let At = ∩K
i=1AiN (nit). Using first (2.1) and (3.2), then (2.8), we obtain

P(At) >
1

(4
√
Nt )K

K∏
i=1

1

σi(θit)
≥ C ′′

N
K/2
t

.

As C ′′ > 0, condition (3.1) of [3] is valid with β = K
2 . We have σ2

st = pst(1−pst).

Here

pst =

K∏
i=1

bisiθ
si
it

si!Bi(θit)
>

K∏
i=1

bisi(θ
′
i)

si

si!Bi(θ′′i )
> 0

as bisi > 0. Since bi0, bi1 > 0, therefore we have

1− pst >

K∏
i=1

(
1− bisiθ

si
it

si!Bi(θit)

)
> c > 0.

So for some c2 > 0 the relation σ2
st ≥ c2 is valid for each t, i.e. (3.2) of [3] is

satisfied. Thus Theorem 2.1 follows from Theorem 3.1 of [3]. �

In order to prove Theorem 2.2, we need the following corollary of Theorem 2.1

of [3]. We shall use the following notation. σ2 is the variance of I{(ξ1j ,...,ξKj)=s},

ρ is the variance of (I{(ξ1j ,...,ξKj)=s} − I′{(ξ1j ,...,ξKj)=s})
2, where I′{(ξ1j ,...,ξKj)=s} is

an independent copy of I{(ξ1j ,...,ξKj)=s}. AnN = ∩K
i=1AiN (ni) where AiN (ni) is

defined in (3.1). Z is a centered Gaussian random variable with variance 1.

Lemma 3.2. Let ε ≥ 4
√
2σ. Then we have

P
{
|µsnN − EµsnN |√

N
≥ ε

}
≤

√
2

P(AnN )
e−

ε2

16σ2 (1 +B), (3.3)
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where

B = B(N,σ, ε) =
ρ

32

(
ε2

8σ4
√
N

)2

f2

(
2ε2

8σ4
√
N

)
+Ø

(
8σ2

ε2

)
(3.4)

and

f2(x) = 2E{Z2 exp(x|Z|)} − 1.

Proof ofTheorem 2.2. First we remark that limsup exists and it is unique

for a multiindex sequence in a sector. That is

lim sup
n→∞, N→∞,

α′
i<αi<α′′

i , 1≤i≤K

|µsnN − EµsnN |√
N ln(N)σsnN

is well-defined.

Since bisi > 0, bi0 > 0, bi1 > 0 and α′
i < α < α′′

i , for all 1 ≤ i ≤ K, therefore

we have 0 < c1 ≤ σ2
snN ≤ 1/4, and ρ = ρsnN ≤ 1/2. Let z be a fixed positive

number. Therefore for B from (3.4), we have B(N, σ, z ln(N)σsnN ) ≤ L < ∞ as

N,n → ∞ such that α′
i < αi < α′′

i , 1 ≤ i ≤ K.

Now let z > 4
√
1 + 3K

2 . Then z2

16 − K
2 − K > 1. Therefore, by (3.3) and

(3.2), we have

∞∑
N=N0+1

∑
Nα′

i<ni<Nα′′
i ,

1≤i≤K

P

{
|µsnN − EµsnN |√

N ln(N)σsnN

≥ z

}

=
∞∑

N=N0+1

∑
Nα′

i<ni<Nα′′
i ,

1≤i≤K

P
{
|µsnN − EµsnN |√

N
≥ z
√
ln(N)σsnN

}

≤
(

sup
N>N0,

Nα′
i<ni<Nα′′

i ,
1≤i≤K

(1 +B)

) ∞∑
N=N0+1

√
2
NK/2

C ′′

K∏
i=1

(N(α′′
i − α′

i))e
− ln(N)z2

16

≤
(

sup
N>N0,

Nα′
i<ni<Nα′′

i ,
1≤i≤K

(1 +B)

)√
2

C ′′

(
K∏
i=1

(α′′
i − α′

i)

) ∞∑
N=N0+1

N− z2

16 +K+K
2 < ∞.

Consequently, by the Borel–Cantelli lemma, we have

lim sup
n, N→∞,

α′
i<αi<α′′

i ,1≤i≤K

|µsnN − EµsnN |√
N ln(N)σsnN

≤ z almost surely.

This and the choice of z imply (2.11). �
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In order to prove Theorem 2.3, we need the following lemma.

Lemma 3.3 (Lemma 4.2 of [2]). Let i ∈ {1, . . . , N} be fixed. Let 0 < α′
i <

α′′
i be such that m−1

i (α′′
i ) < Ri. Let θαi = m−1

i (αi). For any 0 ≤ si < ∞, as

N,ni → ∞, uniformly for α′
i < αi < α′′

i we have

E
(

1

N
µsiniN

)
= P{ηij = si}

=
bisiθ

si
αi

si!Bi(θαi)
·
√

N

N − 1
·

1√
2π

exp
{
− (ni−si−

ni
N (N−1))2

2σ2
i (θαi

)(N−1)

}
+ o1i(1)

1√
2π

+ o2i(1)
,

where o1i(1), o2i(1) → 0. Here µsiniN is the number of boxes containing si balls

after placing ni balls into N boxes.

Proof of Theorem 2.3. Observe that

1

N
µsnN =

µsnN − EµsnN

N
+ E

(
1

N
µsnN

)
. (3.5)

By (2.2) and Lemma 3.3, we obtain

E
(

1

N
µsnN

)
=

K∏
i=1

P{ηij = si}

=
K∏
i=1

bisiθ
si
αi

si!Bi(θαi)
·
√

N

N − 1
·

1√
2π

exp
{
− (ni−si−

ni
N (N−1))2

2σ2
i (θαi

)(N−1)

}
+ o1i(1)

1√
2π

+ o2i(1)
.

Therefore we have

E
(

1

N
µsnN

)
→

K∏
i=1

bisiθ
si
αi0

si!Bi(θαi0)
, (3.6)

as ni, N → ∞ such that ni/N = αi → αi0, 1 ≤ i ≤ K. By Corollary 2.2,

µsnN − EµsnN

N
→ 0 almost surely (3.7)

as ni, N → ∞ such that ni/N = αi → αi0, 1 ≤ i ≤ K. From (3.5), by (3.6) and

(3.7), follows (2.12). �
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