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Summability process by singular operators

By OKTAY DUMAN (Ankara)

Abstract. The aim of this paper is to obtain some approximation theorems for a

sequence of singular operators that do not have to be positive in general. In the approx-

imation, we mainly use a general matrix summability process introduced by Bell [Order

summability and almost convergence, Proc. Amer. Math. Soc. 38 (1973) 548–552], which

includes many well-known convergence methods, such as, the ordinary convergence, al-

most convergence, the Cesàro mean, the order summability, and so on. An application

presented at the end of the paper shows that our approximation result is more applicable

than the classical aspects.

1. Introduction

A sequence of singular operators is written in the form

Lj(f ;x) =

∫ b

a

f(y)Kj(x, y)dy, j ∈ N, x ∈ [a, b], (1.1)

where f : [a, b] → R and Kj : [a, b] × [a, b] → R are any functions that make

sense the above integral. Here, Kn is called kernel and has the property that

for functions f of a certain class and in a certain sense, Lj(f) converges to f

as j → ∞. By sense of convergence, we mean type of convergence, such as, the

classical uniform convergence on C[a, b], the convergence in Lp (p ≥ 1), the al-

most convergence introduced by Lorentz [20], the statistical convergence given
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by Fast [11] (see also [12], [22]), and so on. In order to get such an approxi-

mation to f , so far, there has been defined many well-known singular operators.

For example, the best known singular operator is Dirichlet’s operator (integral),

which represents the partial sums of the Fourier series of a function f . Another

example is Fejér’s operator which represents the arithmetic means of Dirichlet’s

operator. We recommend [8] to the reader for a detailed information regarding

the approximation to a function by singular operators in the spaces Lp and C[a, b].

Furthermore, convergence results given in certain function spaces linked to the

Mellin transforms for Mellin-type singular operators may be found in [7], [21].

On the other hand, there are many studies on approximating a function by linear

operators via some convergence methods, such as, almost convergence, statistical

convergence, summability process (see, for instance, [1], [2], [10], [13], [18], [23],

[24], [25], [30]). However, all of them need the positivity of the operator. Recall

that a linear operator L is called positive provided that f ≥ 0 implies L(f) ≥ 0.

However, some Korovkin-type approximation theorems for a class of general sin-

gular operators which are not necessarily positive have recently been studied in

the papers [3], [4]. In this paper, we mainly use the matrix summability process

for the approximation by the singular operators Lj given by (1.1). Observe that

the singular operator Lj (j ∈ N) is linear, but does not have to be positive in

general. Thus, with this property the results obtained in the present paper are

the first one in the framework of summability process.

As usual, C[a, b] denotes the space of all real valued continuous functions

defined on [a, b]. Then C[a, b] is a Banach space with the usual norm ∥ · ∥ defined

by ∥f∥ := supx∈[a,b] |f(x)|, f ∈ C[a, b]. Also, Lp := Lp[a, b] (p ≥ 1) denotes the

space of all functions whose pth power is integrable on [a, b]. In this case, Lp is a

Banach space with the norm ∥ · ∥p defined by ∥f∥p := (
∫ b

a
|f(x)|pdx)1/p.

Now we recall the concept of A-summability method (process) of a sequence,

which was first introduced by Bell [5], [6]. Let A = {A(n)} = {[a(n)kj ]} (j, k, n ∈
N) is a sequence of infinite matrices of real numbers. For a sequence of real

numbers, x := {xj}, the double sequence Ax := {(Ax)
(n)
k }, where (Ax)

(n)
k =

{
∑∞

j=1 a
(n)
kj xj} (k, n ∈ N), is called the A-transform of x whenever the series con-

verges for all k and n. A sequence x is said to be A-summable (or, A-convergent)

to some number L if limk→∞(Ax)
(n)
k = L, uniformly in n ∈ N. We say that A is

regular if limj→∞ xj = L implies limk→∞(Ax)
(n)
k = L. Bell [5] proved that A

is regular if and only if (a) for each j ∈ N, limk→∞ a
(n)
kj = 0, uniformly in n; (b)

limk→∞
∑∞

j=1 a
(n)
kj = 1, uniformly in n; (c) for each k, n ∈ N,

∑∞
j=1 |a

(n)
kj | < ∞,

and there exist integers N and B such that
∑∞

j=1 |a
(n)
kj | ≤ B for k ≥ N and all
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n ∈ N. This result generalizes the the classical Silverman–Toeplitz theorem. A-

summability method (process) contains many well-known (regular) convergence

types:

• If we take A = {A} = {[akj ]} for all n ∈ N, then we get A-convergence which

is the ordinary matrix summability method [14].

• If A = {I}, where I is the identity matrix, for all n ∈ N, then we get the

ordinary convergence.

• If A = {C1}, where C1 is the Cesàro matrix of order one, for all n ∈ N, then
we get the arithmetic mean (Cesàro mean) convergence.

• This summability method includes the order summability introduced by Ju-

rkat and Peyerimhoff [15], [16].

• If we define A = {[a(n)kj ]} by

a
(n)
kj :=


1

k
, if n ≤ j ≤ n+ k − 1

0, otherwise,
(1.2)

then A-summability process reduces to the almost convergence introduced

by Lorentz [20]. Recall that a sequence x = {xj} is almost convergent to

L if

lim
k→∞

xn + xn+1 + · · ·+ xn+k−1

k
= L, uniformly in n ∈ N,

which is denoted by F − limx = L. Many interesting properties of almost

convergent sequences may be found in the papers and cited therin: [9], [17],

[27], [28], [29].

2. A-summability process by singular operators

We first get the following approximation theorem.

Now consider the sequences of singular operators {Lj} defined by (1.1). Let

(ak) be a sequence of positive numbers. We say that {Lj(f)} is uniformly A-

summable to a function f ∈ C[a, b] with the rate of o(ak) if∥∥∥∥ ∞∑
j=1

a
(n)
kj Lj(f)− f

∥∥∥∥ = o(ak) as k → ∞, uniformly in n,
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where supremum in the norm ∥ · ∥ is taken over [a, b]. Similarly, we say that

{Lj(f)} is A-summable to a function f in Lp with the rate of o(ak) if∥∥∥∥ ∞∑
j=1

a
(n)
kj Lj(f)− f

∥∥∥∥
p

= o(ak) as k → ∞, uniformly in n.

Then we get the following approximation result with respect to A-summability

process.

Theorem 2.1. Let {Lj} be a sequence of singular operators defined as

in (1.1), and let A = {[a(n)kj ]} (j, k, n ∈ N) be a regular summability method

of infinite matrices with non-negative entries. Assume that (ak), (bk) are two

sequences satisfying ak ≥ α > 0 and bk ≥ β > 0 for every k ∈ N. Assume that∫ b

a

|Kj(x, y)| dy ≤ M (2.1)

holds for all j ∈ N and all x ∈ [a, b]. If the following conditions

Lj(f0) is uniformly A-summable to f0 with the rate of o(ak) (2.2)

and, for each δ > 0,

∫
|y−·|≥δ; y∈[a,b]

|Kj(·, y)| dy is uniformly

A-summable to 0 with the rate of o(bk) (2.3)

hold, then for every f ∈ C[a, b], we have

Lj(f) is uniformly A-summable to f with the rate of o(ck),

where (ck) is the sequence defined by ck := max{ak, bk} for k ∈ N.

Proof. For the proof of this theorem, we mainly apply the idea by Orlicz

(see [20], [26]) to the framework of A-summability process. Let f ∈ C[a, b]. By

the linearity of the operators Lj , we may write that, for each k, n ∈ N and for

every x ∈ [a, b],

∞∑
j=1

a
(n)
kj Lj(f ;x) =

∞∑
j=1

a
(n)
kj Lj (f(y)− f(x);x) + f(x)

∞∑
j=1

a
(n)
kj Lj(f0;x),



Summability process by singular operators 377

which implies that∣∣∣∣ ∞∑
j=1

a
(n)
kj Lj(f ;x)− f(x)

∣∣∣∣ ≤ ∞∑
j=1

a
(n)
kj

∫ b

a

|f(y)− f(x)| |Kj(x, y)| dy

+ C

∣∣∣∣ ∞∑
j=1

a
(n)
kj Lj(f0;x)− f0(x)

∣∣∣∣, (2.4)

where C := ∥f∥. By the uniform continuity of f on [a, b], for a given ε > 0, there

exists δ > 0 such that |f(y)− f(x)| < ε for all x, y ∈ [a, b] satisfying |y − x| < δ.

Hence, it follows from the last inequality that∣∣∣∣ ∞∑
j=1

a
(n)
kj Lj(f ;x)− f(x)

∣∣∣∣ ≤ ε

∞∑
j=1

a
(n)
kj

∫
|y−x|<δ

|Kj(x, y)| dy

+ 2C
∞∑
j=1

a
(n)
kj

∫
|y−x|≥δ

|Kj(x, y)| dy + C

∣∣∣∣ ∞∑
j=1

a
(n)
kj Lj(f0;x)− f0(x)

∣∣∣∣,
which yields that∣∣∣∣ ∞∑

j=1

a
(n)
kj Lj(f ;x)− f(x)

∣∣∣∣ ≤ Mε

∞∑
j=1

a
(n)
kj + C

∣∣∣∣ ∞∑
j=1

a
(n)
kj Lj(f0;x)− f0(x)

∣∣∣∣
+ 2C

∞∑
j=1

a
(n)
kj

∫
|y−x|≥δ

|Kj(x, y)| dy

where M is the same as in (2.1). Since ck = max{ak, bk} for every k ∈ N, we may

write that

1

ck

∣∣∣∣ ∞∑
j=1

a
(n)
kj Lj(f ;x)− f(x)

∣∣∣∣ ≤ Mε

γ

∞∑
j=1

a
(n)
kj +

C

ak

∣∣∣∣ ∞∑
j=1

a
(n)
kj Lj(f0;x)− f0(x)

∣∣∣∣
+

2C

bk

∞∑
j=1

a
(n)
kj

∫
|y−x|≥δ

|Kj(x, y)| dy

for k ∈ N and x ∈ [a, b], where γ := min{α, β}. Thus, we get, for every k, n ∈ N,
that

1

ck

∥∥∥∥ ∞∑
j=1

a
(n)
kj Lj(f)− f

∥∥∥∥ ≤ Mε

γ

∞∑
j=1

a
(n)
kj +

C

ak

∥∥∥∥ ∞∑
j=1

a
(n)
kj Lj(f0)− f0

∥∥∥∥
+

2C

bk

∥∥∥∥ ∞∑
j=1

a
(n)
kj

∫
|y−·|≥δ

|Kj(·, y)| dy
∥∥∥∥
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Now, using (2.2) and (2.3) and also considering the regularity of A, the right hand

side of the last equality tends to zero as k → ∞, uniformly in n. Thus, the proof

is completed. �

Now, we replace the condition (2.3) by using the concept of modulus of

continuity which is one of the most effective tool in the approximation theory.

Recall that the modulus of continuity of a function f ∈ C[a, b], denoted by ω(f, δ),

is defined to be ω(f, δ) = sup|y−x|≤δ |f(y) − f(x)|, δ > 0. According to this

definition, ω(f, δ) gives the maximum oscillation of f in any interval of length not

exceeding δ > 0. Then we get the next result.

Theorem 2.2. Let {Lj} be a sequence of singular operators defined as in

(1.1), and let A = {[a(n)kj ]} (j, k, n ∈ N) be a regular summability method of

infinite matrices with non-negative entries. Assume that (ak) and (bk) are any

positive sequences. Assume further that (2.1) and (2.2) holds. If the condition

ω
(
f,
∥∥δ(n)k (·, p)

∥∥) = o(bk) as k → ∞, uniformly in n, (2.5)

holds for f ∈ C[a, b], where

δ
(n)
k (x, p) :=

( ∞∑
j=1

a
(n)
kj

∫ b

a

|x− y|p|Kj(x, y)|dy
)1/p

, p ≥ 1, (2.6)

then, we have

Lj(f) is uniformly A-summable to f with the rate of o(ck),

where (ck) is the same as in Theorem 2.1.

Proof. Let f ∈ C[a, b]. Then, by using the well-known inequality

|f(y)− f(x)| ≤ ω(f, δ)

(
|x− y|

δ
+ 1

)
for any δ > 0, it follows from (2.4) that

∣∣∣∣ ∞∑
j=1

a
(n)
kj Lj(f ;x)− f(x)

∣∣∣∣ ≤ ω(f, δ)
∞∑
j=1

a
(n)
kj

∫ b

a

(
|x− y|

δ
+ 1

)
|Kj(x, y)| dy

+ C

∣∣∣∣ ∞∑
j=1

a
(n)
kj Lj(f0;x)− f0(x)

∣∣∣∣,
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where C := ∥f∥ as in the proof of Theorem 2.1. Hence, from (2.1) we get∣∣∣∣ ∞∑
j=1

a
(n)
kj Lj(f ;x)− f(x)

∣∣∣∣
≤ ω(f, δ)

{
M

∞∑
j=1

a
(n)
kj +

1

δ

∞∑
j=1

a
(n)
kj

∫ b

a

|x− y| |Kj(x, y)| dy
}

+ C

∣∣∣∣ ∞∑
j=1

a
(n)
kj Lj(f0;x)− f0(x)

∣∣∣∣, (2.7)

where M is the same as in (2.1). If p > 1, then using Hölder’s inequality with
1
p + 1

q = 1, we observe that

∫ b

a

|x− y| |Kj(x, y)| dy ≤
(∫ b

a

|x− y|p |Kj(x, y)| dy
)1/p(∫ b

a

|Kj(x, y)| dy
)1/q

≤ M1/q

(∫ b

a

|x− y|p |Kj(x, y)| dy
)1/p

.

Thus, we conclude that∣∣∣∣ ∞∑
j=1

a
(n)
kj Lj(f ;x)− f(x)

∣∣∣∣
≤ ω(f, δ)

{
M

∞∑
j=1

a
(n)
kj +

M1/q

δ

∞∑
j=1

a
(n)
kj

(∫ b

a

|x− y|p
∣∣∣∣Kj(x, y)

∣∣∣∣dy)1/p}

+ C

∣∣∣∣ ∞∑
j=1

a
(n)
kj Lj(f0;x)− f0(x)

∣∣∣∣.
If we apply again Hölder’s inequality to the second summation on the right hand

side of the above inequality, then we get∣∣∣∣ ∞∑
j=1

a
(n)
kj Lj(f ;x)− f(x)

∣∣∣∣
≤ ω(f, δ)

{
M

∞∑
j=1

a
(n)
kj +

1

δ

(
M

∞∑
j=1

a
(n)
kj

)1/q( ∞∑
j=1

a
(n)
kj

∫ b

a

|x− y|p |Kj(x, y)| dy
)1/p}

+ C

∣∣∣∣ ∞∑
j=1

a
(n)
kj Lj(f0;x)− f0(x)

∣∣∣∣.
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Now, if we choose δ := δ
(n)
k (x, p) defined by (2.6), then we have∣∣∣∣ ∞∑

j=1

a
(n)
kj Lj(f ;x)− f(x)

∣∣∣∣ ≤
(
M

∞∑
j=1

a
(n)
kj +

(
M

∞∑
j=1

a
(n)
kj

) p−1
p

)
ω
(
f, δ

(n)
k (x, p)

)
+ C

∣∣∣∣ ∞∑
j=1

a
(n)
kj Lj(f0;x)− f0(x)

∣∣∣∣,
which implies that

1

ck

∥∥∥∥ ∞∑
j=1

a
(n)
kj Lj(f)− f

∥∥∥∥ ≤

(
M

∞∑
j=1

a
(n)
kj +

(
M

∞∑
j=1

a
(n)
kj

) p−1
p

)
ω
(
f,
∥∥δ(n)k (·, p)

∥∥)
bk

+
C

ak

∥∥∥∥ ∞∑
j=1

a
(n)
kj Lj(f0)− f0

∥∥∥∥
due to ck = max{ak, bk} for every k ∈ N. Now, in the last inequality, taking

limit as k → ∞ and also considering the hypotheses (2.2) and (2.5) the proof is

completed for p > 1. If p = 1, then it is enough to choose δ := δ
(n)
k (x, 1) in (2.7)

without any Hölder’s inequality. �

Now we get an approximation in the space Lp by a regular summability

process.

Theorem 2.3. Let {Lj} be a sequence of singular operators defined as

in (1.1), and let A = {[a(n)kj ]} (j, k, n ∈ N) be a regular summability method

of infinite matrices with non-negative entries. Assume that (ak) is a sequence

satisfying ak ≥ α > 0. Assume further that the kernel Kj (j ∈ N) is measurable

in the square [a, b]× [a, b] and that∫ b

a

|Kj(x, y)| dy ≤ M, (2.8)

∫ b

a

|Kj(x, y)| dx ≤ M (2.9)

hold for all j ∈ N and almost all x, y ∈ [a, b]. Then, for each f ∈ Lp (p ≥ 1),∑∞
j=1 a

(n)
kj Lj(f ;x) exists for almost all x ∈ [a, b], k, n ∈ N and is a function of

the class Lp. Furthermore, if, for all f belonging to a subset H ⊂ Lp which is

everywhere dense in Lp,

{Lj(f)} is A-summable to f with the rate of o(ak), (2.10)

then this is also true for any f ∈ Lp.
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Proof. We first assume that f ∈ Lp with p > 1. Then, we may write that

∞∑
j=1

a
(n)
kj |Lj(f ;x)| ≤

∞∑
j=1

a
(n)
kj

∫ b

a

|f(y)| |Kj(x, y)| dy.

Now applying Hölder’s inequality to the integral on the right hand side of the

above inequality and also considering (2.8), we get

∞∑
j=1

a
(n)
kj |Lj(f ;x)| ≤

∞∑
j=1

a
(n)
kj

(∫ b

a

|f(y)|p |Kj(x, y)| dy

)1/p(∫ b

a

|Kj(x, y)| dy

)1/q

≤ M1/q
∞∑
j=1

a
(n)
kj

(∫ b

a

|f(y)|p |Kj(x, y)| dy

)1/p

,

where 1
p +

1
q = 1. Again using Hölder’s inequality on the last summation, we have

∞∑
j=1

a
(n)
kj |Lj(f ;x)| ≤ M1/q

( ∞∑
j=1

a
(n)
kj

∫ b

a

|f(y)|p |Kj(x, y)| dy
)1/p( ∞∑

j=1

a
(n)
kj

)1/q

≤
(
M

∞∑
j=1

a
(n)
kj

)1/q( ∞∑
j=1

a
(n)
kj

∫ b

a

|f(y)|p |Kj(x, y)| dy
)1/p

. (2.11)

On the other hand, since the following inequality∫ b

a

(∫ b

a

|f(y)|p |Kj(x, y)| dy
)
dx =

∫ b

a

|f(y)|p
(∫ b

a

|Kj(x, y)| dx
)
dy

≤ M

∫ b

a

|f(y)|pdy = M∥f∥pp (2.12)

holds for almost all x ∈ [a, b], the integral
∫ b

a
|f(y)|p|Kj(x, y)|dy exists for almost

all x ∈ [a, b]. Combining this fact with (2.11), we conclude that
∑∞

j=1 a
(n)
kj Lj(f ;x)

exists for almost all x ∈ [a, b] and k, n ∈ N. Furthermore, it follows from (2.11)

and (2.12) that∫ b

a

( ∞∑
j=1

a
(n)
kj |Lj(f ;x)|

)p

dx

≤
(
M

∞∑
j=1

a
(n)
kj

)p/q ∫ b

a

( ∞∑
j=1

a
(n)
kj

∫ b

a

|f(y)|p |Kj(x, y)| dy
)
dx
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≤
(
M

∞∑
j=1

a
(n)
kj

)p/q

M∥f∥pp
∞∑
j=1

a
(n)
kj =

(
M

∞∑
j=1

a
(n)
kj

)p

∥f∥pp. (2.13)

Taking supremum over n on the both sides of the last inequality, we immediately

observe that
∑∞

j=1 a
(n)
kj Lj(f) belongs to Lp with p > 1. Then, we get from (2.13)

that ∥∥∥∥ ∞∑
j=1

a
(n)
kj Lj(f)

∥∥∥∥
p

≤ M∥f∥p
∞∑
j=1

a
(n)
kj (2.14)

holds for every k, n ∈ N. Since H is everywhere dense in Lp, for ε > 0, there

exists an h ∈ H such that ∥f − h∥p < ε. Hence, using (2.14) and considering the

linearity of the operators Lj , it follows from Minkowski’s inequality that∥∥∥∥ ∞∑
j=1

a
(n)
kj Lj(f)− f

∥∥∥∥
p

≤
∥∥∥∥ ∞∑

j=1

a
(n)
kj Lj(f − h)

∥∥∥∥
p

+

∥∥∥∥ ∞∑
j=1

a
(n)
kj Lj(h)− h

∥∥∥∥
p

+ ∥f − h∥p

≤
(
M

∞∑
j=1

a
(n)
kj + 1

)
ε+

∥∥∥∥ ∞∑
j=1

a
(n)
kj Lj(h)− h

∥∥∥∥
p

which yields that

1

ak

∥∥∥∥ ∞∑
j=1

a
(n)
kj Lj(f)− f

∥∥∥∥
p

≤
(
M

∞∑
j=1

a
(n)
kj + 1

)
ε

α
+

1

ak

∥∥∥∥ ∞∑
j=1

a
(n)
kj Lj(h)− h

∥∥∥∥
p

.

Now, taking limit as k → ∞, the proof follows from (2.10) for p > 1. The case

p = 1 is very similar to this process, but in this case, we do not need the condi-

tion (2.8). �

From Theorems 2.1 and 2.3, we obtain the following result.

Corollary 2.4. Let {Lj} be a sequence of singular operators defined as in

(1.1), and let A = {[a(n)kj ]} (j, k, n ∈ N) be a regular summability method of

infinite matrices with non-negative entries. Let the sequences (ak) and (bk) be

the same as in Theorem 2.1. Assume that the kernel Kj (j ∈ N) is measurable

in the square [a, b] × [a, b] and (2.8), (2.9) hold for all j ∈ N and all x, y ∈ [a, b].

Furthermore, if (2.2) and (2.3) are satisfied, then, for all f ∈ Lp (p ≥ 1), we have

{Lj(f)} is A-summable to f (in Lp) with the rate of o(ck),

where (ck) is the same as in Theorem 2.1.
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Proof. By hypotheses, we deduce from Theorem 2.1 that, for all f ∈ C[a, b],∥∥∥∥ ∞∑
j=1

a
(n)
kj Lj(f)− f

∥∥∥∥ = o(ck) as k → ∞, uniformly in n. (2.15)

It is well-known that the uniform convergence on [a, b] implies the convergence in

Lp. Hence, (2.15) gives that, for all f ∈ C[a, b],∥∥∥∥ ∞∑
j=1

a
(n)
kj Lj(f)− f

∥∥∥∥
p

= o(ck) as k → ∞, uniformly in n.

Also, we know that C[a, b] is everywhere dense in Lp. Now choosing H = C[a, b]

in Theorem 2.3, the proof follows immediately. �

With a similar manner, one can get the following result by using Theorems 2.2

and 2.3, at once.

Corollary 2.5. Let {Lj} be a sequence of singular operators defined as in

(1.1), and let A = {[a(n)kj ]} (j, k, n ∈ N) be a regular summability method of

infinite matrices with non-negative entries. Let (ak) and (bk) be the same as in

Theorem 2.1. Assume that the kernel Kj (j ∈ N) is measurable in the square

[a, b]× [a, b] and (2.8), (2.9) hold for all j ∈ N and all x, y ∈ [a, b]. Furthermore,

if (2.2) and (2.5) are satisfied, then, for all f ∈ Lp (p ≥ 1), we have

{Lj(f)} is A-summable to f (in Lp) with the rate of o(ck),

where (ck) is the same as in Theorem 2.1.

3. Concluding remarks

In this section we display a sequence of singular operators, which satisfy all

conditions in the preceding results.

Now we define A = {[a(n)kj ]} as in (1.2). In this case, we know that A-

summability process reduces to the almost convergence in (1.2). Consider the

sequences u = {uj} and v = {vj} given respectively by

uj :=

{
−1, if j is odd

3 if j is even
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and

vj =

∫ 1

−1

(1− t2)jdt.

Then observe that F − limu = 1 (that is, {uj} is almost convergent to 1), but u

is non-convergent. Now define the operators Tj by

Tj(f ;x) :=
uj

vj

∫ 1

0

f(y)
(
1− (y − x)2

)j
dy, j ∈ N and x ∈ [0, 1], (3.1)

where f ∈ C[0, 1]. If we take

Kj(x, y) =
uj

vj

(
1− (y − x)2

)j
, x, y ∈ [0, 1], (3.2)

then the operators Tj given by (3.1) has the form of (1.1) with a = 0 and b = 1.

Furthermore, this kernel Kj satisfies all conditions of Theorem 2.1. Indeed, first

observe that∫ 1

0

|Kj(x, y)| dy =
|uj |
vj

∫ 1

0

(
1− (y − x)2

)j
dy ≤ 3

vj

∫ 1−x

−x

(
1− t2

)j
dt ≤ 3,

which gives (2.1) with M = 3. Also, we know from [19] (see also [20]) that

lim
j→∞

1

vj

∫ 1

0

(
1− (y − x)2

)j
dy = 1, uniformly in x ∈ [0, 1].

Then, since F − limj→∞ u = 1, we conclude that

F − lim
j→∞

∫ 1

0

Kj(x, y) = 1, uniformly in x ∈ [0, 1].

which means

F − lim
j→∞

Tj(f0;x) = f0(x) = 1, uniformly in x ∈ [0, 1],

and hence (2.2) is valid with the choice, for example, ak = 1 for every k ∈ N.
Finally, from [19], [20], we know that, for each δ > 0,

lim
j→∞

1

vj

∫
|y−x|≥δ; y∈[0,1]

(
1− (y − x)2

)j
dy = 0, uniformly in x ∈ [0, 1],

which implies that

F − lim
j→∞

∫
|y−x|≥δ;y∈[0,1]

|Kj(x, y)| dy = 0, uniformly in x ∈ [0, 1]
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The last almost limit shows that (2.3) is also valid with the choice of bk = 1 for

every k ∈ N. Hence, by Theorem 2.1, we get, for all f ∈ C[0, 1],

F − lim
j→∞

Tj(f ;x) = f(x), uniformly in x ∈ [0, 1]. (3.3)

Also, it follows from Corollary 2.4 that the almost convergence in (3.3) is also

valid for all f ∈ Lp, p > 1.

Observe now that, in (3.3), we cannot replace the almost convergence by the

ordinary convergence. Furthermore, our operators Tj are not positive for all j ∈ N.
This application shows that using summability methods in the approximation

theory provides us more applicable and powerful results than the classical aspects.

Furthermore, observe that the statistical approximation process of the operators

Tj is not valid by the fact that the sequence {uj} is not statistically convergent.
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