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On a pure ternary exponential Diophantine equation

By MAOHUA LE (Zhanjiang), ALAIN TOGBÉ (Westville)
and HUILIN ZHU (Xiamen)

Abstract. Let r be a positive integer with r > 1 and m a positive even integer.

Let a = |V (m, r)|, b = |U(m, r)|, and c = m2 + 1, where V (m, r) + U(m, r)
√
−1 =

(m +
√
−1 )r. In this paper we prove that if m > max{1015, 2r3}, then the equation

ax + by = cz has only the positive integer solution (x, y, z) = (2, 2, r).

1. Introduction

Let Z, N be the sets of all integers and positive integers respectively. Let a,

b, c be fixed coprime positive integers with min{a, b, c} > 1. In 1933, K. Mahler

[21] used his p-adic analogue of the Thue–Siegel method to prove that the ternary

exponential Diophantine equation

ax + by = cz, x, y, z ∈ N (1.1)

has only finitely many solutions (x, y, z). His method is ineffective in the sense

that it gives no indication on the number of possible solutions. An effective result

for solutions of (1.1) was given by A. O. Gel’fond [7]. In analogy to a con-

jecture of L. Jeśmanowicz concerning Pythagorean triple (see [10]), N. Terai
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[24] conjectured that (1.1) always has at most one solution (x, y, z). Simple coun-

terexamples to this statement have been found by Z.-F. Cao [2], who suggested

that the condition max{a, b, c} > 7 should be added to the hypotheses of Terai’s

conjecture. However, it turns out that this condition is not sufficient to ensure

the uniqueness. A family of counterexamples has been found by M.-H. Le [12],

and he also stated the following form of Terai’s conjecture:

Conjecture 1. For any fixed a, b, and c, (1.1) has at most one solution

(x, y, z) with min{x, y, z} > 1.

This problem relates to the famous generalized Fermat conjecture for fixed a,

b and c (See Problem B19 of [8] and its references). It was verified for some special

cases. But, in general, the problem is not yet solved. It seems that Conjecture 1

is a very difficult problem.

Let r be a positive integer with r > 1 and m a positive even integer. Let us

define U(m, r) and V (m, r) by

V (m, r) + U(m, r)
√
−1 = (m+

√
−1 )r. (1.2)

Then V (m, r) and U(m, r) are coprime nonzero integers satisfying

V 2(m, r) + U2(m, r) = (m2 + 1)r. (1.3)

Most known results on Conjecture 1.1 relate to the case

a = |V (m, r)|, b = |U(m, r)|, c = m2 + 1. (1.4)

Obviously, using (1.3), if a, b, and c satisfy (1.4), then equation (1.1) has the

solution (x, y, z) = (2, 2, r). Recently, T. Miyazaki [22] stated the following

conjecture which amounts to Conjecture 1 in this case.

Conjecture 2. If a, b, and c satisfy (1.4), then equation (1.1) has the

solution (x, y, z) = (2, 2, r).

Many authors have verified Conjecture 2 under certain assumptions on r and

m (see [2]–[6], [9], [11]–[18], [22], [24]–[30]). In the above papers, the conjecture

was established mainly under one of the following additional hypotheses:

(i) (M.-H. Le [18]). r ≡ 5 (mod 8) and either m > r2, r < 11500 or m > 2r
π ,

r > 11500.

(ii) (M. Cipu and M. Mignotte [5]). r ≡ 3 (mod 4) and m ≡ 2 (mod 4).

(iii) (T. Miyazaki [22]). r ≡ 4 (mod 8) or r ≡ 6 (mod 8) and m2

log(m2+1) ≥
r3

log 2 .
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To the long list of papers that treated various particular cases, we will add two

recent papers. F. Luca [19] considered the system (1.1) and (1.4) and proved that

if m ≥ 2 is an even integer and r ≥ 1 is an integer, the system admits a solution

(x, y, z) ̸= (2, 2, r) only in finitely many instances (m, r) and that there exists a

computable constant c0 such that all such solutions satisfy max{m, r, x, y, z} ≤ c0.

Also, the second author, S. Yang and B. He [31] studied equations (1.1) and

(1.4). They mainly proved that if m > 24650 r2(log r)2, then equation (1.1) has

only the positive integer solution (x, y, z) = (2, 2, r). They also considered some

particular cases. In fact, they showed that if r ≡ 5 (mod 8) or r ≡ 3, 19 (mod 24)

and m ≥ 2r, or if r is a prime, r ≡ 5 (mod 8) or r ≡ 19 (mod 24), and m ≥ 2
π r,

then equation (1.1) has only the positive integer solution (x, y, z) = (2, 2, r). In

this paper, using the Gel’fond–Baker method, we prove the following more general

result. It is good to specify that the method used in the present paper is slightly

different to that used in [31].

Theorem 1. For any r, if a, b and c satisfy (1.4) with m > max{1015, 2r3},
then (1.1) has only the solution (x, y, z) = (2, 2, r).

Our theorem proves Conjecture 2, for any fixed r, except for a finite number

of m. We organize this paper as follows. In Section 2, we only recall some useful

results particularly a result of Le [12] on lower bounds of linear forms in two

logarithms and a result of Bugeaud [1] on upper bounds of linear forms in p-adic

logarithms. In Section 3, we prove all necessary results that we will need to get

our main result. The proof of Theorem 1 will be done in Section 4 by the means

of the results cited or proved in Sections 2 and 3.

2. Preliminaries

In this section, we will only recall some important results obtained by other

authors that will be useful for the proof of our main result.

Lemma 1 ([32]). Let n be a positive integer and letX, Y be coprime nonzero

integers with X ̸= Y . If every prime divisor p of Xn−Y n

X−Y satisfies p | (X − Y ),

then n ≤ 6.

Lemma 2 ([17], Lemma 2). Ifm > 2r
π , then U(m, r) and V (m, r) are positive

integers.

Lemma 3 ([23], pp. 12–13). Every solution (X,Y, Z) of the equation

X2 + Y 2 = Z2, X, Y, Z ∈ N, gcd(X,Y ) = 1, 2 | Y, Z > 0 (2.1)
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can be expressed as

X = f2−g2, Y = 2fg, Z = f2+g2, f, g ∈ N, f > g, gcd(f, g) = 1, 2 | fg.

Lemma 4 ([12], Lemma 5). Let α1, α2, β1, β2 be positive integers with α1,

α2 multiplicatively independent and min{α1, α2} > 103. Further let

Λ = β1 logα1 − β2 logα2.

If Λ ̸= 0, then

log |Λ| > −17.61(logα1)(logα2)(1.78 +B)2,

where

B = max

{
8.45, 0.23 + log

(
β1

logα2
+

β2

logα1

)}
.

Lemma 5 ([1], Theorem 2). Let α1, α2 be positive odd integers with

min{α1, α2} > 1 and let β1, β2 be positive integers. Further let

Λ′ = αβ1

1 − αβ2

2

and let v2(Λ
′) denote the order of 2 in Λ′, namely 2v2(Λ

′)∥Λ′. If Λ′ ̸= 0 and

α1 ≡ 1 (mod 4), then

v2(Λ
′) < 208(logα1)(logα2)(logB

′)2,

where

logB′ = max

{
10, 0.04 + log

(
β1

logα2
+

β2

logα1

)}
.

3. Further lemmas on exceptional solutions of (1.1)

In this section, we assume that r ≥ 7, m > 4r
π and a, b, c satisfy (1.4). Using

Lemma 2, we have

a = V (m, r), b = U(m, r), c = m2 + 1, (3.1)

and by (1.3), we get

a2 + b2 = cr. (3.2)

Now we suppose that (x, y, z) is a solution of equation (1.1) with (x, y, z) ̸=
(2, 2, r), called an exceptional solution of (1.1). We will prove the following se-

quence of results.
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Lemma 6. If r ≥ 3 and m > 4r
π , then U

3
2 (m, r) > V (m, r) > U(m, r) > 0.

Proof. Let α = m+
√
−1 and β = m−

√
−1. Then we have

α =
√

m2 + 1eθ
√
−1, β =

√
m2 + 1e−θ

√
−1, (3.3)

where θ is a real number satisfying

0 < θ = arctan
1

m
<

π

2
. (3.4)

Since m ≥ 2, equation (3.4) implies

11

12m
≤ 1

m

(
1− 1

3m2

)
< θ =

1

m

∞∑
i=0

(−1)i

(2i+ 1)m2i
<

1

m
. (3.5)

By (1.2) and (3.3), we get

V (m, r) = (m2 + 1)
r
2 cos(rθ), U(m, r) = (m2 + 1)

r
2 sin(rθ). (3.6)

Using m > 4r
π and Lemma 2, we have V (m, r) > 0 and U(m, r) > 0. Further, by

(3.5), we get

0 < rθ <
r

m
<

π

4
. (3.7)

Therefore, from (3.6) and (3.7) we deduce that U(m,r)
V (m,r) = tan(rθ) < tan

(
π
4

)
= 1

and V (m, r) > U(m, r) > 0.

We now assume that V (m, r) ≥ U
3
2 (m, r) > 0. So V 2(m, r) ≥ U3(m, r) and

we use (3.6) to get

1 ≥ cos2(rθ) ≥ (m2 + 1)
r
2 sin3(rθ). (3.8)

Since 0 < rθ < π
4 , we have

sin(rθ) = rθ
∞∑
i=0

(−1)i(rθ)2i

(2i+ 1)!
> rθ

(
1− (rθ)2

3!

)
> rθ

(
1− π2

3!42

)
> 0.89rθ.

(3.9)

Therefore, as r ≥ 3, from (3.5), (3.8), and (3.9), we get

1 > mr sin3(rθ) > mr(0.89rθ)3 > mr

(
0.89× 11r

12m

)3

> 0.53mr−3r3 ≥ 0.53r3 ≥ 0.53× 33 > 1. (3.10)

This is a contradiction. Thus we have U
3
2 (m, r) > V (m, r). The lemma is proved.

�
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Lemma 7. rx ̸= 2z and ry ̸= 2z.

Proof. We first consider the case that 2 | r. Since 2 | m and 2 | r, we see

from (1.2) and (3.1) that 2 - a and 2 | b. Therefore, applying Lemma 3 to (3.2),

we get

a = f2 − g2, b = 2fg, c
r
2 = f2 + g2, f, g ∈ N,

f > g, gcd(f, g) = 1, 2 | fg. (3.11)

Thus we obtain

c
r
2 + a = 2f2. (3.12)

Equation (3.12) implies

c
r
2 ≡ −a (mod 2f). (3.13)

If rx = 2z, then z = rx
2 . Hence, by (1.1), we get

by = cz − ax = c
rx
2 − ax = (c

r
2 )x − ax. (3.14)

In (3.11) we know that 2f | b, so from (3.13) and (3.14) we see that

0 ≡ by ≡ (c
r
2 )x − ax ≡ ((−1)x − 1) ax (mod 2f). (3.15)

Since 2f > 2 and gcd(a, 2f) = gcd(a, b) = 1, congruence (3.15) implies that x

must be even. Therefore, we use (3.2) and (3.14) to get

by = (cr)
x
2 − (a2)

x
2 = (cr − a2)

(
(cr)

x
2 − (a2)

x
2

cr − a2

)
= b2

(
(cr)

x
2 − (a2)

x
2

cr − a2

)
. (3.16)

Thus we obtain y ≥ 2 and

by−2 =
(cr)

x
2 − (a2)

x
2

cr − a2
. (3.17)

When y = 2, equation (3.17) implies that x = 2 and z = rx
2 = r, which

contradicts the definition of exceptional solutions of (1.1).

When y > 2, equations (3.2) and (3.17) give

0 ≡ by−2 ≡ 1

b2
(
(a2 + b2)

x
2 − (a2)

x
2

)
≡ x

2
ax−2 (mod b). (3.18)

As gcd(a, b) = 1, we get from (3.18) that b | x
2 and

b ≤ x

2
. (3.19)
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On the other hand, since cr−a2 = b2, applying Lemma 1 to (3.17), we get x
2 ≤ 6.

Hence by (3.19), we have b ≤ 6. But, since r ≥ 7 and m > 4r
π , by Lemma 6, we

get b3 > a2 and 252 = 63 +62 ≥ b3 + b2 > a2 + b2 = cr ≥ c7 > 57 = 78125, which

is a contradiction. Thus we have rx ̸= 2z.

Now suppose that ry = 2z. Then we have z = ry
2 and

ax = cz − by = c
ry
2 − by = (c

r
2 )y − by. (3.20)

From (3.11), we deduce (f + g) | a and

c
r
2 + b = (f + g)2. (3.21)

Hence (3.20) and (3.21) imply

0 ≡ ax ≡
(
c

r
2

)y − by ≡ ((−1)y − 1) by (mod f + g). (3.22)

Thus, since f + g > 2 and gcd(f + g, b) = gcd(a, b) = 1, we see that y must be

even. Therefore, by (3.2) and (3.20), we obtain

ax = (cr)
y
2 −

(
b2
) y

2 = (cr − b2)

(
(cr)

y
2 − (b2)

y
2

cr − b2

)
. (3.23)

But, using the same method as in the proof of the conclusion that rx ̸= 2z, we

can prove that (3.23) is impossible. It implies that ry ̸= 2z. Thus the lemma

holds for 2 | r.
We next consider the case that 2 - r. If rx = 2z, then

x = 2n, z = rn, n ∈ N. (3.24)

When n = 1, from (1.1), (3.2), and (3.24) we see that (x, y, z) = (2, 2, r), which

is a contradiction.

When n > 1, by (1.1), (3.2) and (3.24), we have

by = cz − ax = crn − a2n = (cr − a2)

(
crn − a2n

cr − a2

)
= b2

(
crn − a2n

cr − a2

)
. (3.25)

Thus we get y > 2 and

by−2 =
crn − a2n

cr − a2
. (3.26)

Since crn−a2n

cr−a2 ≡ na2n−2 (mod b2), we deduce that b | n and

b ≤ n. (3.27)
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On the other hand, applying Lemma 1 to (3.26), we get n ≤ 6. Hence, by (3.27),

we have b ≤ 6. But, from Lemma 6 we deduce b3 > a2 and

252 = 63 + 62 ≥ b3 + b2 > a2 + b2 = cr ≥ c7 > 57 = 78125,

which is a contradiction. Thus, we have rx ̸= 2z. Using the same analysis, we

can prove that ry ̸= 2z for 2 - r. The lemma is proved. �

Lemma 8. If ax > by or by > ax, then rx > 2z or ry > 2z, respectively.

Proof. If ax > by, then from (1.1) we get 2ax > cz. Hence, by (3.6) and

(3.1), we have

2c
rx
2 cosx(rθ) > cz. (3.28)

Now we assume that rx ≤ 2z. By Lemma 7, we have rx ̸= 2z. This implies that

rx < 2z and 2z − rx ≥ 1. Therefore, by (3.28), we get 2 ≥ 2 cosx(rθ) >
√
c =√

m2 + 1 > m ≥ 2, which is a contradiction. Thus, we have rx > 2z.

Using the same method, one can prove that if by > ax, then ry > 2z. The

lemma is proved. �

Lemma 9. If 2 | r and m > 2r3, then

z +
1

2
r(r − 1)x ≥ mr3. (3.29)

Proof. Since 2 | r, by (1.2) and (3.1), we have

a = V (m, r) = (−1)
r
2

r
2∑

i=0

(−1)i
(
r

2i

)
m2i,

b = U(m, r) = (−1)
r
2−1m

r
2−1∑
i=0

(−1)i
(

r

2i+ 1

)
m2i. (3.30)

Hence, we use (3.1) and (3.30) to get

ax ≡ (−1)
rx
2

(
1−

(
r

2

)
m2x

)
(mod m4), cz ≡ 1 +m2z (mod m4). (3.31)

The substitution of (3.31) into (1.1) gives

by ≡ cz − ax ≡
(
1− (−1)

rx
2

)
+

(
z + (−1)

rx
2

(
r

2

)
x

)
m2 (mod m4). (3.32)
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Equations (3.30) help to see that 2m | b, so congruence (3.32) implies that rx
2 must

be even and it becomes

by ≡
(
z +

1

2
r(r − 1)x

)
m2 (mod m4). (3.33)

When y ≥ 4, since by ≡ 0 (mod m4), from (3.33) we see that

z +
1

2
r(r − 1)x ≡ 0 (mod m2).

This implies that

z +
1

2
r(r − 1)x ≥ m2. (3.34)

As m > 2r3, we immediately get inequality (3.29).

When y = 3, we use (3.30) and (3.33) to have

(−1)
r
2−1mr3 ≡ z +

1

2
r(r − 1)x (mod m2). (3.35)

If 2 | r
2 , then from (3.35) we get(

z +
1

2
r(r − 1)x

)
+mr3 ≥ m2 > 2mr3. (3.36)

Hence, we immediately obtain (3.29). If 2 - r
2 , then we have

mr3 ≡ z +
1

2
r(r − 1)x (mod m2). (3.37)

Since mr3 < m2, from (3.37) we see that (3.29) is true.

When y = 2, from (3.30) and (3.33) we deduce that

r2 ≡ z +
1

2
r(r − 1)x (mod m2). (3.38)

As (x, y, z) ̸= (2, 2, r), we use (3.2) to get x ̸= 2. If x = 1, then

a+ b2 = cz. (3.39)

Comparing (3.2) with (3.39), we have z < r and a(a− 1) ≡ 0 (mod cz). Further-

more, as gcd(a, c) = 1, we get a−1 ≡ 0 (mod cz). Since a > 1, we have a−1 ≥ cz.

Equation (3.39) gives cz = a+ b2 > a ≥ cz +1, which is a contradiction. If x ≥ 3

and as r ≥ 7, then we have r(r−1)x
2 ≥ 3r(r−1)

2 > r2. Therefore, the congruence

(3.38) implies z + r(r−1)x
2 ≥ m2 + r2 > m2 > mr3 and (3.29) holds.

When y = 1, we use (3.30) and (3.33) to have

(−1)
r
2−1r ≡

(
z +

r(r − 1)x

2

)
m (mod m2). (3.40)

Therefore, we get m | r and r ≥ m > 2r3. This gives a contradiction and

completes the proof of Lemma 9. �
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Lemma 10. If 2 - r and m > 2r3, then

z +
1

2
r(r − 1)y ≥ mr3. (3.41)

Proof. The proof of this lemma is similar to that of Lemma 9. Since 2 - r,
by (1.2) and (3.1), we have

a = V (m, r) =

r−1
2∑

i=0

(−1)i
(
r

2i

)
m2i,

b = U(m, r) = m

r−1
2∑

i=0

(−1)i
(

r

2i+ 1

)
m2i. (3.42)

Using (3.1) and (3.42), we get

by ≡ (−1)
(r−1)y

2

(
1−

(
r

2

)
m2y

)
(mod m4), cz ≡ 1 +m2z (mod m4). (3.43)

We substitute (3.43) into (1.1) to obtain

ax ≡ cz−by ≡
(
1− (−1)

(r−1)y
2

)
+

(
z + (−1)

(r−1)y
2

(
r

2

)
y

)
m2 (mod m4). (3.44)

As m > 2r3 and m | a (see (3.42)), then the congruence (3.44) implies that (r−1)y
2

must be even. Hence, (3.44) becomes

ax ≡
(
z +

1

2
r(r − 1)y

)
m2 (mod m4). (3.45)

When x ≥ 4, since ax ≡ 0 (mod m4), we get from (3.45) that z+ 1
2r(r−1)y≡ 0

(mod m2) and z + 1
2r(r − 1)y ≥ m2 > mr3.

When x = 3, equations (3.42) and (3.45) give

(−1)
r−1
2 mr3 ≡ z +

r(r − 1)y

2
(mod m2). (3.46)

As m > 2r3 and m2 > mr3, from (3.46) we see that (3.41) is true.

When x = 2, we have
r2 ≡ z +

r(r − 1)y

2
(mod m2). (3.47)

From the beginning we consider (x, y, z) ̸= (2, 2, r), so y ̸= 2. If y = 1, then from

(1.1) we get

a2 + b = cz. (3.48)

Comparing (3.2) and (3.48) implies z < r, b(b− 1) ≡ 0 (mod cz) and b− 1 ≥ cz.
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Hence, by (3.48), we get cz = a2 + b > b ≥ cz + 1, which is a contradiction. If

y ≥ 3, since r ≥ 7, then we have z + r(r−1)y
2 > r2. Therefore, (3.47) implies that

(3.41) is true.

When x = 1, we have

(−1)
r−1
2 r ≡

(
z +

r(r − 1)y

2

)
m (mod m2). (3.49)

But, since 2 - r and 2 | m, congruence (3.49) is impossible. This completes the

proof of Lemma 10. �

Lemma 11. Let min{a, b, c} > 103. If ax > b
3y
2 or by > a

3x
2 , then x <

7215 log c or y < 7215 log c, respectively.

Proof. If ax > b
3y
2 , then from (1.1) we get

z log c = log(ax + by) = x log a+
2by

2ax + by

∞∑
i=0

e
1

2i+ 1

(
by

2ax + by

)2i

< x log a+
1

a
x
3

∞∑
i=0

1

2i+ 1

(
1

2a
x
3

)2i

< x log a+
2

a
x
3
. (3.50)

Let

Λ = z log c− x log a.

We see from (3.50) that 0 < Λ < 2

a
x
3
and

log |Λ| < log 2− x

3
log a. (3.51)

On the other hand, by Lemma 4, we have

log |Λ| > −17.61(log c)(log a)(1.78 +B)2, (3.52)

where

B = max

{
8.45, 0.23 + log

(
z

log a
+

x

log c

)}
. (3.53)

Combining (3.51) and (3.52) yields

log 2 + 17.61(log c)(log a)(1.78 +B)2 >
x

3
log a. (3.54)

Since min{a, b, c} > 103, from (3.54) we deduce

52.85(log c)(1.78 +B)2 > x. (3.55)
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When 8.45 ≥ 0.23 + log
(

z
log a + x

log c

)
, we immediately get B = 8.45 and

x < 5550 log c.

When 8.45 < 0.23 + log
(

z
log a + x

log c

)
, we have

52.85

(
2.01 + log

(
z

log a
+

x

log c

))2

>
x

log c
. (3.56)

Since z
log a < x

log c +
2

a
x
3 (log a)(log c)

< 6x
5 log c , we see that

52.85

(
2.80 + log

(
x

log c

))2

>
x

log c
. (3.57)

A straightforward computation gives x < 7215 log c.

By using the same method, we can prove that if by > a
3x
2 , then y < 7215 log c.

Therefore, the lemma is proved. �

Lemma 12. If 2 | r, then

y < 104(log c)(log a)(logB′)2, (3.58)

where

logB′ = max

{
10, 0.04 + log

(
z

log a
+

x

log c

)}
. (3.59)

Proof. Let
Λ′ = cz − ax.

Then we have Λ′ = by ̸= 0. From (3.30), we know that 4 | b, so 2y ≤ v2(Λ
′). Thus,

as c ≡ 1 (mod 4), applying Lemma 5, we immediately obtain the result. �

Using the same method, we can get the following lemma.

Lemma 13. If 2 - r, then

x < 208(log c)(log b)(logB′′)2, (3.60)

where

logB′′ = max

{
10, 0.04 + log

(
z

log b
+

y

log c

)}
. (3.61)

4. Proof of Theorem

Now we suppose that (1.1) has an exceptional solution (x, y, z). By the

results of [4], [20], and [22], this solution does not exist for 2 ≤ r ≤ 6. It will

suffice to assume that r ≥ 7. Moreover, we suppose that m > max{1015, 2r3}.
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Then, c = m2 + 1 > 1030 b
3
2 > a > b (see (3.1)). Hence (3.2) implies a >

√
cr

2 ≥√
c7

2 >
√

(1030)7

2 > 10104 and b > a
2
3 > 1069.

First we consider the case that 2 | r and r ≥ 8. We will separately study the

following four cases.

Case I : ax > b
3y
2 .

In this case, Lemma 8 helps to see that rx > 2z. Therefore, with Lemma 9,

we get r2x
2 > z + r(r−1)x

2 > mr3 and

x > 2mr. (4.1)

On the other hand, Lemma 11 implies

x < 7215 log c. (4.2)

The combination of (4.1) and (4.2) yields

m < 450.9375 log(m2 + 1). (4.3)

So m < 8119. This is a contradiction to the fact that m > 1015.

Case II : b
3y
2 > ax > by.

Since ax > by and as in Case I, x satisfies (4.1). Using Lemma 12, one can

see that y satisfies (3.58).

If 10 ≥ 0.04 + log
(

z
log a + x

log c

)
, then (3.58) and (3.59) give

y < 10400(log a)(log c). (4.4)

Since ax < b
3y
2 , we have

2x log a < 3y log b. (4.5)

Therefore, combining inequalities (4.4) and (4.5) we get

x < 15600(log b)(log c). (4.6)

Moreover, from (3.2) we know that max{a2, b2} < cr, so we have

max{2 log a, 2 log b} < r log c. (4.7)

Therefore, we get

x < 7800r(log c)2. (4.8)

The combination of (4.1) and (4.8) yields

m < 3900
(
log(m2 + 1)

)2
. (4.9)
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Then we have m < 3.6 · 106, which contradicts the condition m > 1015.

If 10 < 0.04 + log
(

z
log a + x

log c

)
, then we have

y < 104(log a)(log c)

(
0.04 + log

(
z

log a
+

x

log c

))2

. (4.10)

As ax > by, we get 2ax > ax + by = cz and

z

log a
<

x

log c
+

log 2

(log a)(log c)
<

2x

log c
. (4.11)

Therefore, we obtain

y < 104(log a)(log c)

(
1.14 + log

(
x

log c

))2

. (4.12)

Combining (4.5) and (4.12), we get

x

log c
< 156(log b)

(
1.14 + log

(
x

log c

))2

. (4.13)

Let X = x
log c , f(X) = X − 156(log b)(1.14 + logX)2, and

X0 = 3120(log b)(log log b)2. Since b > 1069, we have f(X0) > 0 and f ′(X) =

1− 312(log b)(1.14+logX)
X > 0 for X ≥ X0. Therefore, we obtain

x

log c
< 3120(log b)(log log b)2. (4.14)

As b > 1069, we have log b > (log log b)2 and

x < 3120(log b)2(log c). (4.15)

Then (4.7) and (4.15) imply

x < 780r2(log c)3. (4.16)

With (4.1), we get

m < 390r(log c)3. (4.17)

Using m > 2r3, we have m
1
3 > r and

m
2
3 < 390(log(m2 + 1))3. (4.18)

A straightforward computation gives m < 3 · 1011. This contradicts m > 1015.
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Case III : a
3x
2 > by > ax.

Since a > b (see Lemma 6) and by > ax, we get y > x. In addition, by

Lemma 8, we have ry > 2z. Therefore, Lemma 9 helps us to see that

y > 2mr. (4.19)

On the other hand, by Lemma 12, y satisfies (3.58).

Now, if 10 ≥ 0.04+ log
(

z
log a + x

log c

)
, then y satisfies (4.4). The combination

of (4.4) and (4.19) yields

mr < 5200(log a)(log c). (4.20)

Inequality (4.7) helps to get

m < 2600(log(m2 + 1))2. (4.21)

This implies thatm < 2.3·106, which is a contradiction to the conditionm > 1015.

If 10 < 0.04 + log
(

z
log a + x

log c

)
, then y satisfies (4.10). Again here, we see

that the following inequalities a > b, by > ax, 2by > cz, and log 2 + y log a >

log 2 + y log b > z log c are true. This implies that

z

log a
<

z

log b
<

y

log c
+

log 2

(log b)(log c)
<

2y

log c
. (4.22)

Recall that y > x. So (4.10) and (4.22) yield

y

log c
< 104(log a)

(
1.14 + log

(
y

log c

))2

. (4.23)

Similarly, we get

y < 2080(log a)(log log a)2(log c) < 2080(log a)2(log c). (4.24)

Also using (4.7) and (4.24), we have

y < 520r2(log c)3. (4.25)

Since m > 2r3, we use (4.19) and (4.25) to obtain

m
2
3 < 260

(
log(m2 + 1)

)3
. (4.26)

Thus m < 3 · 1011. Again we have a contradiction to the fact that m > 1015.
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Case IV : by > a
3x
2 .

Since by > ax, then ry > 2z (see Lemma 8). Moreover, by > a
3x
2 and a > b

imply y > 3x
2 . Therefore, by Lemma 9, y must satisfy (4.19).

On the other hand, by > a
3x
2 and Lemma 11, give

y < 7215 log c. (4.27)

Again here, we use (4.19) and (4.27) to come to a contradiction. Thus, the

theorem is proved for 2 | r.
Finally, we consider the case 2 - r. Using a method similar to that in the

proof of the case 2 | r and replacing Lemmas 9 and 12 by Lemmas 10 and 13

respectively, we come to the same conclusion. This completes the proof of the

theorem.
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