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On Einstein square metrics

By ZHONGMIN SHEN (Indianapolis) and CHANGTAO YU (Guangzhou)

Abstract. Square metrics arise from several classification problems in Finsler ge-

ometry. Some of them have special geometric properties. In particular, there are non-

trivial projectively flat square metrics with vanishing Riemann curvature. In this paper,

we give two expressions for a square metric. We show that Einstein square metrics can

be classified up to the classification of Einstein Riemannian metrics.

1. Introduction

Finsler metrics are metrics without quadratic restriction. The notion of Ricci

curvature is well defined for Finsler metrics. Finsler metrics of isotropic Ricci

curvature are called Einstein (Finsler) metrics. One of important problems in

Finsler geometry is to characterize and/or construct Einstein Finsler metrics.

Many valuable results have been achieved, most of which are related to a special

class of Finsler metrics named (α, β)-metrics which are computable.

Finsler metrics, given in the following form

F = αϕ(s), s =
β

α
,

where α is a Riemannian metric, β is a 1-form and ϕ is a smooth function,

are called (α, β)-metrics. The simplest and most important (α, β)-metrics are
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Randers metrics defined by ϕ = 1 + s. A Randers metric F = α+ β can be also

rewritten via the navigation problem as follows

F =

√
(1− |W |2h)h2 + (W ♭)2

1− |W |2h
− W ♭

1− |W |2h
, (1.1)

where h and W are a Riemannian metric and a vector field respectively, and W ♭

is the 1-form defined by W ♭(y) := h(W, y). They are related to the original data

by

h =
√

1− b2
√
α2 − β2, W ♭ = −(1− b2)β.

Notice that the Randers metric F = α+β is regular if and only if b := ∥β∥α < 1,

or equivalently, |W |h < 1.

In 2004, D. Bao, C. Robles and the first author classified Randers metrics

with constant flag curvature using the navigation expression in (1.1). They show

that F = α+β is of constant flag curvature if and only if h is of constant sectional

curvature and W is a homothetic vector field with respect to h. i.e.,

Wi|j +Wj|i = chij

for some constant c. They also give a local explicit formula for Randers metrics

of constant flag curvature ([3]).

Also with the help of the navigation problem, D. Bao and C. Robles give a

characterization for Einstein metrics of Randers type [2]: F = α+β is an Einstein

metric if and only if h is an Einstein metric and W is a homothetic vector field

with respect to h.

There is another class of special (α, β)-metrics which also have interesting

geometric properties. A square metric is defined by ϕ = (1 + s)2:

F =
(α+ β)2

α
. (1.2)

The first interesting example of square metrics was constructed by L. Berwald

in 1929 [4].

F =

(√
(1− |x|2)|y|2 + ⟨x, y⟩2 + ⟨x, y⟩

)2
(1− |x|2)2

√
(1− |x|2)|y|2 + ⟨x, y⟩2

. (1.3)

It is projectively flat on the unit ball Bn with constant flag curvature K = 0.

Berwald’s metric is a square metric expressed in the form (1.2) with

α =

√
(1− |x|2)|y|2 + ⟨x, y⟩2

(1− |x|2)2
, β =

⟨x, y⟩
(1− |x|2)2

.
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The square metrics arise from several classification problems. In 2007, Li–

Shen classified projectively flat (α, β)-metrics of constant flag curvature [10].

They show that such Finsler metrics of non-Randers type are essentially square

metrics. Later on, L. Zhou proves that any square metric with constant flag

curvature must be locally projectively flat [15]. Recently Cheng–Tian and Sevim–

Shen–Zhao have studied Einstein (α, β)-metrics of Douglas type. They show that

such Finsler metrics of non-Randers type are also square metrics.

The main purpose of this paper is to determine the structure of Einstein

square metrics F = (α+β)2

α . Firstly, we have the following result.

Theorem 1.1. Let F = (α+β)2

α be a Finsler metric on an n-dimensional

manifold M . Then F is an Einstein metric if and only if it is Ricci flat and

α Ric = k2(1− b2)2
{
−[5(n− 1) + 2(2n− 5)b2]α2 + 6(n− 2)β2

}
, (1.4)

bi|j = k(1− b2)
{
(1 + 2b2)aij − 3bibj

}
, (1.5)

where k is a constant number.

Theorem 1.1 under an additional condition of β being closed is proved in [16].

Theorem 1.1 under an additional condition of F being of Douglas type is proved

independently by Cheng–Tian [8] and Sevim–Shen–Zhao ([12]). Recently,

Chen–Shen–Zhao find explicit solutions of (1.4) and (1.5) in terms of (n − 1)-

dimensional Riemannian Einstein metrics [6].

Using suitable deformations of α and β, we can express a square metric

F = (α+β)2/α using another choice of Riemannian metric α̃ and 1-form β̃ so that

the square metric is an Einstein metric if and only if α̃ is an Einstein metric and

β̃ is conformal (see Theorem 1.2 below). This is very similar to Randers metrics.

Then we can also determine the local structure of Einstein square metrics (see

Proposition 4.2 below).

Theorem 1.2. Let F = (α+β)2

α be a Finsler metric on an n-dimensional

manifold M . Then the following are equivalent:

(1) F is an Einstein metric;

(2) The Riemannian metric α̃ := (1− b2)α and the 1-form β̃ :=
√
1− b2β satisfy

α̃Ric = −(n− 1)k2α̃, b̃i|j = k

√
1 + b̃2 ãij , (1.6)

where k is a constant number, b̃ = ∥β̃∥α̃, and b̃i|j is the covariant derivation

of β̃ with respect to α̃. In this case, F is given in the following form

F =

(√
1 + b̃2 α̃+ β̃

)2
α̃

(1.7)
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with (1 + b̃2)(1− b2) = 1.

(3) The Riemannian metric ᾱ := (1− b2)
3
2

√
α2 − β2 and the 1-form

β̄ := (1− b2)2β satisfy

ᾱRic = 0, b̄i|j = kāij , (1.8)

where k is a constant number, b̄ = ∥β̄∥ᾱ and b̄i|j is the covariant derivation

of β̄ with respect to ᾱ. In this case, F is given in the following form

F =

(√(
1− b̄2

)
ᾱ2 + β̄2 + β̄

)2

(
1− b̄2

)2√(
1− b̄2

)
ᾱ2 + β̄2

(1.9)

with b̄ = b.

For example, if we take ᾱ = |y| and β̄ = ⟨x, y⟩, then the Finsler metric F

given by (1.9) is just the Berwald’s metric (1.3).

It’s worth mentioning that the expressions (1.1), (1.7) and (1.9) are all in the

following special form

F = αϕ(b2, s), s =
β

α
(1.10)

for some smooth function ϕ(b2, s). This kind of Finsler metrics belongs to a new

class of Finsler metrics called general (α, β)-metrics, which is proposed by the

second author as a generalization of Randers metrics from the geometric point of

view [14]. General (α, β)-metrics include all the (α, β)-metrics naturally.

It is easy to see that the corresponding functions of (1.1), (1.7) and (1.9) are

given by (1.10) with

ϕ(b2, s) =

√
1− b2 + s2

1− b2
− s

1− b2
, ϕ(b2, s) =

(√
1 + b2 + s

)2
and

ϕ(b2, s) =

(√
1− b2 + s2 + s

)2
(1− b2)2

√
1− b2 + s2

,

respectively. It is marvelous that all these functions ϕ = ϕ(b2, s) satisfy a simple

partial differential equation

ϕ22 = 2(ϕ1 − sϕ12),

where ϕ1 means the derivation of ϕ with respect to the first variable b2 [14].

As mentioned in Theorem 1.1 above, Einstein square metrics must be Ricci-

flat. This can be verified directly using Theorem 1.2 (2) or (3). In fact, if F =
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(α + β)2/α is expressed in the form (1.7) with α̃ and β̃ satisfying (1.6) or in

the form (1.9) with ᾱ and β̄ satisfying (1.8), then one can verify that the Ricci

curvature of F must vanish using the formula (4.3) in [13] for the Ricci curvature

of a general (α, β)-metrics.

In our opinion, general (α, β)-metrics bring great freedom, which makes it

possible to seek the most appropriate description for some specific (α, β)-metrics

or general (α, β)-metrics. The expressions (1.7) and (1.9) are more complicated

than (1.2) in algebra form, but they have the advantage of clearly illuminating the

underlying geometry, just as the navigation expression (1.1) for Randers metrics.

In 2008, the second author proved in his doctoral dissertation that the Finsler

metric F = (α+β)2

α is locally projectively flat if and only if the corresponding

Riemannian metric in (1.7) or (1.9) is locally projectively flat and the 1-form is

closed and conformal with respect to the Riemannian metric. We believe that the

expression (1.7), especially (1.9), are tailored for the (α, β)-metric F = (α+β)2

α ,

although it seems that a good physical or geometric description for this metric

has not yet been identified.

Finally, with an argument similar to that in Section 3, we can provide a new

description for such kind of (α, β)-metrics with constant flag curvature.

Theorem 1.3. The Finsler metric F = (α+β)2

α is of constant flag curvature

if and only if under the expression (1.9) of F , ᾱ is locally Euclidean, β̄ is closed

and a homothety with respect to ᾱ. In a suitable local coordinates, F can be

expressed by

F =

(√
(1− |x̄|2)|y|2 + ⟨x̄, y⟩2 + ⟨x̄, y⟩

)2
(1− |x̄|2)2

√
(1− |x̄|2)|y|2 + ⟨x̄, y⟩)2

, (1.11)

where x̄ := cx+a for some constant number c and constant vector a. In particular,

F must be locally projectively flat with zero flag curvature.

2. Preliminaries

Fix a Finsler metric F on a n-dimensional smooth manifold M . There is a

global vector field G on the slit tangent bundle TM\{0} which is called a spray.

In local coordinates, G = yi ∂
∂xi − 2Gi ∂

∂yi where

Gi =
1

4
gil

{
[F 2]xkylyk − [F 2]xl

}
are the geodesic spray coefficients. Here (gij) is the inverse of the Hessian gij =
1
2 [F

2]yiyj .
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By Berwald’s formulae, the components of the Riemann curvature tensor

of F are given by

Ri
k = 2

∂Gi

∂xk
− ∂2Gi

∂xmyk
ym + 2Gm ∂2Gi

∂ym∂yk
− ∂Gi

∂ym
∂Gm

∂yk
.

A Finsler metric is said to be of constant flag curvature K if and only if

Ri
k = K(δikF

2 − yigkjy
j).

The Ricci curvature Ric of F is the trace of the flag curvature tensor. A Finsler

metric is called an Einstein metric if Ric = (n − 1)cF 2 for some scalar function

c = c(x) on M . The Schur Lemma for Ricci curvature is true for Randers metrics

[2], but it is still a conjecture in general case.

Besides the Riemann curvature tensor, there is a non-Riemannian quantity

introduced by J. Douglas given by

Dj
i
kl =

(
Gi − 1

n+ 1

∂Gm

∂ym
yi
)

yjykyl

.

A Finsler metric is said to be Douglas if Dj
i
kl = 0. Douglas metrics are those

with projectively affine geodesics.

Given an (α, β)-metric F = αϕ
(
β
α

)
. Let bi|j denote the coefficients of the

covariant derivative of β = biy
i with respect to α, and

rij =
1

2
(bi|j + bj|i), sij =

1

2
(bi|j − bj|i), r00 = rijy

iyj ,

si0 = sijy
j , si0 = aijsj0, r0 = rijb

iyj , s0 = sijb
iyj .

It is easy to see that β is closed if and only if sij = 0.

According to [5], the geodesic spray coefficients Gi are given by

Gi = αGi + αQsi0 + α−1Θ(−2αQs0 + r00)y
i +Ψ(−2αQs0 + r00)b

i,

where

Q =
ϕ′

ϕ− sϕ′ , Θ =
(ϕ− sϕ′)ϕ′ − sϕϕ′′

2ϕ
(
ϕ− sϕ′ + (b2 − s2)ϕ′′

) , Ψ =
ϕ′′

2
(
ϕ− sϕ′ + (b2 − s2)ϕ′′

) ,
and

αGi =
1

4
ail

{
[α2]xkylyk − [α2]xl

}
(2.1)
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are the geodesic spray coefficients of the Riemannian metric α.

Furthermore, if the geodesic spray coefficients of a Finsler metric F are given

by

Gi = αGi +Qi,

then the Riemann curvature of F is related to that of α and given by

Ri
j =

αRi
j + 2Qi

|j − ymQi
|m.j + 2QmQi

.m.j −Qi
.mQm

.j ,

where “|” and “.” denote the horizontal covariant derivative and vertical covariant

derivative with respect to α respectively. So

Ric = α Ric+2Qi
|i − yjQi

|j.i + 2QjQi
.j.i −Qi

.jQ
j
.i, (2.2)

where α Ric is the Ricci curvature of α.

Using a Maple program, one can obtain formulas for the Riemann curvature

and the Ricci curvature [7]. Using those formulas, one can obtain equations on α

and β that characterize Einstein square metrics. However, due to the complexity

of the formulas, people only consider some special cases when the square metric

is of Douglas type or when the 1-form of the square metric is closed.

Theorem 2.1 ([8], [12], [16]). Let F = (α+β)2

α be a Finsler metric on an

n-dimensional manifold M . Suppose that F is of Douglas type (n ≥ 3) or β is

closed. Then F is an Einstein metric if and only if it is Ricci flat and

α Ric = τ2
{
−[5(n− 1) + 2(2n− 5)b2]α2 + 6(n− 2)β2

}
, (2.3)

bi|j = τ
{
(1 + 2b2)aij − 3bibj

}
, (2.4)

τi = −2τ2bi, (2.5)

where τ = τ(x) is a function on M .

It is known that for a square metric F = (α + β)2/α in dimension n ≥ 3, if

it is of Douglas type, then β is closed [9]. Sevim–Shen–Zhao andCheng–Tian

independently show that for a square metric F = (α+ β)2/α of Douglas type in

dimension n ≥ 3, it is Einstein if and only if (2.3)–(2.3) are satisfied. Meanwhile,

Zohrehvand–Rezaii prove that if β is closed, then F is Einstein if and only if

(2.3)–(2.3) are satisfied. In this case, no restriction on n is needed and F is of

Douglas type. Thus these two versions are equivalent at least in dimension n ≥ 3.

In this paper, we make the following simple observation that in any dimen-

sion, if a square metric F = (α + β)2/α is Einstein, then the 1-form β must be

closed (Lemma 2.2 below). Therefore, the additional conditions in Theorem 2.1

can be dropped.
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Lemma 2.2. If the Finsler metric F = (α+β)2

α is an Einstein metric, then β

is closed.

Proof. By the proof of Lemma 4.2 in [15], we can see that if F = (α+β)2

α

has constant Ricci curvature, then β must satisfy

sk0sk0 = 0, rij = τ{(1 + 2b2)aij − 3bibj}, (2.6)

where τ is a smooth function on the manifold. The first condition means sk0 (as

a vector) is zero, so β is closed. �

We can show that the function τ in Theorem 2.1 depends only on the length

of β.

Lemma 2.3. Under the conditions of Theorem 2.1,

τ = k(1− b2),

where k is a constant.

Proof. It suffices to verify that the derivative of τ
1−b2 is zero. �

With the above lemmas, we can prove Theorem 1.1.

Proof of Theorem 1.1. Suppose that F = (α+β)2

α is an Einstein metric,

then by Lemma 2.2 and the second equality of (2.6) we have

bi|j = τ{(1 + 2b2)aij − 3bibj},

which means that F is of Douglas type [9]. So Theorem 2.1 and Lemma 2.3 imply

Theorem 1.1 immediately. �

3. Proof of Theorem 1.2

Suppose that α̃ = (1− b2)α, then by (2.1) and (2.4) we have

α̃Gi = αGi + τ(α2bi − 2βyi).

Let Q̃i = τ(α2bi − 2βyi), then

Q̃i
|i = τ2

{
(n− 2)(1 + 2b2)α2 − 5(b2α2 − 2β2)

}
,

yjQ̃i
|j.i = −2nτ2

{
(1 + 2b2)α2 − 5β2

}
,
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Q̃i
.jQ̃

j
.i = −4τ2

{
2b2α2 − (n+ 2)β2

}
,

Q̃jQ̃i
.j.i = −2nτ2(b2α2 − 2β2).

So by (2.2) and Lemma 2.3 we obtain

α̃Ric = −(n− 1)τ2α2 = −(n− 1)k2α̃2.

On the other hand, direct computations show that

b̃i|j = τ
√
1− b2aij =

k√
1− b2

ãij ,

so b̃i|j = k
√
1 + b̃2ãij because

(1− b2)(1 + b̃2) = 1.

Conversely, one can verify directly that if α̃ and β̃ satisfy (1.6), then the

Riemannian metric α = (1+ b̃2)α̃ and the 1-form β =
√
1 + b̃2β̃ satisfy (1.4) and

(1.5) since the argument above are reversible.

1 ⇔ 3

Suppose that ᾱ = (1− b2)
3
2

√
α2 − β2, then by (2.1) and (2.4) we have

ᾱGi = αGi + τ(α2bi − 3βyi).

Let Q̄i = τ(α2bi − 3βyi), then

Q̄i
|i = τ2

{
(n− 3)(1 + 2b2)α2 − 5(b2α2 − 3β2)

}
,

yjQ̄i
|j.i = −(3n+ 1)τ2

{
(1 + 2b2)α2 − 5β2

}
,

Q̄i
.jQ̄

j
.i = −τ2

{
12b2α2 − (9n+ 19)

}
,

Q̄jQ̄i
.j.i = −(3n+ 1)τ2(b2α2 − 3β2).

So by (2.2) and Lemma 2.3 we obtain

ᾱRic = 0.

On the other hand, direct computations show that

b̄i|j = τ(1− b2)2(aij − bibj) = kāij .

In this case,

b̄ = b.

Conversely, one can verify directly that if ᾱ and β̄ satisfy (1.8), then the

Riemannian metric α = (1 − b̄2)−2
√
(1− b̄2)ᾱ2 + β̄2 and the 1-form β = (1 −

b̄2)−2β̄ satisfy (1.4) and (1.5) since the argument above are reversible.
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4. Examples

Using Theorem 1.2, one can easily characterize Einstein square metrics up

to the classification of Einstein metrics with non-negative Ricci constant. First

we need the following

Lemma 4.1 ([11]). If there are smooth functions f and λ on a Riemannian

manifold (M,α) such that Hessαf = λα2, then the Riemannian structure is a

warped product around any point where df ̸= 0. In particular, α2 = dt ⊗ dt +

(f ′(t))2ᾰ2 where f depends on the parameter t.

The Riemannian metric ᾱ and the 1-form β̄ in Theorem 1.2 (3) can be de-

termined.

Proposition 4.2. Let ᾱ be a Riemannian metric on an n-dimensional man-

ifold M and β̄ an 1-form (n ≥ 3). Then ᾱ is Ricci flat and b̄i|j = kāij for some

constant number k if and only if ᾱ is locally a warped product metric on R× M̆

and β̄ is an 1-form determined by the first factor R:

ᾱ2 = dt⊗ dt+ (kt+ d)2ᾰ2, (4.1)

β̄ = (ct+ d)dt (4.2)

for some constant number d satisfying k2 + d2 ̸= 0, where ᾰ is an Einstein metric

on M̆ with
ᾰ Ric = (n− 2)c2ᾰ2.

Proof. Because β̄ is closed, we can assume that locally β̄ = df ̸= 0 for some

smooth function. It is easy to see that the condition b̄i|j = kāij is equivalent to

Hessᾱf = kᾱ2. By Lemma 4.1, ᾱ = dt⊗ dt+h2(t)ᾰ2 is locally a warped product

metric on R × M̆ where h(t) = f ′(t). By taking the trace of the Riemannian

curvature tensor with the warped product metric ᾱ given in § 13.3 of [1], we have

ᾱRic = ᾰ Ric−(n− 1)
h′′

h
y1y1 −

[
h′′h+ (n− 2)(h′)2

]
ᾰ2.

Because ᾱ is Ricci flat, we obtain

ᾰRic− (n− 1)
h′′

h
y1y1 −

[
h′′h+ (n− 2)(h′)2

]
ᾰ2 = 0.

Note that ᾰ and ᾰRic are both independent of y1, and the above equality means

h′′(t) = 0, ᾰRic = (n− 2)(h′)2ᾰ2.

On the other hand, a direct computation shows that the covariant derivation of

β̄ = h(t) dt with respect to ᾱ is given by b̄i|j = h′(t)āij , so h′(t) = k and hence

h(t) = kt+ d for some constant number d. �
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By Theorem 1.2 and Proposition 4.2, one can characterize Einstein square

metrics. Note that if the dimension of the manifold is three or four, then ᾰ in

Proposition 4.2 must have constant sectional curvature K̆ = 1. Thus ᾱ is flat and

F must have vanishing flag curvature K = 0. Namely, an Einstein square metric

in dimension ≤ 4 must be locally isometric to the metric in (1.11).
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