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Groups, partitions and representation functions

By SÁNDOR Z. KISS (Budapest), ESZTER ROZGONYI (Budapest)

and CSABA SÁNDOR (Budapest)

Abstract. Let X be a semigroup written additively and h ≥ 2 a fixed integer. Let

x be an element of X and A1, . . . , Ah be nonempty subsets of X. Let RA1+···+Ah(x)

denote the number of solutions of the equation a1 + · · · + ah = x, where ai ∈ Ai. In

this paper for X = N we give a necessary and sufficient condition such that the equality

RA1+A2(n) = RX\A1+X\A2
(n) holds from a certain point on. We study similar questions

when X = Zm and in general when X = G, where G is a finite additive group.

1. Introduction

Let X be a semigroup, written additively. Let A1, . . . , Ah be nonempty

subsets of X and let x be an element of X. We denote by |A| the cardinality of

the set A. We define the ordered representation function

RA1+···+Ah
(x) = |{(a1, . . . , ah) ∈ A1 × · · · ×Ah : a1 + · · ·+ ah = x}|.

If Ai = A for i = 1, . . . , h, then we write

R
(1)
A,h(x) = |{(a1, . . . , ah) : ai ∈ A, a1 + · · ·+ ah = x}|.

Let X be an abelian semigroup, written additively. For A ⊂ X, let Ah denote

the set of all h-tuples of A. Two h-tuples (a1, . . . , ah) ∈ Ah and (a′1, . . . , a
′
h)∈Ah

are equivalent if there is a permutation α : {1, . . . , h}→{1, . . . , h} such that
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aα(i) = a′i for i = 1, . . . , h. Two other representation functions arise often and

naturally in additive number theory. The unordered representation function

R
(2)
A,h(x) counts the number of equivalence classes of h-tuples (a1, . . . , ah) such

that a1 + . . .+ ah =x. The unordered restricted representation function R
(3)
A,h(x)

counts the number of equivalence classes of h-tuples (a1, . . . , ah) of pairwise dis-

tinct elements of A such that a1+· · ·+ah = x. It is easy to see that the definitions

of the unordered and the unordered restricted representation functions make sense

only in Abelian groups.

Alternative definitions for R
(2)
A,2(x) and R

(3)
A,2(x) are the following. Denote by

DA(x) = |{a : a ∈ A, a+ a = x}|
then

R
(2)
A,2(x) =

1

2
R

(1)
A,2(x) +

1

2
DA(x) (1)

and

R
(3)
A,2(x) =

1

2
R

(1)
A,2(x)−

1

2
DA(x). (2)

Let N be the set of nonnegative integers. Let X = N. Sárközy asked if there

exist two sets A and B with |A∆B| = ∞ such that R
(i)
A,2(n) = R

(i)
B,2(n), for

i = 1, 2, 3 and for all sufficiently large n. For i = 2 Dombi [3] proved that the

answer is positive and for i = 1 the answer is negative. For i = 3 Chen and

Wang [1] proved that the set of natural numbers can be partitioned into two

subsets A and B such that R
(3)
A,2(n) = R

(3)
B,2(n) for every n large enough. Lev

[5] and independently Sándor [6] characterized all subsets A ⊂ N such that

R
(2)
A,2(n) = R

(2)
N\A,2(n) or R

(3)
A,2(n) = R

(3)
N\A,2(n) for big enough n. The precise

theorems are the following.

Theorem (Lev, Sándor, 2004). Let X = N. Let N be a positive integer.

The equality R
(2)
A,2(n) = R

(2)
N\A,2(n) holds for n ≥ 2N−1 if and only if |A∩[0, 2N−

1]| = N and 2m ∈ A ⇔ m ∈ A, 2m+ 1 ∈ A ⇔ m ̸∈ A for m ≥ N .

Theorem (Lev, Sándorn, 2004). Let X = N. Let N be a positive integer.

The equality R
(3)
A,2(n) = R

(3)
N\A,2(n) holds for n ≥ 2N−1 if and only if |A∩[0, 2N−

1]| = N and 2m ∈ A ⇔ m ̸∈ A, 2m+ 1 ∈ A ⇔ m ∈ A for m ≥ N .

Tang [4] gave an elementary proofs of Lev and Sándor’s results. In [7],

[8], [9], [10]. Chen and Yang studied related problems about weighted represen-

tation functions. Similar statement to the above theorems can not be formulated

for the representation function R
(1)
A,2(n) because R

(1)
A,2(n) is odd if and only if

n
2 ∈ A, therefore either R

(1)
A,2(2m) or R

(1)
N\A,2(2m) is odd. A nontrivial result is the

following in this direction.
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Theorem 1. Let X = N. The equality R
(1)
A+B(n) = R

(1)
N\A+N\B(n) holds

from a certain point on if and only if |N \ (A ∪B)| = |A ∩B| < ∞.

The modular questions were solved by Chen and Yang [3].

Theorem (Chen, Yang, 2012). Let X = Zm. The equality R
(1)
A,2(n) =

R
(1)
Zm\A,2(n) holds for all n ∈ Zm if and only if m is even and |A| = m/2.

Theorem (Chen, Yang, 2012). Let X = Zm. For i ∈ {2, 3}, the equality

R
(i)
A (n) = R

(i)
Zm\A(n) holds for all n ∈ Zm if and only if m is even and t ∈ A ⇔

t+m/2 ̸∈ A for t = 0, 1, . . . ,m/2− 1.

We extend the first theorem to arbitrary finite group G and the second the-

orem to finite Abelian group.

Theorem 2. Let X = G be a finite group. Then

(i) If there exists a g ∈ G for which the equality RA+B(g) = RG\A+G\B(g)

holds, then |A|+ |B| = |G|.
(ii) If |A| + |B| = |G|, then the equality RA+B(g) = RG\A+G\B(g) holds for all

g ∈ G.

We generalize Chen and Yang’s theorems in the following way.

Theorem 3. Let X = G be a finite group and h ≥ 2 a fixed integer.

(i) If the equality R
(1)
A,h(g) = R

(1)
G\A,h(g) holds for all g ∈ G, then |G| is even and

|A| = |G|/2.
(ii) If h is even and |A| = |G|/2 then R

(1)
A,h(g) = R

(1)
G\A,h(g) holds for all g ∈ G.

The case when h is odd is still open.

Problem. Let h > 1 be a fixed odd positive integer. Let G be an Abelian

group and A ⊂ G be a nonempty subset. Does there exist a g ∈ G such that

R
(1)
A,h(g) ̸= R

(1)
G\A,h(g)?

When h is odd we can only prove the following weaker result.

Theorem 4. Let X = Zm and h > 2 be a fixed odd integer. If A ⊂ Zm such

that |A| = m/2 then there exists a g ∈ Zm such that R
(1)
A,h(g) ̸= R

(1)
Zm\A,h(g).

It would be interesting to characterize all that partitions of a finite Abelian

group G such that R
(1)
Ai,h

(g) = R
(1)
Aj ,h

(g) for every g ∈ G.

Problem. Let G be an Abelian group and h ≥ 2. Characterize all the

partitions of G into pairwise disjoint sets A1, A2, . . . , Ah such that for every g ∈ G

and for every 1 ≤ i, j ≤ h, R
(1)
Ai,h

(g) = R
(1)
Aj ,h

(g).
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For the two other representation functions we have the following result.

Theorem 5. LetX = G be a finite Abelian group. For i ∈ {2, 3} the equality
R

(i)
A (g) = R

(i)
G\A,2(g) holds for every g ∈ G, if and only if DA(g) = DG\A(g) for

every g ∈ G.

2. Proofs

Proof of Theorem 1. Let A(x) =
∑

a∈A xa be the generating function of

the set A and let B(x) =
∑

b∈B xb be the generating function of the set B. It is

easy to see that

A(x)B(x) =

(∑
a∈A

xa

)(∑
b∈B

xb

)
=

∞∑
n=0

RA+B(n)x
n.

Since
1

1− x
−A(x) =

∞∑
n=0

xn −
∑
a∈A

xa =
∑

a∈N\A

xa,

and similarly

1

1− x
−B(x) =

∞∑
n=0

xn −
∑
b∈B

xb =
∑

b∈N\B

xb,

it follows that( 1

1− x
−A(x)

)( 1

1− x
−B(x)

)
=

∞∑
n=0

RN\A+N\B(n)x
n.

Hence the condition RA+B(n) = RN\A+N\B(n) holds from a certain point on is

equivalent to

A(x)B(x)−
( 1

1− x
−A(x)

)( 1

1− x
−B(x)

)
= p(x),

where p(x) is a polynomial with integral coefficients. This is equivalent to

A(x) +B(x) =
1

1− x
+ p(x)(1− x). (3)

Let

1

1− x
+ p(x)(1− x) =

∞∑
n=0

xn +

N∑
n=0

dnx
n =

∞∑
n=0

cnx
n,
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where cn = 0, 1 or 2. As
∑N

n=0 dn = 0, it follows that the equation (3) holds if

and only if cn = 1 except for finitely many integer n and the number of n for

which cn = 0 is equal to the number of n for which cn = 2. This is equivalent to

the condition |N \ (A ∪B)| = |A ∩B| < ∞. �

Proof of Theorem 2. For a given S ⊂ G we denote by χS its character-

istic function, that is χS(g) = 1 if g ∈ S and χS(g) = 0 if g ̸∈ S for every g ∈ G.

It follows that χG\S(g) = 1 if g ∈ G \ S, i.e., g ̸∈ S and χG\S(g) = 0 if g ̸∈ G \ S,
i.e., g ∈ S. Thus we have

χG\S = 1− χS . (4)

It is easy to see that

RA+B(g) =
∑

c+d=g
c,d∈G

χA(c)χB(d) =
∑
c∈G

χA(c)χB(−c+ g),

RG\A+G\B(g) =
∑

c+d=g
c,d∈G

χG\A(c)χG\B(d) =
∑
c∈G

χG\A(c)χG\B(−c+ g).

It follows from (4) that for every g ∈ G we have

RA+B(g)−RG\A+G\B(g) =
∑
c∈G

χA(c)χB(−c+ g)−
∑
c∈G

χG\A(c)χG\B(−c+ g)

∑
c∈G

χA(c)χB(−c+ g)−
∑
c∈G

(1− χA(c))(1− χB(−c+ g))

=
∑
c∈G

χA(c) +
∑
c∈G

χB(−c+ g)−
∑
c∈G

1 = |A|+ |B| − |G|.

Hence if there exists a g ∈ G such that RA+B(g) = RG\A+G\B(g) then |A|+ |B| =
|G| and if |A|+ |B| = |G| then RA+B(g) = RG\A+G\B(g) for every g ∈ G. �

Proof of Theorem 3.

R
(1)
A,h(g) = R

(1)
G\A,h(g) (5)

holds for all g ∈ G. It is clear that∑
g∈G

R
(1)
A,h(g) = |A|h,

and ∑
g∈G

R
(1)
G\A,h(g) = |G \A|h.
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It follows from (5) that |A|h = |G\A|h which implies |A| = |G|/2, which proves (i).

In the next step we prove (ii). Assume that h is even. For h = 2 the statement

follows immediately from Theorem 2. Let h > 2. Then we have

R
(1)
A,h(g) = |{(a1, a2, . . . , ah) : ai ∈ A, a1 + . . . + ah = g}|

=
∑

g1,...,gh/2∈G
g1+...+gh/2=g

|{(a1, a2, . . . , ah) : ai ∈ A, a1 + a2 = g1, . . .

. . . , ah−1 + ah = gh/2, a1 + . . . + ah = g}|

=
∑

g1,...,gh/2∈G
g1+...+gh/2=g

|{(a1, a2)∈A : a1+a2=g1}| · · · |{(ah−1, ah)∈A : ah−1+ah=gh/2}|

=
∑

g1,...,gh/2∈G
g1+...+gh/2=g

R
(1)
A,2(g1) · · ·R

(1)
A,2(gh/2) =

∑
g1,...,gh/2∈G
g1+...+gh/2=g

R
(1)
G\A,2(g1) · · ·R

(1)
G\A,2(gh/2)

=
∑

g1,...,gh/2∈G
g1+...+gh/2=g

|{(a1, a2) ∈ G \A : a1 + a2 = g1}| · · ·

· · · |{(ah−1, ah) ∈ G \A : ah−1 + ah = gh/2}|

=
∑

g1,...,gh/2∈G
g1+...+gh/2=g

|{(a1, a2, . . . , ah) : ai ∈ G \A, a1 + a2 = g1, . . .

. . . , ah−1 + ah = gh/2, a1 + . . . + ah = g}|

= |{(a1, a2, . . . , ah) : ai ∈ G \A, a1 + . . . + ah = g}| = R
(1)
G\A,h(g). �

Proof of Theorem 4. We prove by contradiction. Assume that for every

g ∈ Zm, R
(1)
A,h(g) = R

(1)
Zm\A,h(g). It is easy to see that

R
(1)
A,h(g) = |{(i1, i2, . . . , ih) : ai1 + . . . + aih ≡ g mod m}|

=

h−1∑
j=0

|{(i1, i2, . . . , ih) : ai1 + . . . + aih = g + jm}|,

thus we have
m−1∑
g=0

R
(1)
A,h(g)z

g =
m−1∑
g=0

( h−1∑
j=0

|{(i1, i2, . . . , ih) : ai1 + . . . + aih = g + jm}|
)
zg.

It is clear that

Ah(z) =
h−1∑
j=0

m−1∑
g=0

|{(i1, i2, . . . , ih) : ai1 + . . . + aih = g + jm}|zg+jm
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=
m−1∑
g=0

h−1∑
j=0

|{(i1, i2, . . . , ih) : ai1 + . . . + aih = g + jm}|zg+jm.

It follows that there exist p1(z) and p2(z) polynomials with integral coefficients

such that

Ah(z) = (1− zm)p1(z) +
m−1∑
g=0

R
(1)
A,h(g)z

g,

and similarly

(1 + . . . + zm−1 −A(z))h = (1− zm)p2(z) +
m−1∑
g=0

R
(1)
Zm\A,h(g)z

g.

Thus we have

(A(z))h−
(1−zm

1−z
−A(z)

)h

=(1−zm)(p1(z)−p2(z))+
m−1∑
g=0

(R
(1)
A,h(g)−R

(1)
Zm\A,h(g))z

g.

As R
(1)
A,h(g) = R

(1)
Zm\A,h(g) for every g ∈ Zm, we have

1− zm|(A(z))h −
(
1− zm

1− z
−A(z)

)h

.

Since 1−zm

1−z |1− zm and h is odd, we have

1− zm

1− z
|2(A(z))h.

As the polynomial 1−zm

1−z = 1 + . . . + zm−1 has no multiple roots, we have

1− zm

1− z
|A(z),

which is a contradiction. �

Proof of Theorem 5. We only prove the case i = 2, because the proof of

case i = 3 is very similar. For every fixed g ∈ G we have

|A| = |{(a, y) : a ∈ A, y ∈ G, a+ y = g}|
= |{(a, y) : a∈A, y ∈ A, a+ y= g}|+ |{(a, y) : a ∈ A, y ∈G \A, a+ y = g}|

= RA+A(g) +RA+G\A(g) = 2R
(2)
A,2(g)−DA(g) +RA+G\A(g),
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thus

R
(2)
A,2(g) =

1

2
|A|+ 1

2
DA(g)−

1

2
RA+G\A(g).

Replace A by G \A and using also the fact that RA+G\A(g) = RG\A+G\(G\A)(g)

we get

R
(2)
G\A,2(g) =

1

2
|G \A|+ 1

2
DG\A(g)−

1

2
RA+G\A(g).

Hence for every g ∈ G we have

R
(2)
A,2(g)−R

(2)
G\A,2(g) =

1

2
|A|+ 1

2
DA(g)−

(
1

2
|G \A|+ 1

2
DG\A(g)

)
= |A| − 1

2
|G|+ 1

2
(DA(g)−DG\A(g)).

Suppose that R
(2)
A,2(g) = R

(2)
G\A,2(g) for every g ∈ G. Then we have(

|A|+ 1

2

)
=

∑
g∈G

R
(2)
A,2(g) =

∑
g∈G

R
(2)
G\A,2(g) =

(
|G \A|+ 1

2

)
,

therefore |A| = |G \ A|, that is |A| = |G| − |A|. Hence we get that DA(g) =

DG\A(g) for every g ∈ G.

Finally, suppose that DA(g) = DG\A(g) for every g ∈ G. Then we have

|A| = | ∪g∈G {a : a ∈ A, a+ a = g}| =
∑
g∈G

|{a : a ∈ A, a+ a = g}|

=
∑
g∈G

DA(g) =
∑
g∈G

DG\A(g) = |G \A|,

therefore |A| = |G| − |A|, thus we get that R
(2)
A,2(g) = R

(2)
G\A,2(g) for every g ∈ G,

which completes the proof. �
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