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Finsler functions for two-dimensional sprays

By MIKE CRAMPIN (Gent)

Abstract. I derive the general formula for a local Finsler function for any spray

over a two-dimensional manifold specified by its geodesic curvature function relative to

a given background Riemannian metric.

1. Introduction

It is well known that given any spray over a two-dimensional manifold there is

a locally defined Finsler function of which it is the geodesic spray, up to projective

equivalence (see for example [1], [3], [5]). The purpose of the present paper is to

derive a general formula for such a Finsler function.

The historically-minded reader may object that this problem was solved

long ago by Darboux. Indeed, if one takes advantage of the freedom of choice

of parametrization implicit in the assumption of projective equivalence to choose

one of the base coordinates as the curve parameter, then the problem is equivalent

to the inverse problem of the calculus of variations in one dependent variable. The

solution to the latter problem was given by Darboux in his Leçons sur la Théorie

Générale des Surfaces of 1894 [7]. However, Darboux’s approach is essentially

analytical; here I mean to tackle the problem in a much more geometrical way.

The approach to be described below has two sources, both concerned with

the particular case in which the base integral curves of the spray in question are

Euclidean circles.

The first is a paper I wrote recently with Tom Mestdag, [4], in which we

found all the Finsler functions of Randers type whose geodesics are Euclidean
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circles. We wrote the Finsler function in the form

F (x1, x2, y1, y2) = eϕ(x
1,x2)

√
(y1)2 + (y2)2 + a1(x

1, x2)y1 + a2(x
1, x2)y2,

so that (x1, x2) are isothermal coordinates for a Riemannian metric on the base

manifold M ; (y1, y2) are the corresponding coordinates on the fibre of the slit

tangent bundle T ◦M . The function

κ = e−2ϕ

(
∂a1
∂x2

− ∂a2
∂x1

)
played an important role in the analysis: one of the conditions for the geodesics

of F to be circles is that κ is constant. In fact (as we showed in [4]) for any

F of this form and for any geodesic path of F , κ is its geodesic curvature with

respect to the Riemannian part of F . Notice that κ = 0 just when the 1-form

a1dx
1+a2dx

2 is closed. In this case F differs from its Riemannian part by a total

derivative (at least locally), and of course its geodesics are then the Riemannian

geodesics.

The second source is a paper by Tabachnikov, [8], which contains (among

other things) a general formula for the Finsler metrics in the plane whose geodesics

are circles of a fixed radius. This is his result, slightly modified in both statement

and notation to fit in with the present paper.

Theorem. Every Lagrangian, homogeneous of degree 1 in the velocity,

whose extremals are positively oriented circles of radius R can be represented,

in polar coordinates, as follows:

F (x1, x2, r, θ) = r

(∫ θ

0

sin(θ − ψ)σ(x1 −R sinψ, x2 +R cosψ)dψ

+ a1(x
1, x2) cos θ + a2(x

1, x2) sin θ

)

where σ is a positive density function in the plane such that the center of mass

of every circle of radius R is its center, and a1, a2 are two functions, satisfying

∂a1
∂x2

(x1, x2)− ∂a2
∂x1

(x1, x2) =
1

R
σ(x1, x2 +R).

By a ‘Lagrangian homogeneous of degree 1 in the velocity’ Tabachnikov

means a Finsler function. The radius R is a fixed positive number. The polar co-

ordinates referred to are coordinates in the fibre, so that y1 = r cos θ, y2 = r sin θ;



Finsler functions for two-dimensional sprays 437

x1 and x2 are Euclidean coordinates on the baseM , which is the Euclidean plane.

The spray whose base integral curves are positively oriented circles of radius R is

given (up to projective equivalence) in these coordinates by

Γ = r

(
cos θ

∂

∂x1
+ sin θ

∂

∂x2
+

1

R

∂

∂θ

)
.

The expression σ(x1 − R sinψ, x2 + R cosψ) appearing in the integrand may be

regarded as representing a function on T ◦M constant along the integral curves of

Γ: to be precise, if one defines the function ρ on T ◦M by ρ(x1, x2, r, θ) = σ(x1 −
R sin θ, x2 +R cos θ) then Γ(ρ) = 0. Notice that ρ is independent of r, or in other

words is positively homogeneous of degree 0 with respect to the fibre coordinates.

Conversely if ρ is a function on T ◦M , positively homogeneous of degree 0, such

that Γ(ρ) = 0 then σ is well-defined by this formula. The requirement that ‘the

center of mass of every circle of radius R is its center’ turns out to be equivalent

to the condition that∫ 2π

0

sin(θ − ψ)σ(x1 −R sinψ, x2 +R cosψ)dψ = 0

for all (x1, x2). The reader will no doubt have noticed that the term involving σ

on the right-hand side of the final displayed equation in the theorem is obtained

simply by setting θ = 0.

We may in particular take ρ to be a constant, indeed to be 1; in this case

Tabachnikov’s formula produces a Randers metric whose Riemannian part is Eu-

clidean, that is, for which in terms of the earlier remarks ϕ = 0; the geodesic

curvature function is then just κ = 1/R, and the condition on the partial deriva-

tives of a1 and a2 is consistent with the formula for the geodesic curvature given

previously.

How one specifies a Finsler function for a given spray depends of course on

how one represents the spray. The idea pursued in this paper is to represent the

spray by means of the geodesic curvature of its base integral curves with respect

to some chosen Riemannian metric on the base. This approach should be well

adapted to tackling problems like ‘find a Finsler function for the horocycles in

the Poincaré disk’, where a Riemannian metric occurs naturally among the data;

we did indeed give one solution to the horocycle problem in [4]. Given such a

background Riemannian metric g0, there is a unique member of the projective

class of any spray whose base integral curves are parametrized with constant

speed relative to g0. There is then a well-defined function κ on T ◦M , positively

homogeneous of degree 0, such that κ(x, y) is the geodesic curvature, with respect
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to g0, at x ∈ M of the base integral curve of Γ through x whose unit tangent

vector there points in the direction of y ∈ TxM . Note that in general κ is a

function on T ◦M ; the cases discussed earlier, in which κ is at worst a function

on M , are special. Such cases are discussed in Section 3.

As I shall show, there is a natural way of obtaining all of the local Finsler

functions for the projective equivalence class of the spray with geodesic curvature

function κ; the specification of any such function, when expressed in terms of

isothermal coordinates for the background Riemannian metric, turns out to be

a generalization of Tabachnikov’s formula. I stress that this generalized Tabach-

nikov formula applies to arbitrary sprays, the original to one very limited class.

In the general as in the particular case the freedom of choice in the Finsler func-

tion is parametrized by functions constant along the integral curves of the spray

(or constants of motion, or first integrals, or functions on path space) — a fact

known already to Darboux (see [7]); and also (as always) one is free to add a

total derivative.

I have to admit to having been somewhat slipshod in my use of the term

‘Finsler function’ up to now. A Finsler function, in addition to being positively

homogeneous, must be positive and strongly convex, and I have ignored the last

two requirements. Elsewhere (for example in [5]) the term ‘pseudo-Finsler func-

tion’ has been used for a function that satisfies the conditions required of a Finsler

function other than positivity and strong convexity, but whose Hessian with re-

spect to fibre coordinates is quasi-regular, that is, defines a quadratic form which

vanishes only along rays in the tangent space. The formula I shall derive gives,

in the first instance, a pseudo-Finsler function whose Hessian with respect to the

fibre coordinates is, in the terminology of [5], positive quasi-definite (and this is

true of Tabachnikov’s original formula as well). However, it is shown in the paper

just referred to that given a pseudo-Finsler function whose Hessian is positive

quasi-definite one may obtain locally a Finsler function, that is a function which

is both positive and strongly convex, by the addition of a suitably chosen total

derivative; this modification does not change the geodesics, of course. So the gen-

eralized Tabachnikov formula does effectively solve the local problem. That being

the case, I shall sometimes, especially later in the paper, say ‘Finsler function’

where strictly speaking I should say ‘pseudo-Finsler function whose Hessian is

positive quasi-definite’, with the understanding that finally a suitable total deriv-

ative may have to be added. Where no assumption about positivity and strong

convexity, but only quasi-regularity of the Hessian, is made I shall use the term

‘pseudo-Finsler function’. I shall also generally leave it to be understood that

‘homogeneous’ means ‘positively homogeneous’.
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2. The basic set-up

Let M be a two-dimensional Riemannian manifold with metric g0; let F0 be

the corresponding Finsler function; and let Γ0 be the canonical geodesic spray of

F0. (Symbols for geometric objects associated with the background metric g0 will

usually carry a subscript 0.) I denote by T ◦M the slit tangent bundle of M , by

T ◦
1M the sub-bundle of T ◦M consisting of vectors of unit Riemannian length (the

level set of F0 of value 1), and by ∆ the Liouville vector field on T ◦M . I take a

vertical vector field N0 on T
◦M which is orthogonal to ∆ and (like ∆) of length F0

with respect to the fibre metric induced by g0. Then N0(F0) = 0. At each point of

T ◦M there are two possible choices of N0; I can choose one consistently provided

M is orientable, which I shall assume to be the case. Suppose we have chosen an

orientation of M ; then I shall choose N0 such that N0 is obtained from ∆ by an

anticlockwise rotation through a right angle, relative to the chosen orientation.

I shall usually write φ′ for N0(φ), where φ is a function on T ◦M .

I use coordinates xi, i = 1, 2, on M (not assumed to be isothermal initially),

with canonical fibre coordinates yi; I shall always assume that the coordinates

on M are positively oriented. I write gij for the components of g0 (so F0 =√
gijyiyj ). I denote by εij the alternating symbol on M , so that εji = −εij

and ε12 =
√
det g0 (where det g0 is the determinant of the matrix representing g0

with respect to the coordinates xi): then the Riemannian volume form is ν0 =
1
2εijdx

i ∧dxj . Set εij = gikgjlεkl: then ε
ji = −εij and ε12 = 1/

√
det g0. Both εij

and εij are (the components of) pseudo-tensors (they transform tensorially for

orientation-preserving coordinate transformations). Each is covariantly constant.

We have

N0 = −εijgjkyk
∂

∂yi
.

Let Hi, i = 1, 2 be the horizontal lifts, relative to the Levi–Civita connection

of g0, of the coordinate vector fields on M . It will sometimes be convenient

to denote the vertical field ∂/∂yi by Vi. I shall introduce a vector field K0 on

T ◦M which is horizontal and satisfies S(K0) = N0 where S is the almost tangent

structure tensor. Thus

K0 = −εijgjkykHi.

Then {Γ0,K0,∆, N0} is a global basis of vector fields on T ◦M ; these fields are

pairwise orthogonal with respect to the Sasaki metric induced from g0 and each

is of length F0. Furthermore, Γ0 and K0 are horizontal and homogeneous of

degree 1, ∆ = S(Γ0) and N0 = S(K0) are vertical and homogeneous of degree 0.
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Lemma 1. We have

[N0,Γ0] = K0, [N0,K0] = −Γ0, [K0,Γ0] = −F 2
0R0N0

where R0 is the Gaussian curvature of the metric.

Proof. The crucial point, so far as the first two formulae are concerned, is

that [Hi, N0] = 0. In fact for a vertical vector field V of the form V = T ijy
jVi,

[Hi, V ] = T kj|iy
jVk, so that indeed [Hi, N0] = 0. Then

[N0,Γ0] = [N0, y
iHi] = N0(y

i)Hi = K0

[N0,K0] = [N0, N
iHi] = N0(N

i)Hi = −Γ0 (where N i = −εijgjkyk);

for the final step we have

N0(N
i) = εjkgkly

l ∂

∂yj
(
εipgpqy

q
)
= εjkgklε

ipgpjy
l = εplε

ipyl = −δilyl = −yi

as required.

The expression for [K0,Γ0] follows from the well-known formula

[Hi, Hj ] = −RlkijykVl. �

Two sprays on T ◦M are projectively equivalent if and only if they differ by a

multiple of ∆. Projectively equivalent sprays have the same base integral curves

up to direction-preserving reparametrization. Any two sprays at all differ by a

vertical vector field. It follows that any projective equivalence class of sprays over

M has a representative of the form

Γ = Γ0 + F0κN0

where κ is a function on T ◦M which is homogeneous of degree 0 (the factor F0 is

included to ensure that this is so). Such Γ is tangent to the level sets of F0, and

is the unique spray of its projective class with this property. The base integral

curves of the restriction of Γ to F0 = 1 are parametrized with arc-length relative

to g0.

Lemma 2. For (x, y) ∈ T ◦M with F0(x, y) = 1, κ(x, y) is the geodesic

curvature (with respect to g0) at x ∈ M of the base integral curve of Γ through

x with unit tangent vector y ∈ TxM .
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Proof. Let us write∇/ds for the operation of covariant differentiation along

a curve parametrized by s with respect to the Levi–Civita connection of the

Riemannian metric g0. Then any base integral curve of the spray Γ, parametrized

with Riemannian arc-length so that F0 = 1 along it, satisfies

∇ẋi

ds
= −κ(x, ẋ)εijgjkẋk.

It is clear that εijgjkẋ
k are the components of a unit normal field along the curve.

Thus κ is the geodesic curvature of the base integral curve with respect to g0. �

3. Magnetic flows and Randers spaces

A magnetic flow on a Riemannian manifoldM , of any dimension, is a second-

order differential equation field on TM determined by a 1-form α onM as follows.

Let g be the metric and E its energy function (so that E(x, y) = 1
2gx(y, y)); let α̂

be the function on TM , linear in the fibre coordinates, canonically defined by α.

The magnetic flow of α is the Euler-Lagrange field of the Lagrangian E + α̂. Its

base integral curves are the solutions of the second-order differential equations

∇ẋi

dt
= gij

(
∂αj
∂xk

− ∂αk
∂xj

)
ẋk.

It is clear that E is constant along any base integral curve. (It is also clear that

since the right-hand side depends only on dα one could replace the 1-form α by

a closed 2-form in the definition.)

The equations above for a magnetic flow invite comparison with those for the

geodesics of the Randers space defined by g and α, that is, the geodesics of the

pseudo-Finsler function F =
√
E+α̂. When expressed in terms of the Levi–Civita

covariant derivative operator of g these are

∇ẋi

dt
= gij

√
E

(
∂αj
∂xk

− ∂αk
∂xj

)
ẋk

(see Bao et al. [2] p. 297). Again, E is constant along geodesics. The base integral

curves of the magnetic flow for which E = 1 coincide with the geodesics of the

Randers space for which E = 1; these curves are parametrized by Riemannian

arc-length. (This equivalence is of course well known: it is discussed in [8], for

example — though only in the case in which the Riemannian metric is actually

Euclidean.)
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In the light of subsequent developments it is worth noticing that the Hilbert

2-form of the Randers Finsler function F =
√
E + α̂ = F0 + α̂ is ω0 + dα where

ω0 is the Hilbert 1-form of F0.

In the two-dimensional case the equations for Randers geodesics with unit

Riemannian speed coincide with those for the base integral curves of Γ given in

the proof of Lemma 2, with

κ = − 1√
det g0

(
∂α1

∂x2
− ∂α2

∂x1

)
.

In other words, dα = −κν0. In this case κ is a function on M ; we called sprays

Γ with this property isotropic in [4]. Conversely, for any isotropic spray in two

dimensions its base integral curves parametrized with arc-length relative to a

background metric g0 may be identified with those of a magnetic flow, and (at

least locally) with the unit speed geodesics of a Randers space with Riemannian

part g0.

4. Hilbert forms

Let θ0 be the Hilbert 1-form and ω0 = dθ0 the Hilbert 2-form of F0. Then

iΓ0ω0 = i∆ω0 = 0. Let Ω0 be the Hilbert 2-form of the energy of g0: then

Ω0 = F0ω0 + dF0 ∧ θ0.

Let αi, i = 1, 2 be 1-forms on T ◦M such that {dxi, αi} is the (local) basis of

1-forms dual to the basis {Hi, Vi} of vector fields. Then

Ω0 = gijα
i ∧ dxj .

Let ν0 be the pull-back to T ◦M of the volume form of g0 on M with the chosen

orientation (I have previously denoted the volume form itself by the same symbol:

it seems unnecssary to make a notational distinction between the two).

Theorem 1. Any Hilbert 2-form for Γ = Γ0 + F0κN0 may be written

ω = ρ(ω0 − κν0)

where ρ is a non-vanishing function on T ◦M , homogeneous of degree 0, such that

Γ(ρ) + F0κ
′ρ = 0 = Γ0(ρ) + F0(κρ)

′.
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Proof. I shall use the following criteria for a 2-form ω to be a Hilbert form

for a spray Γ (Theorem 5 of [6]):

(1) the characteristic distribution of ω is the distribution spanned by the projec-

tive class of Γ, that is, ⟨Γ,∆⟩;
(2) LΓω = 0;

(3) for any pair of vertical vector fields V1, V2, ω(V1, V2) = 0;

(4) for any vector field H horizontal with respect to Γ and any pair of vertical

vector fields V1, V2, dω(H,V1, V2) = 0.

It is evident that with ω as given in the statement of the theorem item 3 is

satisfied. Moreover, i∆ω = 0 by inspection. Clearly L∆ω = 0, so i∆dω = 0. But

in dimension 2 it is enough to take V1 and V2 in item 4 to be ∆ and, say, N0; so

item 4 is satisfied. It remains to consider iΓω and LΓω.

We know that iΓ0
ω0 = 0; we need to compute iN0

ω0. From the formula

Ω0 = F0ω0 + dF0 ∧ θ0, together with the facts that N0(F0) = 0 and θ0(N0) = 0

(θ0 is semi-basic) we see that iN0
ω0 = (1/F0)iN0

Ω0. But

iN0Ω0 = εijy
idxj = iΓ0ν0.

It follows that

iΓ(ω0 − κν0) = 0.

Now in a 4-dimensional vector space V the set of 2-covectors which vanish on

a given 2-dimensional subspace W of V is 1-dimensional: it consists of scalar

multiples of the exterior product of any two linearly independent elements of W◦,

the annihilator of W, a 2-dimensional subspace of V∗. So a Hilbert 2-form for Γ

must take the form ω = ρχ, χ = ω0 − κν0, for some non-vanishing function ρ on

T ◦M , which must be homogeneous of degree 0.

I have to compute LΓω; I use

LΓ(ρχ) = Γ(ρ)χ+ ρLΓχ.

But

LΓχ = iΓdχ+ d(iΓχ) = iΓ(−dκ ∧ ν0) = −Γ(κ)ν0 + dκ ∧ iΓν0

since iΓχ = 0, dω0 = 0 and dν0 = 0. It follows directly that iΓLΓχ = i∆LΓχ = 0,

and so by the argument given earlier, LΓχ is a scalar multiple of χ, say LΓχ = σχ.

To evaluate σ I take the interior product with N0:

σiN0χ = iN0(LΓχ) = N0(κ)iΓν0 = κ′iΓν0.
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But from the earlier calculations we know that F0iN0χ = iΓ0ν0 = iΓν0. It follows

that σ = F0κ
′, and

LΓ(ρχ) = Γ(ρ)χ+ ρLΓχ = (Γ(ρ) + F0κ
′ρ)χ.

So in order that LΓ(ρχ) = 0 it is necessary and sufficient that

Γ(ρ) + F0κ
′ρ = 0. �

Corollary 1. If ρ1χ and ρ2χ are both Hilbert 2-forms for Γ then Γ(ρ1/ρ2)=0;

and conversely.

Since ρ is of homogeneity degree zero, the defining condition Γ(ρ)+F0κ
′ρ = 0

holds for any Γ in the projective equivalence class if it holds for one.

5. Pseudo-Finsler functions

I next consider the relation between ρ and a pseudo-Finsler function for Γ,

say F . As a first step, starting with F I shall determine that geodesic spray of

F which is of the form Γ0 + F0κN0; that is to say, I shall find a formula for κ. I

denote the Hilbert 1-form of F by θ and the Hilbert 2-form by ω. I shall evaluate

iΓω, with Γ = Γ0 + F0κN0; κ will be determined by the condition iΓω = 0.

Incidentally, it is clear that i∆ω = 0 and that the other conditions for a Hilbert

2-form are satisfied (it is a Hilbert 2-form after all).

The following results aboutK0 will be useful; they are established by straight-

forward calculations.

(1) K0(F0) = 0 (indeed, this holds for any vector field which is horizontal with

respect to the canonical geodesic spray of a Finsler function);

(2) θ0(K0) = ⟨S(K0), dF0⟩ = N0(F0) = 0;

(3) ω0(N0,K0) = F0;

(4) iK0ν0 = −F0θ0.

Let me write F = pF0 where p is homogeneous of degree zero. Then

θ = S∗(dF ) = S∗(pdF0 + F0dp) = pθ0 + F0S
∗(dp).

The Hilbert 2-form is thus

ω = pω0 + dp ∧ θ0 + F0d(S
∗(dp)) + dF0 ∧ S∗(dp).
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The one term which it is not immediately obvious how to deal with is the one

involving d(S∗(dp)). For any vector fields X, Y ,

d(S∗(dp))(X,Y ) = X(S(Y )(p))− Y (S(X)(p))− S([X,Y ])(p);

in particular,

d(S∗(dp))(Γ0, Y ) = Γ0(S(Y )(p))− Y (∆(p))− S([Γ0, Y ])(p)

= [Γ0, S(Y )](p)) + S(Y )(Γ0(p))− S([Γ0, Y ])(p)

= (LΓ0S)(Y )(p) + S(Y )(Γ0(p)).

Recall that LΓ0
S acts as the identity on vertical vectors, as minus the identity on

horizontal ones. Then

d(S∗(dp))(Γ0,K0) = −K0(p) +N0(Γ0(p)) = Γ0(N0(p)) = Γ0(p
′)

d(S∗(dp))(Γ0, N0) = N0(p) = p′.

We shall also require

d(S∗(dp))(N0,K0) = N0(S(K0)(p))−K0(S(N0)(p))− S([N0,K0])(p)

= p′′ − 0 + ∆(p) = p′′.

Finally, d(S∗(dp))(X,Y ) = 0 when both arguments are vertical.

Theorem 2. Let F = pF0 be a pseudo-Finsler function on T ◦M , Γ the

geodesic spray of F such that Γ(F0) = 0, so that Γ = Γ0 + F0κN0. Then

(1) the function ρ = p′′ + p on T ◦M is non-vanishing;

(2) κ is given in terms of p by

κ =
K0(p)− Γ0(p

′)

F0ρ
;

(3) the Hilbert 2-form ω of F is given by ω = ρ(ω0 − κν0);

(4) Γ(ρ) + F0κ
′ρ = 0.

Proof. Using the formulae derived above one finds that with Γ = Γ0 +

F0κN0, ω(Γ,Γ0) = ω(Γ,∆) = ω(Γ, N0) = 0 identically, while

ω(Γ,K0) = F0

(
Γ0(p

′)−K0(p) + F0κ(p
′′ + p)

)
.
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The condition iΓω = 0 reduces to the single requirement that ω(Γ,K0) = 0, and

therefore

Γ0(p
′)−K0(p) + F0κ(p

′′ + p) = 0.

But then ω must be of the form ρ(ω0 − κν0). It must therefore be the case that

ω(N0,K0) = F0(p
′′ + p) = F0ρ,

so that

ρ = p′′ + p.

But ρ must never vanish. Thus

κ =
K0(p)− Γ0(p

′)

F0ρ
.

Furthermore, it must be the case that LΓω = 0, and therefore that

Γ(ρ) + F0κ
′ρ = 0. �

Now suppose one is given a spray Γ = Γ0+F0κN0, that is, a function κ, and

one wishes to find the pseudo-Finsler functions of which it is a geodesic spray.

The first step is to solve the equation Γ(ρ) + F0κ
′ρ = 0. Then any function pF0

such that p′′ + p = ρ is a candidate to be a pseudo-Finsler function.

Lemma 3. Let p be any function on T ◦M , homogeneous of degree 0, such

that Γ(ρ) + F0κ
′ρ = 0, where ρ = p′′ + p and ρ never vanishes. Set

κ̃ =
K0(p)− Γ0(p

′)

F0ρ
.

Then (κ− κ̃)ρ is the pullback to T ◦M of a function on M .

Proof. We have

N0(F0κ̃ρ) = F0N0(κ̃ρ) = N0(K0(p))−N0(Γ0(p
′))

= [N0,K0](p) +K0(p
′)− [N0,Γ0](p

′)− Γ0(p
′′)

= −Γ0(p) +K0(p
′)−K0(p

′)− Γ0(p
′′)

= −Γ0(ρ) = F0N0(κρ).

Since ∆(κ̃ρ) = 0 = ∆(κρ), it follows that V ((κ− κ̃)ρ) = 0 for all vertical V . �
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Theorem 3. Suppose given a spray Γ = Γ0+F0κN0 on T ◦M and a function

p̃ such that ρ = p̃′′ + p̃ is non-vanishing and satisfies Γ(ρ) + F0κ
′ρ = 0. Then

over any contractible open subset of M there is a function p such that p′′ + p = ρ

and F = pF0 is a pseudo-Finsler function for Γ; F is determined by ρ up to the

addition of a total derivative.

Proof. From Theorem 2 we know that for any p the Hilbert 2-form of

F = pF0 differs from (p′′ + p)ω0 by a semi-basic 2-form (a multiple of ν0 in fact).

So p̃′′ + p̃ = p′′ + p if and only if the Hilbert 2-forms of F̃ = p̃F0 and F = pF0

differ by a semi-basic 2-form. It follows that F̃ and F differ by a term linear in

the fibre coordinates, as I show next. In general the Hilbert 2-form of F can be

written hijdy
i ∧ dxj + . . . where the omitted terms are semi-basic; here hij are

the components of the Hessian of F with respect to the fibre coordinates. Thus if

the Hilbert 2-forms of F̃ and F differ by a semi-basic 2-form, as is the case here,

the Hessians of F̃ and F must be the same, and so F̃ and F differ by a term

linear in the fibre coordinates, say F̃ = F − ϕ̂ where ϕ is a 1-form on M and ϕ̂

the corresponding fibre-linear function on T ◦M . The Hilbert 2-forms ω̃ and ω of

F̃ and F are then related by ω̃ = ω − dϕ (I haven’t distinguished notationally

between dϕ and its pullback to T ◦M). Now the Hilbert 2-form of F̃ is ρ(ω0− κ̃ν0),
and by the Lemma ρκ̃ = ρκ + f for some function f on M . Over a contractible

open set in M we can find a 1-form ϕ such that dϕ = fν0. Then

ω = ω̃ + dϕ = ρ(ω0 − κ̃ν0) + fν0 = ρ(ω0 − κν0).

Thus the Hilbert 2-form constructed from F is a Hilbert 2-form for Γ; that is

to say, F is a pseudo-Finsler function for Γ. Moreover, ϕ is determined up to

the addition of an exact 1-form; so F is determined up to the addition of a total

derivative. �

6. Generalized Tabachnikov formula

I now specialize these results by taking isothermal coordinates for g0 on M ,

that is, coordinates xi with respect to which g0 is conformally flat, so that

F0(x
1, x2, y1, y2) = eϕ(x

1,x2)
√
(y1)2 + (y2)2

for some function ϕ defined locally on M . I make a further coordinate transfor-

mation to the modified polar coordinates (r, θ) in the fibres such that

y1 = e−ϕr cos θ, y2 = e−ϕr sin θ,
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so that in fact r = F0. It turns out that

N0 =
∂

∂θ
.

The function p in Theorem 3 can be expressed as a function of xi and θ (it

is independent of r by homogeneity). It must satisfy

∂2p

∂θ2
+ p = ρ.

The general solution of this equation (considered as an ordinary differential equa-

tion in θ, for fixed (x1, x2)), is

p(xi, θ) =

∫ θ

0

sin(θ − ψ)ρ(xi, ψ)dψ + α1(x
i) cos θ + α2(x

i) sin θ.

It is required that p be periodic in θ: the necessary and sufficient condition for

this is that ∫ 2π

0

sin(θ − ψ)ρ(xi, ψ)dψ = 0.

If this consition holds, and p is given by the expression above for any functions

αi, then p
′′+p = ρ. However, the functions αi are not free, but have to be chosen

so that the formula

K0(p)− Γ0(p
′) = F0κρ

from Theorem 2 is satisfied. In order to derive the consequences of this condition

it is convenient to rewrite the expression for p above as

p(θ) =

∫ θ

0

sin(θ − ψ)ρ(ψ)dψ + (a1e
−ϕ + 1) cos θ + a2e

−ϕ sin θ

(leaving the x-dependence to be understood). The reason for this odd-looking

choice of expressions for the coefficients of cos θ and sin θ is easily explained: in

the case in which ρ = 1 we have

p(θ) = cos(θ − ψ)|θψ=0 + (a1e
−ϕ + 1) cos θ + a2e

−ϕ sin θ

= 1 + a1e
−ϕ cos θ + a2e

−ϕ sin θ,

so that

F = pr = pF0 = eϕ(x
i)
√
(y1)2 + (y2)2 + a1y

1 + a2y
2,

a Randers metric in the form given in the Introduction.
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The Hessian of F = rp with respect to the fibre coordinates yi, expressed in

terms of the modified polar coordinates, is

e2ϕρ

r

(
sin2 θ − cos θ sin θ

− cos θ sin θ cos2 θ

)

where ρ = p′′+ p. It follows that the Hessian is positive quasi-definite if and only

if ρ is everywhere positive. (See [5] Section 7 for further discussion of this issue,

and other matters concerning projective Finsler metrizability of two-dimensional

sprays, such as the derivation of the integral condition on ρ for p to be periodic.)

Theorem 4. Every Finsler function whose geodesic curvature function rel-

ative to the background metric g0 is κ can be represented, in terms of isothermal

coordinates in the base and the corresponding modified polar coordinates in the

fibre, as follows:

F (xi, r, θ) = r

(∫ θ

0

sin(θ − ψ)ρ(xi, ψ)dψ

+
(
a1(x

i)e−ϕ(x
i) + 1

)
cos θ + a2(x

i)e−ϕ(x
i) sin θ

)
where ρ is a positive solution of the equation

Γ(ρ) + F0κ
′ρ = 0 = Γ0(ρ) + F0(κρ)

′

such that ∫ 2π

0

sin(θ − ψ)ρ(xi, ψ)dψ = 0,

and a1, a2 are two functions, satisfying

e−2ϕ

(
∂a1
∂x2

− ∂a2
∂x1

)
= (κρ)θ=0.

The proof is a calculation. It amounts in effect to carrying out explicitly in

the given coordinates the adjustment required to pass from a general solution of

p′′ + p = ρ to one which gives a pseudo-Finsler function, as specified in general

terms in Theorem 3.

Recall the result of Corollary 1, which in this context states that if ρ1 and

ρ2 are any two choices for the function ρ in the statement of the theorem then

ρ1/ρ2 must be a first integral of Γ.
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7. Circles

The base integral curves of a spray Γ are geodesic circles (with respect to

g0) if the geodesic curvature function κ satisfies Γ(κ) = 0. (For completeness we

should allow geodesics of Γ0, for which κ = 0 of course, to be regarded as geodesic

circles.) When M with the metric g0 has constant Gaussian curvature one can

give an explicit solution of the equation Γ(ρ)+F0κ
′ρ = 0 in the case when the base

integral curves of Γ are geodesic circles. With respect to isothermal coordinates

these curves are Euclidean circles also, as we showed in [4].

Lemma 4. Suppose that the Gaussian curvature R0 of g0 is constant, and

that the geodesic curvature function κ of the spray Γ = Γ0 + F0κN0 satisfies

Γ(κ) = 0. Then if

ρ = κ2 +R0 −K0(κ)/F0,

ρ satisfies Γ(ρ) + F0κ
′ρ = 0 and is homogeneous of degree 0.

Proof. We have Γ(κ) = 0, Γ(R0) = 0 and Γ(F0) = 0; furthermore

Γ(K0(κ)) = [Γ,K0](κ) = [Γ0,K0](κ) + [F0κN0,K0](κ)

= F 2
0R0N0(κ)− F0κΓ0(κ)− F0K0(κ)N0(κ)

= F 2
0R0κ

′ + F 2
0 κ

2κ′ − F0K0(κ)κ
′

= F 2
0 κ

′(κ2 +R0 −K0(κ)/F0

)
= F 2

0 κ
′ρ.

It follows that Γ(ρ) + F0κ
′ρ = 0. �

In the isotropic case, when κ is a function on M , we have N0(κ) = 0, and so

Γ0(κ) = 0 also. It is then clear that κ is a constant. The equation Γ(ρ)+F0κ
′ρ = 0

is satisfied by any constant, not just κ2 + R0 as provided by the formula in the

Lemma; with ρ = 1 we obtain a Randers metric, as given in [4]. But it is now

clear how to get the most general Finsler metric for each of the examples treated

there: use the generalized Tabachnikov formula in Theorem 4, with ρ any first

integral of Γ.

For another example I consider circles of arbitrary, not necessarily fixed,

radius in some open subset M of the Euclidean plane. Let xi be Euclidean

coordinates, r and θ the corresponding polar coordinates in the fibres of T ◦
1M

(we now have ϕ = 0 of course). To facilitate comparison with Tabachnikov’s

original formula it seems natural to work in terms of radius of curvature rather

than curvature (and now we do require the circles to be genuine circles of finite
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radius). So we have a positive function R(xi, θ) on T ◦
1M , with R = κ−1 (R is not

to be confused with R0, which is zero here of course). Set

Γ = r

(
cos θ

∂

∂x1
+ sin θ

∂

∂x2
+

1

R

∂

∂θ

)
,

and assume that Γ(R) = 0, that is, that

R′ = −R
(
∂R

∂x1
cos θ +

∂R

∂x2
sin θ

)
.

When this condition holds the integral curves of Γ with r = 1 are

x1 = ξ1 +R sin θ, x2 = ξ2 −R cos θ, θ =
s

R
+ θ0,

with constants ξi. These are of course the parametric equations of a circle of

radius R and centre (ξ1, ξ2) in the plane, described in the anticlockwise sense:

note that θ is the direction of the unit tangent vector, not the radius vector. Now

K0 = r

(
− sin θ

∂

∂x1
+ cos θ

∂

∂x2

)
;

so Lemma 4 gives

ρ =
1

R2

(
1− ∂R

∂x1
sin θ +

∂R

∂x2
cos θ

)
.

Since R is itself a first integral of Γ we may ignore the overall factor 1/R2 in ap-

plying Theorem 4. We have the following generalization of Tabachnikov’s formula

for circles in the plane.

Theorem. The most general Finsler function for Γ is given by

F (xi, r, θ) = r

(∫ θ

0

sin(θ − ψ)ρ(xi, ψ)dψ + a1(x
i) cos θ + a2(x

i) sin θ

)
where ρ is a positive function on T ◦

1M of the form

ρ =

(
1− ∂R

∂x1
sin θ +

∂R

∂x2
cos θ

)
σ(x1 −R sin θ, x2 +R cos θ)

for some function σ of two variables, such that
∫ 2π

0
sin(θ− ϕ)ρ(ψ)dψ = 0, and a1

and a2 are functions on M which satisfy

∂a1
∂x2

− ∂a2
∂x1

= (ρ/R)θ=0.
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[1] J-C. Álvarez Paiva and G. Berck, Finsler surfaces with prescribed geodesics,

arXiv:1002.0243.

[2] D. Bao, S.-S. Chern and Z. Shen, An Introduction to Riemann–Finsler Geometry,
Springer, 2000.

[3] I. Bucataru and Z. Muzsnay, Projective metrizability and formal integrability, SIGMA
7 (2011), 114.

[4] M. Crampin and T. Mestdag, A class of Finsler surfaces whose geodesics are circles, Publ.
Math. Debrecen 84 (2014), 3–16.

[5] M. Crampin, T. Mestdag and D. J. Saunders, The multiplier approach to the projective

Finsler metrizability problem, Diff. Geom. Appl. 30 (2012), 604–621.

[6] M. Crampin, T. Mestdag and D. J. Saunders, Hilbert forms for a Finsler metrizable

projective class of sprays, Diff. Geom. Appl. 31 (2013), 63–79.
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