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Characterization of finite simple group Ap+3 by its order
and degree pattern

By ALI MAHMOUDIFAR (Tehran) and BEHROOZ KHOSRAVI (Tehran)

Abstract. It is proved that some finite groups are OD-characterizable, i.e. they

are uniquely determined by order and degree pattern. In [R. Kogani-Moghadam and

A. R. Moghaddamfar, Groups with the same order and degree pattern, Science China

Mathematics, 2012], the authors posed the following conjecture:

Conjecture. All alternating groups Am with m ̸= 10 are OD-characterizable.

Up to now it has been proved that this conjecture is correct for m = p, p+1, p+2,

where p is a prime number. Also it has been proved that the conjecture is true for A106

and A112. In this paper, by an example we show that this conjecture is not true in

general and so we reformulate this conjecture as follows:

Conjecture. If m ̸= 10 is even, then all alternating groups Am are OD-characterizable.

Recently, the OD-characterization of Ap+3, where p ̸= 7 and p < 100 has been

proved. In this paper we continue this work and we prove that if p ̸= 7 is a prime

number, then the alternating group Ap+3 is OD-characterizable. We note that this is

the first work that verify an infinite family of alternating groups with connected prime

graphs.

1. Introduction

In this paper every group is finite. If n is a natural number, then we denote

by π(n), the set of all prime divisors of n. If G is a finite group, then π(|G|) is

denoted by π(G). Also for a prime number p, np denotes the p-part of n, i.e.

np = pk if pk | n but pk+1 - n. If p ∈ π(G), then the set of all Sylow p-subgroups
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of G is denoted by Sylp(G). The prime graph GK(G) of a group G is defined

as a graph with vertex set π(G) in which two distinct primes p, q ∈ π(G) are

adjacent (and we write p ∼ q) if G contains an element of order pq. A subset ρ

of vertices of GK(G) is called an independent subset of GK(G), if there does not

exist any edge between any two elements of ρ. The maximal number of vertices in

the independent subsets of GK(G) is denoted by t(G) and we denote by ρ(G) an

independent subset of GK(G) with t(G) elements. Also the maximal number of

vertices in the independent subsets of GK(G) containing 2 is denoted by t(2, G).

If n is a natural number and p is a prime divisor of n, then we denote the p-part

of n by np.

Definition 1.1 ([4]). Let G be a group and π(G) = {p1, p2, . . . , pk}, where
p1 < p2 < · · · < pk. Then the degree pattern of G is defined as follows:

D(G) := (deg(p1),deg(p2), . . . , deg(pk)),

where deg(pi), 1 ≤ i ≤ k, is the degree of vertex pi in GK(G).

Definition 1.2. ([4]) Let G be a finite group. We say that G is k-fold OD-

characterizable if there exist exactly k non-isomorphic groupsH1,H2, . . . , Hk such

that |Hi| = |G| and D(Hi) = D(G), for 1 ≤ i ≤ k. When k = 1, the finite group

G is called OD-characterizable.

The k-fold OD-characterization of some finite groups are considered by some

authors (see [3], [4], [9], [6], [10], [11]). If G is a finite group such that D(G) =

D(A10) and |G| = |A10|, then G ∼= A10 or G ∼= J2 × Z3 (see [11]). Therefore A10

is not OD-characterizable. In [4], the authors put the following conjecture:

Conjecture 1.3. All the alternating groups Am with m ̸= 10 are OD-

characterizable.

Until now, the above conjecture is valid for n = p, p + 1, p + 2, where p

is an odd prime number. We note that in these cases the prime graph of An

is disconnected and p is an isolated vertex. In this paper, by an example, we

show that the above conjecture is not true in general and so we reformulate this

conjecture as follows:

Conjecture 1.4. If m ̸= 10 is even, then all alternating groups Am are

OD-characterizable.

In [1], the OD-characterization of alternating group Ap+3 is considered, where

p ̸= 7 and p < 100 is an odd prime number. In this paper, we continue their work

and we prove the validity of Conjecture 1.4 for Ap+3, where p is an odd prime

number. In fact we prove the following result:
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Main Theorem 1.5. If p ̸= 7 is an odd prime, then Ap+3 is OD-character-

izable.

We note that in this case the prime graph of Ap+3 is a connected graph,

unless p + 2 is a prime number. This paper is the first paper giving the OD-

characterization of an infinite family of alternating groups An, where GK(An) is

connected.

In [5], the following problem about OD-characterization of finite simple

groups is possed:

Problem 1.6. Is there a simple group which is k-fold OD-characterizable

for k ≥ 3 ?

Finally we introduce some finite simple groups where these groups are k-fold

OD-characterizable, where k ≥ 3, as an answer to the above problem.

2. Preliminary results

Lemma 2.1 ([8, Proposition 1.1]). Let G = An be an alternating group of

degree n.

(1) Let r, s ∈ π(G) be odd primes. Then r, s are nonadjacent if and only if

r + s > n.

(2) Let r ∈ π(G) be an odd prime. Then 2, r are nonadjacent if and only if

r + 4 > n.

Lemma 2.2 ([4, Lemma 2.15]). Let S be a symmetric (resp., an alternating)

group and let G be a finite group with π(G) = π(S) and D(G) = D(S). Then

the prime graph GK(G) coincides with GK(S).

Lemma 2.3. ([12]) Let q and s ≥ 2 be some natural numbers. Then one of

the following holds:

(a) there exists a prime p such that p divides qs − 1 and p does not divide qt − 1

for all natural numbers t < s;

(b) s = 6 and q = 2;

(c) s = 2 and q = 2t − 1, for some t.

A prime p satisfying condition (a) of Lemma 2.3, is said to be a primitive

prime divisor of qs − 1. Also a primitive prime divisor of qn − 1 is denoted by

rn(q) or briefly rn.
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Lemma 2.4 ([2, Lemma 2.12]). Let n, s and q be positive integers and x

be an odd prime. If q is odd, then
(
q2n−1
q2−1

)
2
= n2. If x | (qs − 1) and s | n, then(

qn−1
qs−1

)
x
divides (n/s)x.

Lemma 2.5. Let q > 1 be an integer.

(i) If n ≥ 5 is a prime, then 3 - (qn − 1)/(q − 1) and 3 - (qn + 1)/(q + 1).

(ii) If n = 2β for some β > 0, then 3 - (qn + 1).

Proof. (i) If 3 | q, obviously we get the result. If 3 | (q − 1), then by Lem-

ma 2.4, ((qn − 1)/(q − 1))3 = n3 = 1. If 3 | (q + 1), then 3 - (qn − 1), since n is

odd. Also (qn + 1) | (q2n − 1) and by the above discussion 3 - (q2n − 1)/(q2 − 1).

(ii) Obviously the result holds if 3 | q. Otherwise, q ≡ ±1 (mod 3). Hence

we have qn ≡ 1 (mod 3) and so 3 - (qn + 1). �

Lemma 2.6 ([8, Lemma 1.2]). With the notations in [8], we have:

(1) Every maximal torus T of G = Aε
n−1(q) (ε ∈ {+,−}) has the order

1

(n, q − ε1)(q − ε1)
(qn1 − (ε1)n1)(qn2 − (ε1)n2) . . . (qnk − (ε1)nk)

for an appropriate partition n1 +n2 + · · ·+nk = n of n. Moreover, for every

partition, there exists a torus of corresponding order.

(2) Every maximal torus T of G, where G = Bn(q) or G = Cn(q), has the order

1

(2, q − 1)
(qn1 − 1)(qn2 − 1) . . . (qnk − 1)(ql1 + 1)(ql2 + 1) . . . (qlm + 1)

for an appropriate partition n1 + n2 + · · ·+ nk + l1 + l2 + · · ·+ lm = n of n.

Moreover, for every partition, there exists a torus of corresponding order.

(3) Every maximal torus T of G = Dε
n(q) has the order

1

(4, qn − ε1)
(qn1 − 1)(qn2 − 1) . . . (qnk − 1)(ql1 + 1)(ql2 + 1) . . . (qlm + 1)

for an appropriate partition n1 + n2 + · · · + nk + l1 + l2 + · · · + lm = n of

n, where m is even if ε = + and m is odd if ε = −. Moreover, for every

partition, there exists a torus of corresponding order.
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3. Proof of the Main Theorem

First we prove some result about the OD-characterization of an alternating

group with degree m, where m is a natural number greater that 106. Then we

consider the special case m = p+3, where p is an odd prime number. So we have

the following lemma.

Lemma 3.1. Let G be a finite group such that |G| = |Am| and D(G) =

D(Am), where m ≥ 106. Also let:

T :=
{
t is a prime number

∣∣ m
2

< t ≤ m
}
.

Then the following assertions hold:

(1) T is an independent subset of GK(G). If t ∈ T , then |G|t = t and also

|T | ≥ 9.

(2) There exists a nonabelian simple group S such that:

S ≤ Ḡ :=
G

N
≤ Aut(S),

where N is the largest normal subgroup of G with π(N) ∩ T = ∅. Also we

have T ⊆ π(S) and π(Ḡ/S) ∩ T = ∅.
(3) The simple group S is isomorphic to a classical simple group of Lie type or

an alternating group.

Proof. (1) Since |G| = |Am| and D(G) = D(Am), by Lemma 2.2, we get

that GK(G) = GK(Am). Also by the definition of T and Lemma 2.1, it is

obvious that T is an independent subset of GK(G). Since |G| = m!/2, if t ∈ T ,

then |G|t = t.

Now since m ≥ 106, by [7, Corollary 3], the number of prime numbers t such

that m/2 < t ≤ m, is bigger than (3m/2)/(5 ln(m/2)). So by the definition of T ,

we get that

|T | > 3m/2

5 ln(m/2)
≥ 3(53)

5 ln(53)
> 8,

which implies that |T | ≥ 9.

(2) Let N be the largest normal subgroup of G such that π(N)∩T = ∅. Also

let S be a minimal normal subgroup of Ḡ := G/N .

By the properties of N , we get that π(S) ∩ T ̸= ∅. Also we know that S =

S1×· · ·×Sk, where Si’s are isomorphic to a simple group. So since π(S)∩T ̸= ∅,
we get that for each 1 ≤ i ≤ k, π(Si) ∩ T ̸= ∅. On the other hand by (1), we
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conclude that if t ∈ π(S) ∩ T , then |S|t = t. It follows that k = 1 and so S is a

simple group.

By (1), we have |T | ≥ 9. Also by the above discussion, π(S) ∩ T ̸= ∅. We

claim that T ⊆ π(S). On the contrary, let t1 ∈ π(S)∩T and t2 ∈ T \π(S). By the

Frattini argument, if Q̄ ∈ Sylt1(S), then Ḡ = SNḠ(Q̄). Thus since t2 ∈ T \ π(S),
we get that t2 ∈ π(NḠ(Q̄)). So we may assume that Ḡ contains a subgroup H̄

such that |H̄| = t2 and Q̄ o H̄ is a subgroup of Ḡ. Hence since t1 and t2 are

nonadjacent in GK(G), we conclude that Q̄ o H̄ is a Frobenius subgroup of Ḡ.

This implies that |H̄| | (|Q̄| − 1) and so t2 | (t1 − 1). On the other hand, we have

m/2 < t2 < t1 ≤ m, which implies that t2 - (t1 − 1). So we get a contradiction

and so T ⊆ π(S). So since |T | ≥ 9, we get that S is a nonabelian simple group.

Also since for every t ∈ T , |G|t = t, we deduce that π(Ḡ/S) ∩ T = ∅.
Let CḠ(S) ̸= 1. Similarly to the above, we get that π(CḠ(S))∩T ̸= ∅. On the

other hand S is a nonabelian simple group, which implies that S∩CḠ(S) = 1. Also

by the above argument, π(Ḡ/S)∩T = ∅, which contradicts to π(CḠ(S))∩T ̸= ∅.
Therefore CḠ(S) = 1 and so we have:

S ≤ Ḡ =
G

N
≤ Aut(S).

(3) We note that by the classification of finite simple groups, the nonableian

simple group S is isomorphic to a sporadic simple group, an exceptional simple

group of Lie type, a classical simple group of Lie type or an alternating group.

Let S be isomorphic to a sporadic simple group. By (2), we know that π(S)

contains every prime number t such that m/2 < t ≤ m, where m ≥ 106. This

implies that there is at least a prime number t > 100 such that t ∈ π(S). So by

the orders of the sporadic simple groups we get a contradiction.

Now let S be isomorphic to an exceptional simple group of Lie type. By (2),

we have t(S) ≥ |T | ≥ 9. Therefore by Table 9 in [8], it follows that S ∼= E8(q).

Also by this table, we get that

ρ(S) = {r5, r7, r8, r9, r10, r12, r14, r15, r18, r20, r24, r30}.

By (2), there exist at least 9 prime numbers t1, t2, . . . , t9 in π(S) which are

nonadjacent to each other in GK(S) and |S|ti = ti, for 1 ≤ i ≤ 9. The

order of E8(q) shows that if r is a prime divisor of |E8(q)| and r ̸∈ A :=

{r7, r9, r14, r15, r18, r20, r24, r30}, then r2 | |E8(q)|. Now since |A| = 8, we get

a contradiction.

Therefore S is isomorphic to a classical simple group of Lie type or an alter-

nating group. �
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Now by the previous lemma, we consider the special case m = p + 3, where

p is a prime number.

Proof of the Main Theorem. Let G be a finite group such that |G| =
|Ap+3| = (p+ 3)!/2 and D(G) = D(Ap+3), where p is a prime number. We note

that if p < 100 and p ̸= 7, the conjecture is proved in [1]. Also if p′ = p + 2 is

a prime number, then Ap+3 = Ap′+1, which is considered in [4]. Therefore we

suppose that p ≥ 101 is a prime number such that p+2 is not a prime so p ≥ 103.

Let

T := {t is a prime number | (p+ 3)/2 < t ≤ p+ 3}.

By Lemma 3.1, there exists a nonabelian simple group S such that:

S ≤ Ḡ :=
G

N
≤ Aut(S),

where N is the largest normal subgroup of G with π(N) ∩ T = ∅. Also by

Lemma 3.1, T ⊆ π(S), which implies that p ∈ π(S) and S is isomorphic to a

classical simple group of Lie type or an alternating group.

In the sequel we consider each possibility for S, separately:

(1) Let S ∼= An−1(q). By Lemma 3.2 and Table 8 in [8], t(S) = [(n+ 1)/2] ≥ 9

and so n ≥ 17. Also p � 2 in GK(S). Then by Table 6 in [8], p is a primitive

prime divisor of qn − 1 or qn−1 − 1.

(1.a) Let p be a primitive prime divisor of qn − 1. By Lemma 2.6, S contains

an abelian subgroup of order (qn − 1)/((q − 1)(n, q − 1)). Therefore every

prime divisor of (qn − 1)/((q − 1)(n, q − 1)) is adjacent to p in GK(G).

On the other hand p is only adjacent to 3 in GK(G). This implies that

π((qn − 1)/((q − 1)(n, q − 1))) ⊆ {p, 3}.
Suppose that n is not a prime number. Also let m be the largest divisor

of n such that m < n. Since n ≥ 17, easily we get that m > 4 and m ̸= 6.

Hence by Lemma 2.3, there exists a primitive prime divisor u of qm − 1.

Since m < n, we get that u ̸= p. Also m > 4 implies that u ̸= 3. So we get

a contradiction since π(qm − 1) ⊆ π(qn − 1). Therefore n is an odd prime

number.

By Lemma 2.5, we know that 3 - (qn − 1)/((q − 1)(n, q − 1)). Therefore

we have π((qn − 1)/((q − 1)(n, q − 1))) = {p}. Since |G|p = |S|p = p, we

conclude that p = (qn − 1)/((q − 1)(n, q − 1)).

(1.b) Let p be a primitive prime divisor of qn−1 − 1. By Lemma 2.6, S contains

an abelian subgroup of order (qn−1 − 1)/(n, q − 1)(q − 1). Similarly to the
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above, this shows that π((qn−1 − 1)/(n, q− 1)(q− 1)) ⊆ {p, 3} which implies

that n−1 ≥ 16 is an odd prime number and p = (qn−1−1)/(n, q−1)(q−1).

Now let t ∈ T ⊆ π(S). Then in each case, we get that t > (p + 3)/2 >

qn−4. On the other hand, by the order of S, we know that t is a primitive

prime divisor of qm − 1, where 1 ≤ m ≤ n. Therefore qm ≥ t > qn−4, which

implies that t is a primitive prime divisor of qn − 1, qn−1 − 1, qn−2 − 1 or

qn−3 − 1. This shows that |T | ≤ 4, which is a contradiction since |T | ≥ 9.

(2) Let S ∼= 2An−1(q). By Table 8 in [8], we have t(S) = [(n+ 1)/2] ≥ 9 and so

n ≥ 17. Also by Table 6 in [8], we get that p is a primitive prime divisor of

q2n − 1, q2n−2 − 1, qn − 1, q(n−1)/2 − 1 or qn/2 − 1.

(2.a) Let p be a primitive prime divisor of q2n−1. By Tables in [8], n is odd. Also by

Lemma 2.6, S contains an abelian subgroup of order (qn+1)/((q+1)(n, q+1)).

Similarly to the above, we get that n is an odd prime number and p =

(qn + 1)/((q + 1)(n, q + 1)).

(2.b) Let p be a primitive prime divisor of q2n−2 − 1. By Tables 4 and 6 in [8],

we get that n is an even number. In this case since S contains an abelian

subgroup of order (qn−1 + 1)/(n, q + 1), similarly to the above we conclude

that p = (qn−1 + 1)/(n, q + 1).

Now let t ∈ T . Then in Cases (2.a) and (2.b), we have t > (p+ 3)/2 >

qn−4. Similarly to the above, we get that |T | ≤ 7, which is a contradiction,

since |T | ≥ 9.

(2.c) Let p be a primitive prime divisor of qn − 1, qn/2 − 1 or q(n−1)/2 − 1. By

Lemma 2.6, S contains an abelian subgroup of order (qn−1)/((n, q+1)(q+1))

if n is even and (qn−1−1)/(n, q+1) if n is odd. This implies that p is adjacent

to some prime number different from 3 in GK(S), which is a contradiction.

(3) Let S ∼= Bn(q) or S ∼= Cn(q). By Table 8 in [8], we have t(S) = [(3n+5)/4] ≥
9 and so n ≥ 11. Also by Table 6 in [8], we get that p is a primitive prime

divisor of qn − 1 or q2n − 1.

(3.a) Let p be a primitive prime divisor of qn − 1. Using the maximal torus of

order (qn − 1)/(2, q − 1)(q − 1), we conclude that n is an odd prime number

and p = (qn − 1)/((2, q − 1)(q − 1)).

(3.b) Let p be a primitive prime divisor of q2n − 1. Using the maximal torus of

order (qn + 1)/(2, q − 1), we get that n is an odd prime number or a power

of 2.

Hence p = (qn+1)/(2, q−1) if n = 2β and p = (qn+1)/((q+1)(2, q−1))

if n is an odd prime, by Lemma 2.5.
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Now let t ∈ T . By the above discussion, we get that t > (p+3)/2 > qn−3.

This implies that |T | ≤ 6, which is a contradiction.

(4) Let S ∼= Dn(q). By Table 8 in [8], we get that (3n+ 3)/4 ≥ t(S) ≥ 9 and so

n ≥ 11. Also since p � 2 in GK(S), by Tables 4 and 6 in [8], we get that p

is a primitive prime divisor of qn − 1, qn−1 − 1 or q2(n−1) − 1.

(4.a) Let p be a primitive prime divisor of qn − 1. Then by Tables 4 and 6 in [8],

n is odd. Using the maximal torus of order (qn − 1)/(4, qn − 1)(q − 1), we

get that n ≥ 11 is an odd prime number and p = (qn − 1)/(4, qn − 1)(q− 1).

(4.b) Let p be a primitive prime divisor of q2(n−1) − 1. Using the maximal torus

of order (qn−1+1)(q+1)/(4, qn− 1), we conclude that n− 1 is an odd prime

number or a power of 2.

Hence we get that π(qn−1+1) ⊆ {2, 3, p}. Now we consider the following

cases:

(i) Let q be a power of 2 and n− 1 is a power of 2. Then π(qn−1 +1) ⊆
{3, p} and so by Lemma 2.5, we conclude that π(qn−1 + 1) ⊆ {p}. Hence

similarly to the above we have p = qn−1 + 1.

(ii) Let q be a power of 2 and n − 1 is an odd prime number. Then

π(qn−1+1) ⊆ {3, p} and so by Lemma 2.5, we get that π((qn−1+1)/(q+1)) ⊆
{p}. Hence similarly to the above we get that p = (qn−1 + 1)/(q + 1).

(iii) Let q be an odd number and n − 1 is a power of 2. Then by

Lemma 2.5, we get that π(qn−1+1) ⊆ {2, p}. Since n− 1 is a power of 2, we

have 4 | (qn−1 − 1) and so (qn−1 +1)2 = 2. Therefore π((qn−1 +1)/2) ⊆ {p}
and so p = (qn−1 + 1)/2.

(iv) Let q be an odd number and n−1 is an odd prime number. Then by

Lemma 2.4, we get that 2 - (qn−1+1)/(q+1). This implies that π((qn−1+1)/

(q + 1)) ⊆ {3, p} and so by Lemma 2.5, we conclude that π((qn−1 + 1)/

(q+1)) ⊆ {p}. Hence similarly to the above we get that p = (qn−1+1)/(q+1).

Therefore in each case we get that p ≥ (qn−1 + 1)/(q + 1).

(4.c) Let p be a primitive prime divisor of qn−1 − 1. Using the maximal torus of

order (qn−1 − 1)(q − 1)/(4, qn − 1), we conclude that n− 1 is an odd prime

number and p = (qn−1 − 1)/(q − 1).

Now let t ∈ T . By the above discussion we have t > (p + 3)/2 > qn−4.

This implies that |T | ≤ 8, which is a contradiction.

If S ∼= 2Dn(q), then similarly we get a contradiction and for convenience

we omit the proof.

By the above discussion, we get that S is isomorphic to an alternating group Am,

where m ≥ 5.
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Hence we have Am ≤ G/N ≤ Aut(Am). Since p ∈ π(S), we get that m ≥
p ≥ 103. This implies that Am ≤ G/N ≤ Sm and so |G| = |Am| · |N | or |G| =
2|Am| · |N |. Also since |Am| | |G| = (p+ 3)!/2, we conclude that p ≤ m ≤ p+ 3.

Therefore Am
∼= Ap, Ap+1, Ap+2 or Ap+3.

We claim that S ∼= Ap+3. Otherwise let S ∼= Am, where p ≤ m ≤ p + 2. In

each case we can easily see that (p+ 3)/2 | |N |. Thus we have |N | = k(p+ 3)/2,

where k | 2(p+ 1)(p+ 2).

First we show that (p + 3)/2 is a power of 2. Let r ∈ π((p + 3)/2) be an

odd prime number and ((p + 3)/2)r = rα, for some natural number α. We note

that r ̸= 3. Since |N | = k(p + 3)/2, where k | 2(p + 1)(p + 2), we get that

|N |r = ((p+ 3)/2)r = rα.

So let R ∈ Sylr(N). Then by the Frattini argument we have G = NG(R)N .

This implies that p ∈ π(NG(R)) and so there exists a subgroup of G, like Ro P ,

where P ∈ Sylp(NG(R)). Since r ̸= 3 and r ̸∼ p in GK(G) we get that R o P is

a Frobenius subgroup of G.

Therefore we conclude that |P | | (|R| − 1). Since R ∈ Sylr(N) and P ∈
Sylp(NG(R)), we have |R| = |N |r = ((p + 3)/2)r = rα and |P | = |NG(R)|p =

|G|p = p. Therefore p | (rα−1), which is a contradiction, since rα ≤ (p+3)/2 < p.

Hence we conclude that (p+3)/2 is a power of 2. So let (p+3)/2 = 2β , where

β > 1 is a natural number. Since |N | = k(p+ 3)/2, where k | 2(p+ 1)(p+ 2), we

get that |N |2 = 2β , 2β+1 or 2β+2. Similarly to the above if Q ∈ Syl2(N), then we

conclude that G contains a Frobenius subgroup Qo P , where P ∈ Sylp(NG(Q)).

So we have the following cases:

(1) If |N |2 = 2β , then p | (2β − 1), which is impossible since 2β = (p+ 3)/2 < p.

(2) If |N |2 = 2β+1, then p | (2β+1 − 1). Since 2β = (p + 3)/2, we get that

p | (p+ 2), which is a contradiction.

(3) If |N |2 = 2β+2, then p | (2β+2 − 1). Since 2β = (p + 3)/2, we get that

p | (2p+ 5), which is a contradiction.

Therefore S ∼= Ap+3 and so Ap+3 ≤ G/N ≤ Sp+3. Since |G| = |Ap+3|, we

conclude that |N | = 1 and so G ∼= Ap+3. Therefore Ap+3 is OD-characterizable.

�

Proposition 3.2. Let m = 3a · 5b (or 3a · 5b · 7c, if a > 0) with m > 3.

Suppose that neither m − 2 nor m − 4 is a prime. Let G = Am. Let R be any

finite group with |R| = m and let H = Am−1 ×R. Then G and H have the same

order and degree pattern. In particular, G is not OD-characterizable.

Proof. Clearly, |G| = |H|. Let π(G) = {p1, p2, . . . , pk} with p1 < p2 < . . .

< pk. By the hypothesis, pk ≤ m − 6 and if a > 0, pk ≤ m − 8. Thus, each
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vertex in the prime graph of G and H is equal or connected to 2, 3 and 5 and

also to 7 if a > 0. Now if 7 < pi < pj , then pi is connected to pj in the prime

graph of G if and only if pi + pj ≤ m. Likewise, pi and pj are connected in the

prime graph of H if and only if pi + pj ≤ m− 1. Thus, connectivity differs if and

only if pi + pj = m. But pi + pj is even and m is odd. Hence G and H have the

same degree pattern. �

Remark 3.3. We note that if m = 53 or m = 314, then the assumptions of

the above proposition satisfy and so Conjecture 1.1 is not true in general. Also

this implies that there are some finite simple groups, like A125 and A314 , which

are k-fold OD-characterizable, where k ≥ 3, which is an answer to Problem 1.1.
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