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On univalence, starlikeness and convexity of
certain analytic functions

By N. SAMARIS (Patras)

Abstract. Let t = (t0, t1, . . . , tk) ∈ (−∞ ∞)k+1. By Rt we denote the class of
functions f(z) = z + a2z2 + . . . that are analytic in the unit disk U = {z : |z| < 1} and
satisfy the condition

Re

�
t2

f(z)

z
+ t1f (1)(z) + · · ·+ tkf (k)(z)− t0 − t1

�
> 0 .

It is known that (i) if f, g ∈ R = R(0, 1, 1) then f ∗ g ∈ R, Re
h

f(z)
z

i
> 1

2
,

Ref(z) > −1 + 2 log 2, and f ∗ g is convex, (ii) if f ∈ R �0, 4
3
, 4
3

�
then f is startlike.

In the present paper we solve problems similar to the above in a large number of
classes Rt. Some known inequalities are improved and some known results are proved
under weaker conditions.

Introduction

Let H(U) be the class of holomorphic functions on the open unit disc
U = {z : |z| < 1} and A be the class of functions f ∈ H(U) such that
f(0) = f ′(0)−1 = 0. The class H(U) is a locally convex linear topological
space under the topology of uniform convergence on the compact subsets
of U .

We denote by S the subclass of A consisting of univalent functions
and by K,St the usual subclasses of S whose members are convex, starlike
(w.r.t. the origin).

Let P be the class of functions f ∈ H(U) for which f(0) = 1 and
Re f > 0 and t = (t0, t1, . . . , tk) ∈ (−∞, +∞)k+1. We define Rt to be the
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class of functions f ∈ A for which

t0
f(z)

z
+ t1f

′(z) + · · ·+ tkzk−1f (k)(z) + 1− t0 − t1 ∈ P .

We mention certain basic results from the paper [3].

i) If f ∈ R = R (0, 1, 1) then Re f ′(z) > −1 + 2 log 2, Re
[

f(z)
z

]
> 1

2

ii) If f ∈ A and Re[f ′(z) + zf ′′(z)] > − 1
4 then f ∈ St

iii) If f ∈ R, g ∈ R then f ∗ g ∈ K.
In the present paper we deal with problems similar to those of [3] in a

large number of classes Rt. We improve certain estimations that are made
in [1] and certain results of that paper are proved with weaker assumptions.

2. Preliminaries

If

f(z) =
∞∑

n=0

anzn ∈ H(U), g(z) =
∞∑

n=0

bnzn ∈ H(U)

then so does their Hadamard product

f ∗ g(z) =
∞∑

n=1

anbnzn .

Lemma 1. The transformation

∗ : H(U)×H(U) → H(U)

is continuous (see [2], p. 27).

Lemma 2. Let Y be a locally convex linear topological space, N1 ⊂
Y , N2 ⊂ Y be convex and compact and EN1, EN2 be the corresponding
subsets of its extremal points. Then we have

(a) If L1 is a linear continuous functional on the space Y then

min {ReL1(x) : x ∈ N1} = min {Re L1(x) : x ∈ EN1} .

(b) If L2 linear continuous functional on the space Y × Y then

min {Re L2(x1, x2) : (x1, x2) ∈ N1 ×N2} =

= min {Re L1(x1, x2) : (x1, x2) ∈ EN1 ×EN2}
(see 2, p.173).
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Lemma 3. The class P is a convex and compact subset of the space
H(U) and,

EP =

{
1 + 2

∞∑
n=1

(ηz)n : |η| = 1

}
(see [1]) .

Proposition 1. Let t = (t0, t1, . . . , tk) ∈ (−∞,∞)k+1 such that the
polynomial

t
¯
(x) = t0 + t1(x + 1) + · · ·+ tk(x + 1)x . . . (x− k + 2)

does not have any natural number as a root. Then we have

(a) Rt is a convex and compact subset of H(U)
(b) ERt = {zt∗(ηz) : |η| = 1} where

t∗(z) = 1 + 2
∞∑

n=1

zn

t
¯
(n)

.

Proof. It is obvious that

z +
∞∑

n=2

anzn ∈ Rt if and only if f(z) = 1 +
∞∑

n=1

an+1t¯
(n)zn ∈ P

or

1 +
∞∑

n=1

βnzn ∈ P if and only if z

[
1 +

∞∑
n=1

βn

t
¯
(n)

zn

]
∈ Rt .

If

f0(z) = 1 +
∞∑

n=1

1
t
¯
(n)

zn ,

we consider the operator T with

T : H(U) → H(U) and T (f)(z) = zf0 ∗ f(z) .

From Lemma 1 we get that T is continuous, therefore Rt = T (P ) is
compact. Since, furthermore, T is linear and injective we have

ERt = ET (P ) = T (EP ) .

From Lemma 3 we get (b).
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Lemma 4. Let p(x) = (x − x1)(x − x2) . . . (x − xk), q(x) = (x − %1)
(x − %2) . . . (x − %m), k ≤ m, xi ≤ %i for 1 ≤ i ≤ k, %1 < %2 < . . . %m < 1
and

p(x)
q(x)

= δk,m +
A1

x− %1
+

A2

x− %2
+ · · ·+ Am

x− %m
.

Then we have

A1ω
−%1 + · · ·+ Amω−%m ≥ 0 ∀ω ∈ (0, 1] .(a)

Inf

{
Re

[ ∞∑
n=1

p(n)
q(n)

zn

]
: z ∈ U

}
= lim

r→1

∞∑
n=1

p(n)
q(n)

(−r)n =(b)

∞∑
n=1

[
p(n)
q(n)

− δk,m

]
(−1)n − δk,m

2
.

Proof. We first prove (a) for p(x) = 1. Its obvious if m = 1. Suppose
it is true for m = n− 1. If

1
(x− %1)(x− %2) . . . (x− %n−1)

=
B1

x− %1
+ · · ·+ Bn−1

x− %n−1

and
1

(x− %1)(x− %2) . . . (x− %n)
=

A1

x− %1
+

A2

x− %2
+ · · ·+ An

x− %n

then

(3) A1(%n − %1) = −B1, . . . , An−1(%n − %n−1) = −Bn−1 .

From (3) we have

d

dω

(
A1ω

%n−%1 + A2ω
%n−%2 + · · ·+ An

)
=

= −ω%n−1
(
B1ω

−%1 + · · ·+ Bn−1ω
%n−1

) ≤ 0

and therefore we have a min in (0, 1] when ω = 1.
From the equality

A1 + A2 + · · ·+ An = 0

we get the required result for p(x) = 1.
From the equality

(x− x1)
q(x)

=
(%1 − x1)

q(x)
+

1
(x− %2) . . . (x− %m)
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we get the required result for p(x) = x − x1. Continuing in this way we
get (a).

(b) From the equality
∞∑

n=1

zn

n− %
=

∞∑
n=1

zn

[∫ 1

0

ωn−%−1dω

]
=

=
∫ 1

0

[ ∞∑
n=1

znωn−%−1

]
dω =

∫ 1

0

ω−%z

1− ωz
dω

we have

(4)
∞∑

n=1

p(n)
q(n)

zn =
∫ 1

0

(A1ω
−%1 + A2ω

−%2 + . . . )z
1− ωz

dω + δm,k
z

1− z
.

From (4), (a) and by the equality

min
|z|=r

Re
[

z

1− z

]
=

−r

1 + r

we obtain

(5) min

{
Re

[ ∞∑
n=1

p(n)
q(n)

zn

]
, |z| = r

}
=

∞∑
n=1

p(n)
q(n)

(−r)n .

If we use the minimum principle for harmonic functions, we get from (5)
the first part of equation (b). The second part is an immediate corollary
of the first if we use the relation

lim
r→1−

∞∑
n=1

(−r)n

n− %
=

∞∑
n=1

(−1)n

n− %
.

Notes. The conclusion (b) of the Lemma holds also in the case that
q(x) has multiple roots. Indeed if we let %2 = %1 + ε we have a relation of
the form Re fε(z) ≥ fε(−r). For ε → 0 we get the conclusion for roots of
multiplicity two. Continuing in this manner, we can generalize the result.

We prove now the following proposition

Proposition 2. Let Em be the set of t=(t0, t1, . . . , tk) ∈ (−∞,∞)k+1

that satisfy the condition i) tk > 0, (ii) if t
¯
(%) = 0 then % < 1, (iii) the

number of roots of t
¯
(x) that belong to [−1, 1] is at least m. Then

(a) inf
{

Re
[
f(z)

z

]
: z ∈ U , f ∈ Rt

}
= 1 + 2

∞∑
n=1

(−1)n

t
¯
(n)

, ∀ t ∈ E0
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(a′) inf
{

Re
[
f(z)

z

]
: z ∈ U , f ∈ Rt ∗Rt

}
=

= 1 + 4
∞∑

n=1

(−1)n

t
¯

2(n)
, ∀ t ∈ E0

(b) inf {Re [f ′(z)] : z ∈ U , f ∈ Rt} =

= 1 + 2
∞∑

n=1

(−1)n

[
n + 1
t
¯
(n)

− δ1,k

tk

]
− δ1,k

tk
, ∀ t ∈ E1

(b′) inf {Re[f ′(z)] : z ∈ U f ∈ Rt ∗Rt} = 1 + 4
∞∑

n=1

(n + 1)
t
¯

2(n)
, ∀ t ∈ E1

(c) inf {Re[f ′(z) + zf ′′(z)] : z ∈ U , f ∈ Rt} =

= 1 + 2
∞∑

n=1

(−1)n

[
(n + 1)2

t
¯
(n)

]
− δ2,k

tk
, ∀ t ∈ E2

(c′) inf {Re[f ′(z) + zf ′′(z) : z ∈ U , f ∈ Rt ∗Rt} =

= 1 + 4
∞∑

n=1

(−1)n

[
(n + 1)2

t2(n)
− δ1k

t2k

]
− δ1,k

2t2k
, ∀ t ∈ E1

(d) inf
{
Re[f ′(z) + 3zf ′′(z) + z2f ′′′(z)] : z ∈ U , f ∈ Rt

}
=

= 1 + 2
∞∑

n=1

(−1)n

[
(n + 1)3

t
¯
(n)

− δ3,k

tk

]
− δ3,k

tk
, ∀ t ∈ E3

(d′) inf
{
Re[f ′(z) + 3zf ′′(z) + z2f ′′′(z)] : z ∈ U , f ∈ Rt ∗Rt

}
=

= 1 + 4
∞∑

n=1

(−1)n (n + 1)3

t
¯

2(n)
, ∀ t ∈ E2 .

Proof. (a) If z 6= 0 we consider the linear functional

Lz : Lz(f) =
f(z)

z
.
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Then Lz is continuous on H(U). From Lemma 3a and Proposition 1 we
have

min
{

Re
[
f(z)

z

]
: f ∈ Rt

}
= min

{
Re

[
f(z)

z

]
: f ∈ ERt

}
=

min

{
Re

[
1 + 2

∞∑
n=1

(ηz)n

t
¯
(n)

]
: |η| = 1

}
.(6)

From (6) and Lemma 4b we get the required result.
(a′) If on the space H(U)×H(U) we consider the bilinear mapping

L∗z : L∗z(f, g) =
1
2
f ∗ g(z)

then L∗z is continuous. From Lemma 3b and Prop. 1 we have

min
{

Re
[
1
2
f ∗ g(z)

]
: f ∈ Rt, g ∈ Rt

}
=

= min
{

Re
[
1
2
f ∗ g(z)

]
: f ∈ ERt, g ∈ ERt

}
=(7)

= min

{
Re

[
1 + 4

∞∑
n=1

(ηz)n

t
¯
2(n)

]
: |η| = 1

}
.

From (7) and Lemma 4b we obtain the required result.
The ramaining conclusions are proved by a similar process.

3. Univalence, starlikeness and convexity criteria

Theorem 1. Let Rt be as in Lemma 4, a < 1, and

Qa =
{

f ∈ A : Re
[
f(z)

z

]
> a

}
.

Then we have

(a) Rt ∗Qa = Rt if and only if a = 1
2 ,

(b) Rt ∗Rt ⊂ Rt if and only if Rt ⊂ Q1/2.

Proof. (a) It is obvious that f ∈ Rt if and only if

Re
[
1
2
h ∗ f(z)

]
> 0 where h(z) = z +

∞∑
n=1

t
¯
(n)zn .
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Also
Qa = {az + (1− a)zf(z) : f ∈ P } ,

EQa =

{
z

[
1 + 2(1− a)

∞∑
n=1

(ηz)n

]
: |η| = 1

}
.

For z 6= 0, consider on the space H(U) ×H(U) the continuous bilinear
function Lz which is defined by the formula

Lz(f, g) =
1
2
h ∗ f ∗ g(z) .

From (1) and Lemma 2(b) we have

(2) min
{

Re
[
1
2
h ∗ f ∗ g(z)

]
: f ∈ Rt, g ∈ Qa

}
=

= min

{
Re

[
1 + 4(1− a)

∞∑
n=1

(ηz)n : |η| = 1

]}
.

The right hand side of (2) is positive for every z ∈ U if and only if a ≥ 1
2 .

Also if f ∈ Rt then f = f ∗ g0 where g0(z) = z +
∞∑

n=1
zn+1 ∈ Q1/2.

(b) By arguments similar to those of (a) we have the equalities

min
{

Re
[
1
2
h ∗ f ∗ g(z)

]
: f ∈ Rt, g ∈ Rt

}
=

= min

{
Re

[
1 + 4

∞∑
n=1

(ηz)n

t
¯
(n)

]
: |η| = 1

}
=

= −1 + 2 min
{

Re
[
f(z)

z

]
: f ∈ ERt

}
=

= −1 + 2 min
{

Re
[
f(z)

z

]
: f ∈ Rt

}
.

Corollary 1. If z +
∞∑

n=1
anzn+1 ∈ Rt then z +

∞∑
n=1

ankznk+1 ∈ Rt.

Theorem 2. a) If t ∈ E0 such that

1 + 2
∞∑

n=1

(−1)n

t
¯
(n)

≥ 1
2
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then Rt ∗Rt ⊂ Rt.

b) If t ∈ E1 such that

1 + 2
∞∑

n=1

(−1)n

[
n + 1
t
¯
(n)

− δ1,k

tk

]
− δ1,k

tk
≥ 0

then Rt ⊂ S.

c) If t ∈ E1 such that

1 + 4
∞∑

n=1

(n + 1)
t
¯

2(n)
≥ 0

then Rt ∗Rt ⊂ S.

Proof. Conclusion (a) follow by combining Prop. 2 (a) and Th. 1.
Conclusions 2(b) and 2(b′) follow analogously combining Prop. 2(b), 2(b′)
and Th. 1.

Theorem 2′. If a < 1, t = (0, 1
1−a , 1

1−a ) or

Rt ≡
{
f ∈ A : Re [f ′(z) + zf ′′(z)] > a

}

then we have

(a) Re
[
f(z)

z

]
> 1 + 2(1− a)

(
π2

12
− 1

)
∀f ∈ Rt

and

Rt ∗Rt ⊂ Rt if a ≥ 1 +
1
4

[
π2

12
− 1

]−1

(a′) Re
[
f(z)

z

]
> 1 + 4

(
7

720
π4 − 1

)
(1− a)2 ∀ f ∈ Rt ×Rt

(b) Re f ′(z) > 1 + 2(1− a)(log 2− 1) ∀ f ∈ Rt

and
Rt ⊂ S if a ≥ 1− 2−1(log 2− 1)−1

(b′) Re f ′(z) > 1 + 4(γ − 1)(1− a)2 ∀ f ∈ Rt ∗Rt

and
Rt ∗Rt ⊂ S if a ≥ 1− 2−1(1− γ)−

1
2



302 N. Samaris

where γ =
∞∑

n=1

(−1)n+1

n3 = 0, 90152508 . . . .

The constants in the right-hand sides of the above inequalities cannot
be replaced by smaller ones.

Proof. The proof is an immediate consequence of Prop. 2 if we as-
sume that the relations below are known

∞∑
n=1

(−1)n

(n + 1)2
=

π2

12
− 1,

∞∑
n=1

(−1)n

n + 1
= log 2− 1,

∞∑
n=1

(−1)n

(n + 1)3
= −1 +

7
720

π4

Remark. Th. 2 and Corollary 1, in the special case Rt = R yield
Th. 3, Th. 3′ and Corollary 3 of paper [3].

Part (b) of Th. 2, in the special case Rt = R yields part (a) of Th. 1
of paper [3].

Part (a) of Th. 2, in the special case Rt = R yields

Re
[
f(z)

z

]
> −1 +

π2

6

instead of

Re
[
f(z)

z

]
>

1
2

found in paper [3].
The number −1 + π2

6 cannot be replaced by a smaller one.

Theorem 3. If f ∈ A and Re[f ′(z) + zf ′′(z)] > λ where λ =
(6− π2)(24− π2)−1 = −0, 27 . . . then ft ∈ St.

Proof. The inequality Re[f ′(z) + zf ′′(z)] > a yields

Re
[
f(z)

z

]
> 1 + 2(1− a)

(
π2

12
− 1

)
≥ 0 when a ≥ 6− π2

12− π2
,

Re[f ′(z)] > 2 log 2− 1 + a(2− log 2) ≥ 0 when a ≥ 1− 2 log 2
2− 2 log 2

.

If
zf ′(z)
f(z)

=
1 + w(z)
1− w(z)

we require |w(z)| < 1 ∀ z ∈ U .
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If this last requirement is not true, then there exists z0 ∈ U , k ≥ 1 such
that w(z0) = eiθ and w(z0) = kz0w

′(z0) (see [3], Lemma 2) and therefore

Re[f ′(z0) + z0f
′′(z0)] = Re

{[
f(z0)

z0

] [(
1 + eiθ

1− eiθ

)2

− 2k
eiθ

(1− eiθ)2

]}

≤ −1
2

Re
[
f(z0

z0

]
< −1

2

[
π2

6
− 1 + a

(
2− π2

6

)]
≤ a when a ≤ 6− π2

24− π2
.

Corollary 3. If f ∈ A and Re
[
f ′(z) + 3zf ′′(z) + z2f ′′(z)

]
> λ then

f ∈ K.

Theorem 4. (a) If t ∈ E2 and

1 + 2
∞∑

n=1

(−1)n

[
(n + 1)2

t
¯
(n)

− δ2k

tk

]
− δ2k

tk
≥ λ

then Rt ⊂ St.

(a′) If t ∈ E2 and

1 + 4
∞∑

n=1

(−1)n (n + 1)2

t
¯

2(n)
≥ λ

then Rt ∗Rt ⊂ St.

(b) If t ∈ E3 and

1 + 2
∞∑

n=1

(−1)n

[
(n + 1)3

t
¯
(n)

− δ3,k

tk

]
− δ3,k

tk
≥ λ

then Rt ⊂ K.

(b′) If t ∈ E3 and

1 + 4
∞∑

n=1

(−1)n (n + 1)3

t
¯

2(n)
> λ

then Rt ∗Rt ⊂ K.

Proof. Conclusions (a) and (a′) follow by combining Prop. 2 and
Th. 3 and 5. Conclusions (b) and (b′) follow analogously combining The-
orem 5 and Corollary 3.

Corollary 4. If a < 1, t = (0, 1
1−a , 1

1−a ) or Rt = {f ∈ A : Re[f ′(z)+
zf ′(z)] > a} then

(a) If a ≥ 1− 3[6(12− π2)−1(24− π2)−1]1/2 then Rt ∗Rt ⊂ St,
(b) if a ≥ 1− 3[2(1− log 2)(24− π2)]−1/2 then Rt ∗Rt ⊂ K.
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Remark. Theorem 3 provides a stronger starlikeness criterion than
Theorem 2 in paper [3], since the hypothesis in [3] is

Re[f ′(z) + zf ′′(z)] > −1/4 .

Similarly, Corollary 3 in this paper forms a stronger convexity criterion
than Corollary 2 in [3].

Part (b) of Corollary 4 provides a stronger convexity criterion than
Theorem 4 in [3], since the hypothesis in paper [3] is

Re[f ′(z) + zf ′′(z)] > 0 .
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