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On group algebras with unit groups of derived length
at most four

By DISHARI CHAUDHURI (Assam) and ANUPAM SAIKIA (Assam)

Abstract. In this paper, we examine the relation between a finite group G and the

units U in the group algebra of G over a field K of positive characteristic. By imposing

certain natural conditions on the derived subgroups of U so that it has solvable length

at most four, we show that the group G must be commutative.

1. Introduction

Let KG be the group algebra of a group G over a field K of positive charac-

teristic p and let U(KG) = U denote its multiplicative group of units. For subsets

X, Y of a group G, we denote by (X,Y ) the subgroup of G generated by all com-

mutators (x, y) = x−1y−1xy with x ∈ X and y ∈ Y . The derived subgroups of G

are defined as G(0) = G, G(1) = G′ = (G,G), and G(i) = (G(i−1), G(i−1)) for all

i > 0. The descending normal series G(0) ◃ G(1) ◃ . . . G(i) is called the derived

series of G. If the series terminates, i.e., if G(n) = 1 for some integer n, then G is

said to be solvable and the smallest such integer is called the derived length of G.

The investigation of necessary and sufficient conditions for the solvability of

U(KG) dates back to the 1970s with the works of Bateman and Passman [1],

[2]. A lot of work has been done on this context with a complete solution of the

problem being given by Bovdi [3]. However, computation of the derived length of

U and the converse problem of finding the nature of G or its commutator subgroup

G′ for a fixed derived length of U still remain open. Various results on the derived

length of U have been obtained (for example, [4]–[6]). Shalev [7] has classified
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group algebras of finite groups over fields of odd characteristic whose unit group is

metabelian, and Kurdics [8] has done the same for even characteristic. Further,

a necessary and sufficient condition for U to be centrally metabelian, that is,

(U (2), U) = 1, is given by Sahai [9]. Also, characterisation of group algebras

over fields of odd characteristic such that (U (2), U ′) = 1 has been given by Sahai

[10] and the same with U satisfying (U (2), U (2)) = 1 has been investigated by

Chandra and Sahai [11], [12].

In this article we consider group algebras with unit group U which satisfies

(U (3), U ′) = 1. Such U is obviously of derived length at most four, i.e., U (4) = 1.

Lie algebraic properties of KG play an important role in our investigation. For

X,Y ⊆ KG, we denote by [X,Y ] the additive subgroup generated by all Lie

commutators [x, y] = xy − yx, where x ∈ X and y ∈ Y . Also, Op(G) stands

for the maximal normal p-subgroup of G, and ∆(G) denotes the augmentation

ideal of the group algebra KG. For any two elements x, h ∈ G, xh denotes the

conjugation of x by h, that is, h−1xh. We denote the Frattini subgroup of a

group G by Φ(G), which is the intersection of all maximal subgroups of G. It

is well-known that Φ(G) is a characteristic subgroup of G. By a p′-element or

a p′-automorphism of a group G we mean an element or an automorphism of G

whose order is not divisible by p. All groups considered are finite. Our main

result is as follows:

Theorem 1.1. Let K be a field of characteristic p ≥ 17 and let G be a group

of odd order. Then G is abelian if and only if U satisfies (U (3), U ′) = 1.

2. Background

In this section we discuss a few important known results which provide useful

tools for the proof of our theorem. We first state the complete set of necessary

and sufficient conditions for U to be solvable, given by Bovdi [3].

Theorem 2.1. Let K be a field of finite characteristic p, and Op(G) a

maximal normal p-subgroup of the finite group G. Then the group U(KG) is

solvable if and only if one of the following statements holds:

(i) G is abelian.

(ii) G/Op(G) is abelian and F is a field of characteristic p.

(iii) |K| = 2 and G/Op(G) is an extension of an elementary abelian 3-group A

by a group ⟨b⟩ of order 2, and bab = a−1 for all a ∈ A.
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(iv) |K| = 3 and G/Op(G) is an extension of an elementary abelian 2-group A

by a group ⟨b⟩ of order 2.
(v) |K| = 3 and G is an extension of an abelian group A of exponent 4 by a

group ⟨b⟩ of order 2 and bab−1 = a−1 for all a ∈ A.

(vi) |K| = 3 and G/Op(G) is an extension of an abelian group A of exponent 8

by a group ⟨b⟩ of order 2 and bab = a3 for all a ∈ A.

The next result can be found in ([13], Theorem 3.5)

Theorem 2.2. Let G be a group of order pab and (p, b) = 1 and let K be a

field of characteristic p. Assume that G has a normal Sylow p-subgroup P . Then

the Jacobson radical J = J(KG) of KG is J = ∆(P )KG.

The following result can be found in ([14], Chapter 9.6). Recall that the

nilpotency index of a nilpotent ideal I is the least positive integer n such that

In = 0.

Theorem 2.3. Let G be a finite p-group of order pm. Then the nilpotency

index of ∆(G) over a field of characteristic p is pm if and only if G is cyclic.

Further, if G = P1 × P2 × · · · × Pk, where each Pi is a cyclic subgroup of order

pti , ti ∈ Z, for i = 1, 2, . . . , k, then the nilpotency index of ∆(G) is (pt1 + pt2 +

· · ·+ ptk − k + 1).

Next, we state a theorem by Burnside which can be found in ([15], Theo-

rem 5.1.4).

Theorem 2.4. Let ψ be a p′-automorphism of a p-group P , which induces

the identity on P/Φ(P ). Then ψ is the identity automorphism on P .

The following can be found in ([15], Theorem 5.3.6).

Theorem 2.5. If A is a p′-group of automorphisms of the p-group P , then

(P,A,A) = (P,A). In particular, if (P,A,A) = 1, then A = 1.

If r is a real number, then by ⌈r⌉ we denote the minimal integer not smaller

than r. The next result can be found in [5].

Result 2.6. If KG is a non-commutative group algebra of a torsion nilpotent

group G over a field K of positive characteristic p such that U is solvable, then

the derived length of U is at least ⌈log2(p+ 1)⌉.

Let J(G′) denote the idealKG∆(G′). Let x, y ∈ U be such that x−1 ∈ J(G′)i

and y − 1 ∈ J(G′)j for some i, j > 0. Then we have

(x, y) ≡ 1 + [x, y] (mod J(G′)i+j+1). (2.1)
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Another important identity is, for any two elements x, y in KG, we have:

xy − 1 = (x− 1)(y − 1) + (x− 1) + (y − 1) (2.2)

3. Proof of Theorem 1.1

• Necessary conditions:

Let G be a group of odd order. When G is abelian, the result follows trivially.

• Sufficient conditions:

Let KG be the group algebra of a finite group G over a field K of charac-

teristic p ≥ 5, such that, the unit group U = U(KG) satisfies the condition

(U (3), U ′) = 1. Then U is solvable and according to Theorem 2.1, G/Op(G)

is abelian.

If G/Op(G) is abelian then Op(G) is a Sylow p-subgroup of G. Let P =

Op(G). Now, |P | and [G : P ] are relatively prime, hence by Schur–Zassenhaus

Theorem ([15], Theorem 6.2.1), we have G = P o H, where H is a p′-prime

subgroup of G. Also, by the above conditions, H is abelian.

Lemma 3.1. Let CharK = p ≥ 11. Let G be a group of odd order. Suppose

that U satisfies (U (3), U ′) = 1. Then G = P ×H, where P is a p-group and H is

an abelian p′-group, where p′ is odd.

Proof. We know from above that G = P oH, where P is a p-group and H

is an abelian p′-group. Also P E G. Since G is of odd order, we have p′ is odd.

We need to show that (P,H) = 1. We will show that if (P,H) ̸= 1, then we can

construct nontrivial element in (U (3), U ′). �

We first assume that P is elementary abelian. Suppose, (P, h) ̸= 1 for some

h ∈ H. Then, h2 ̸= 1, and (P, h) ≤ P (as P E G) and hence (P, h) is a p-group.

Since h induces a p′-automorphism on P , by Theorem 2.5, (P, h, h) = (P, h). Let

L = ⟨(P, h), h⟩. Then L′ = (P, h, h) = (P, h) and (P, h) E L. So on replacing

G with L if necessary, we may assume that P = G′ = (P, h). By Theorem 2.2,

the Jacobson radical J = J(KG) = ∆(P )KG. Now, since (P, h) ̸= 1, we can

find x ∈ P such that (x, h) ̸= 1. Put α = x − 1. Then u = 1 + hα is a unit

in KG. Also, (x, h), (x, h)h, (x, h2) ∈ P . By forming commutators of suitable

elements in U , we obtain elements in U ′, U (2) and then in U (3). Now consider

u1 = (u, h) ∈ U ′ and v1 = (u, x) ∈ U ′. We have

u1 = (u, h) = 1 + u−1h−1[u, h]

≡ 1 + (1− hα)(αh− hα) (mod J2)
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≡ 1 + αh− hα (mod J2)

= 1 + hx((x, h)− 1) (mod J2)

≡ 1 + h((x, h)− 1) (mod J2) (as x ≡ 1 (mod J). (3.1)

As G′ = P , we use identity (2.1) to obtain the following:

v1 = (u, x) ≡ 1 + [u, x] (mod J3)

= 1 + (x+ hαx− x− xhα) (mod J3)

= 1 + {h(x− 1)x− xh(x− 1)} (mod J3)

= 1 + (hx− xh)(x− 1) (mod J3)

= 1 + hx(1− (x, h))(x− 1) (mod J3)

≡ 1− h((x, h)− 1)(x− 1) (mod J3) (as x ≡ 1 (mod J). (3.2)

Next we consider u2 = (u1, x) and v2 = (v1, x). As x ∈ P = G′ ⊂ U ′, u2 and

v2 are in U (2).

u2 = (u1, x) ≡ 1 + [u1, x] (mod J3)

= 1 + {x+ h((x, h)− 1)x− x− xh((x, h)− 1)} (mod J3)

= 1 + (hx− xh)((x, h)− 1) (mod J3)

= 1 + hx(1− (x, h))((x, h)− 1) (mod J3)

≡ 1− h((x, h)− 1)2 (mod J3) (as x ≡ 1 (mod J)) (3.3)

v2 = (v1, x) ≡ 1 + [v1, x] (mod J4)

= 1 + {x− h((x, h)− 1)(x− 1)x− x+ xh((x, h)− 1)(x− 1)} (mod J4)

= 1 + (xh− hx)((x, h)− 1)(x− 1) (mod J4)

= 1 + hx((x, h)− 1)2(x− 1) (mod J4)

≡ 1 + h((x, h)− 1)2(x− 1) (mod J4) (as x ≡ 1 (mod J)). (3.4)

Finally we obtain an element w = (u2, v2) in U
(3). We have

w = (u2, v2) ≡ 1 + [u2, v2] (mod J6)

= 1 + [u2 − 1, v2 − 1] (mod J6)

= 1 + {−h((x, h)− 1)2h((x, h)− 1)2(x− 1)

+ h((x, h)− 1)2(x− 1)h((x, h)− 1)2} (mod J6)
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= 1 + h((x, h)− 1)2{(x− 1)h− h(x− 1)}((x, h)− 1)2 (mod J6)

= 1 + h((x, h)− 1)2hx((x, h)− 1)3 (mod J6)

≡ 1 + h((x, h)− 1)2h((x, h)− 1)3 (mod J6) (as x ≡ 1 (mod J))

= 1 + h2((x, h)h − 1)2((x, h)− 1)3 (mod J6). (3.5)

We now show that the element (w, x) in (U (3), U ′) is nontrivial. It suffices

to show that V1 = (w, x) is nontrivial modulo J7. Now,

V1 = (w, x) ≡ 1 + [w, x] (mod J7)

= 1 + [w − 1, x] (mod J7)

= 1+{h2((x, h)h− 1)2((x, h)−1)3x−xh2((x, h)h− 1)2((x, h)−1)3} (mod J7)

= 1 + (h2x− xh2)((x, h)h − 1)2((x, h)− 1)3 (mod J7)

= 1 + h2x(1− (x, h2))((x, h)h − 1)2((x, h)− 1)3 (mod J7)

≡ 1− h2((x, h2)− 1)((x, h)h − 1)2((x, h)− 1)3 (mod J7)

(as x ≡ 1 (mod J)). (3.6)

Since P is elementary abelian, let P = P1 ×P2 × · · · ×Pk, where k ≥ 1, each

Pi
∼= Cp, i = 1, 2, . . . k and Cp is a cyclic group of order p. Let xi be the generator

of Pi, for i = 1, 2, . . . , k. Let

(x, h2) = x1
a1x2

a2 . . . xk
ak

(x, h)h = x1
b1x2

b2 . . . xk
bk

(x, h) = x1
c1x2

c2 . . . xk
ck

where ai’s, bi’s and ci’s are integers such that 1 ≤ ai, bi, ci ≤ p for every i =

1, 2, . . . , k, with at least one element in every set of ai’s, bi’s and ci’s being greater

than or equal to one but strictly less than p. Then equation (3.6) can be written

as:

V1 = (w, x) ≡ 1− h2(x1
a1x2

a2 . . . xk
ak − 1)(x1

b1x2
b2 . . . xk

bk − 1)2

(x1
c1x2

c2 . . . xk
ck − 1)3 (mod J7). (3.7)

Now by repeated use of identity (2.2) and working modulo J7, equation (3.7)

becomes

V1 ≡ 1− h2{(x1a1 − 1) + (x2
a2 − 1) + · · ·+ (xk

ak − 1)}

× {(x1b1 − 1) + (x2
b2 − 1) + · · ·+ (xk

bk − 1)}2

× {(x1c1 − 1) + (x2
c2 − 1) + · · ·+ (xk

ck − 1)}3. (3.8)
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Now, whenever we have d ∈ N, we can write:

∴ xd − 1 = (x− 1)(1 + x+ · · ·+ xd−1)

= (x− 1){1 + ((x− 1) + 1) + · · ·+ ((xd−1 − 1) + 1)}
= (x− 1)(d+D1) where D1 ∈ ∆(P ) ⊆ J = (x− 1)D. (3.9)

If p - d, then D = (d+D1) is a unit in KG. With the help of this technique, the

second term in RHS of equation (3.8) can be written as:

M = {(x1 − 1)A1 + (x2 − 1)A2 + · · ·+ (xk − 1)Ak}

× {(x1 − 1)B1 + (x2 − 1)B2 + · · ·+ (xk − 1)Bk}2

× {(x1 − 1)C1 + (x2 − 1)C2 + · · ·+ (xk − 1)Ck}3 (3.10)

i.e., M =
{
(x1 − 1)A1 + (x2 − 1)A2 + · · ·+ (xk − 1)Ak

}
×
{ k∑

i=1

(xi − 1)2Bi
2 + 2

k∑
i,j=1
i ̸=j

(xi − 1)(xj − 1)BiBj

}

×
{ k∑

i=1

(xi − 1)3Ci
3 + 3

k∑
i,j=1
i ̸=j

(xi − 1)2(xj − 1)Ci
2Cj

+ 6

k∑
i,j,l=1
i ̸=j ̸=l

(xi − 1)(xj − 1)(xl − 1)CiCjCl

}
(3.11)

where all the Ai’s, Bi’s, Ci’s, for i = 1, 2, . . . , k, belong to KG with at least one

element in every set of Ai’s, Bi’s, Ci’s, for i = 1, 2, . . . , k, is a unit in KG. Now,

by Theorem 2.3, nilpotency index of ∆(P ) as well as J in this case is (kp−k+1).

Let, if possible, V1 ≡ 1 (mod J7), that is , let M ∈ J7.

Let I = {1, 2, . . . , k}. Let IA = {t ∈ I | At is a unit}, IB = {t ∈ I | Bt

is a unit} and IC = {t ∈ I | Ct is a unit}. Whenever there is an element i in the

intersection of any of these sets, we apply a trick by adjusting the powers of the

element (xi − 1) to get an element contradicting the nilpotency index of ∆(P ).

Now the following mutually exclusive cases may arise:

Case (I) IC ∩ IB ̸= ∅. We consider the following mutually exclusive subcases:

(a) IC ∩ IB ∩ IA ̸= ∅. Let r ∈ IC ∩ IB ∩ IA. We examine the term{
(xr − 1)p−7

k∏
i=1
i ̸=r

(xi − 1)p−1

}
M,
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and find that M ∈ J7 would imply

ArB
2
rC

3
r (x1 − 1)p−1(x2 − 1)p−1 . . . (xk − 1)p−1 ∈ Jkp−k−6 J7 = (0)

which is a contradiction to the nilpotency index of ∆(P ), as ArB
2
rC

3
r is a

unit in KG.

(b) IC ∩ IB ∩ IA = ∅. Pick m ∈ IC ∩ IB and mA ∈ IA, so m ̸∈ IA. We examine

the term {
(xm − 1)p−6(xmA − 1)p−2

k∏
i=1

i ̸=m,mA

(xi − 1)p−1

}
M

and find that M ∈ J7 would imply

AmA
B2

mC
3
m (x1 − 1)p−1(x2 − 1)p−1 . . . (xk − 1)p−1 ∈ Jkp−k−6 J7 = (0)

which is a contradiction to the nilpotency index of ∆(P ), as AmA
B2

mC
3
m is

a unit in KG.

Case (II) IC ∩ IB = ∅. Again, this has the following subcases:

(a) IC ∩ IA ̸= ∅. Pick l ∈ IC ∩ IA and lB ∈ IB, so l ̸∈ IB and lB ̸∈ IC . We

examine the term{
(xl − 1)p−5(xlB − 1)p−3

k∏
i=1

i ̸=l,lB

(xi − 1)p−1

}
M

and find that M ∈ J7 would imply

AlB
2
lBC

3
l (x1 − 1)p−1(x2 − 1)p−1 . . . (xk − 1)p−1 ∈ Jkp−k−6 J7 = (0)

which is a contradiction to the nilpotency index of ∆(P ), as AlB
2
lB
C3

l is a

unit in KG.

(b) IC ∩ IA = ∅. This has the following subcases.

(i) IB∩IA ̸= ∅. Let n ∈ IB∩IA, and nC ∈ IC , so n ̸∈ IC and nC ̸∈ IA∪IB.
We examine the term{

(xn − 1)p−4(xnC − 1)p−4
k∏

i=1
i ̸=n,nC

(xi − 1)p−1

}
M

and find that M ∈ J7 would imply

AnB
2
nC

3
nC

(x1 − 1)p−1(x2 − 1)p−1 . . . (xk − 1)p−1 ∈ Jkp−k−6 J7 = (0)

which is a contradiction to the nilpotency index of ∆(P ), as AnB
2
nC

3
nC

is a unit in KG.
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(ii) IB ∩ IA = ∅, so that IA, IB and IC are pairwise disjoint. Let d ∈ IA,

e ∈ IB and f ∈ IC . Examining the term

{
(xd − 1)p−2(xe − 1)p−3(xf − 1)p−4

k∏
i=1

i ̸=d,e,f

(xi − 1)p−1

}
M

and find that M ∈ J7 would imply

AdB
2
eC

3
f (x1 − 1)p−1(x2 − 1)p−1 . . . (xk − 1)p−1 ∈ Jkp−k−6 J7 = (0)

which is a contradiction to the nilpotency index of ∆(P ), as AdB
2
eC

3
f is

a unit in KG.

Therefore, V1 ̸≡ 1 (mod J7) , which implies that V1 is a nontrivial element in

(U (3), U ′) = 1, a contradiction to our given condition. So, when P is elementary

abelian, we get that G = P ×H.

Now, let P be any p-group. Assume (P, h) ̸= 1 for some h ∈ H. As the

Frattini subgroup Φ(P ) is a characteristic subgroup of P , we have hΦ(P ) = Φ(P )

and hence h induces an automorphism on P/Φ(P ). Now P/Φ(P ) is elementary

abelian (by [15], Theorem 5.1.3). Now, we have already proved that h induces

the identity automorphism on the elementary abelian group P/Φ(P ). Hence by

Theorem 2.4, h induces the identity automorphism on P as well. Hence we get,

G = P ×H.

Proposition 3.2. Let CharK = p ≥ 17 and let G be a finite p-group such

that U satisfies (U (3), U ′) = 1, then G is abelian.

Proof. A finite p-group is nilpotent and torsion. If G is non-abelian then by

Result 2.6, the derived length of U for p ≥ 17 is ⌈log2(p+ 1)⌉ ≥ ⌈log2(17 + 1)⌉ ≈
⌈4.16⌉ = 5. Thus U can only satisfy (U (3), U ′) = 1, if G is abelian. �

• Conclusion:

Combining lemma 3.1 and Proposition 3.2, we find that when CharK ≥ 17

and G is a group of odd order such that U satisfies (U (3), U ′) = 1, then G is

abelian. Hence, Theorem 1.1 is proved.
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