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Characterization of additive maps ξ-Lie derivable at zero
on von Neumann Algebras

By XIAOFEI QI (Taiyuan) JIA JI (Taiyuan) and JINCHUAN HOU (Taiyuan)

Abstract. Let M be any von Neumann algebra with the center Z(M). For any

scalar ξ, denote by [A,B]ξ = AB − ξBA the ξ-Lie product of A,B ∈ M. Assume that

L : M → M is an additive map. It is shown that, if M has no central summands of type

I1 or type I2, then L satisfies L([A,B]) = [L(A), B] + [A,L(B)] whenever [A,B] = 0 if

and only if there exists an element Z0 ∈ Z(M), an additive map h : M → Z(M) and an

additive derivation φ : M → M such that L(A) = φ(A)+h(A)+Z0A for allA ∈ M; ifM
has no central summands of type I1, then L satisfies L([A,B]ξ) = [L(A), B]ξ+[A,L(B)]ξ
whenever [A,B]ξ = 0 with ξ ̸= 1 if and only if L(I) ∈ Z(M) and there exists an additive

derivation φ : M → M such that φ(ξA) = ξφ(A) and L(A) = φ(A) + L(I)A for all

A ∈ M. A result in [22] is improved for prime algebra case.

1. Introduction

Let R be an associative ring. Recall that an additive map δ on R is called

an additive derivation if δ(AB) = δ(A)B + Aδ(B) for all A, B ∈ R; is called an

additive Jordan derivation if δ(AB+BA) = δ(A)B+Aδ(B)+δ(B)A+Bδ(A) for all

A,B ∈ R (equivalently, δ(A2) = δ(A)A+Aδ(A) for all A ∈ R if the characteristic

of R is not 2); is called a Lie derivation if δ([A,B]) = [δ(A), B] + [A, δ(B)] for

all A,B ∈ R, where [A,B] = AB − BA is the Lie product of A and B. The

structure of derivations, Jordan derivations and Lie derivations had been studied
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intensively for many years (for example, see [1], [3], [4], [7], [10], [16] and the

references therein).

Let A be an algebra over a field F. For a scalar ξ ∈ F and for A,B ∈ A,

we say that A commutes with B up to a factor ξ if AB = ξBA. The notion

of commutativity up to a factor for pairs of operators is an important concept

and has been studied in the context of operator algebras and quantum groups.

Motivated by this, a binary operation [A,B]ξ = AB − ξBA, called ξ-Lie product

of A and B, was introduced in [19]. An additive map L : A → A is called an

additive ξ-Lie derivation if L([A,B]ξ) = [L(A), B]ξ + [A,L(B)]ξ for all A,B ∈ A.

This conception unifies the above three notions. It is clear that a ξ-Lie derivation

is a derivation if ξ = 0; is a Lie derivation if ξ = 1; is a Jordan derivation if

ξ = −1. The structure of ξ-Lie derivations on various operator algebras was also

discussed by several authors (see [9], [14], [19], [23], [25]).

Recently, the question of under what conditions an additive map becomes a

derivation attracted much attention of many researchers (see [5], [8], [12], [13],

[18] and the references therein). For ξ-Lie derivations, an additive (a linear)

map L on A is said to be ξ-Lie derivable at a point Z ∈ A if L([A,B]ξ) =

[L(A), B]ξ+[A,L(B)]ξ for any A,B ∈ A with [A,B]ξ = Z. Clearly, this definition

is only valid for ξ-Lie commutators, that is, the elements of the form Z = [A,B]ξ.

For instance, if Z = I and ξ = 1, as the unit I may not be a commutator in

general, there is no sense to define that L is Lie derivable at I. Also, L is a ξ-Lie

derivation if and only if it is ξ-Lie derivable at every ξ-Lie commutator Z. If

Z ∈ A satisfies that, for any additive map L : A → A, L is ξ-Lie derivable at

the point Z will imply that L is a ξ-Lie derivation, we say that Z is a full ξ-Lie

derivable point of A. The following problem is natural.

Problem. How to characterize the additive (linear) maps that are ξ-Lie

derivable at some ξ-Lie commutator? Are there any ξ-Lie commutators that are

full ξ-Lie derivable points?

Since zero is a ξ-Lie commutator for any ξ and any algebra, as a start, the

above problem has been attacked by several researchers for maps ξ-Lie derivable at

zero. Qi and Hou [20] characterized the linear maps between J -subspace lattice

algebras that Lie derivable at zero. In [22] they consider further the additive maps

ξ-Lie derivable at zero in pure algebra frame. Let A be a unital prime algebra

over a field F containing a non-trivial idempotent P . Denote by Z(A) and C the

center of A and the extended centroid of A, respectively. Assume that ξ ∈ F and

L : A → A is an additive map. Qi, Cui and Hou [22] showed that, if L is ξ-Lie

derivable at zero, then there exists an additive derivation τ : A → C such that (1)
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if ξ = 0, then L(I) ∈ Z(A) and L(A) = τ(A) + L(I)A for all A ∈ A; (2) if ξ = 1

and A is of characteristic not 2 with deg(A) > 2, then L(A) = τ(A) +αA+ ν(A)

for all A ∈ A, where α ∈ C and ν is an additive map from A into C; (3) if ξ = −1,

L(I) ∈ Z(A) and A is of characteristic not 2, then L(A) = τ(A) + L(I)A for all

A ∈ A; (4) if ξ ̸= 0,±1, L(I) ∈ Z(A) and L(ξA) = ξL(A) for each A ∈ A, then

L(A) = τ(A) + L(I)A for all A ∈ A. Since factor von Neumann algebras are

prime, as a consequence of the result for prime algebras, all additive maps ξ-Lie

derivable at zero on factor von Neumann algebras are characterized. However the

proof in [22] for factor von Neumann algebras is not valid anymore for non-factor

von Neumann algebras. So, it is natural to ask what happens if the concerned

von Neumann algebra is not a factor.

Let X be a Banach space with dimX ≥ 3 and B(X) the algebra of all

bounded linear operators acting on X. We mention here that, Lu and Jing

in [15] introduced another kind of Lie derivable at zero product (idempotent

product) for a linear map and showed that, if δ : B(X) → B(X) is a linear map

satisfying δ([A,B]) = [δ(A), B] + [A, δ(B)] for any A,B ∈ B(X) with AB = 0

(resp. AB = P , where P is a fixed nontrivial idempotent), then δ = τ + ν,

where τ is a derivation of B(X) and ν : B(X) → CI is a linear map vanishing

at commutators [A,B] with AB = 0 (resp. AB = P ), particularly, δ is a Lie

derivation if ν vanishes on all commutators. Later, this result was generalized to

the additive maps on triangular algebras, prime rings and general von Neumann

algebras in [11], [21] and [24] respectively. Let M be a von Neumann algebra

without central summands of type I1 and L : M → M be an additive map. In

[24], Qi and Hou showed that, L satisfies L([A,B]ξ) = [L(A), B]ξ + [A,L(B)]ξ
for any A,B with AB = 0 if and only if there exists an additive derivation φ

and an additive map f : M → Z(M) that vanishes each commutator [A,B]

whenever AB = 0, such that (1) ξ = 1, L = φ + f ; (2) ξ = −1, L = φ; (3)

ξ = 0, L(A) = φ(A) + L(I)A for all A; (4) ξ ̸∈ {0,±1}, φ(ξA) = ξL(A) and

L(A) = φ(A) + L(I)A for all A.

The purpose of the present paper is to give a complete characterization of

additive maps ξ-Lie derivable at zero on von Neumann algebras without central

summands of type I1 for any scalar ξ. We remark here that the question of

characterizing additive maps δ that are ξ-Lie derivable at zero is relatively more

difficult than the question of characterizing additive maps satisfying δ([A,B]ξ) =

[δ(A), B]ξ + [A, δ(B)]ξ for any A,B ∈ M with AB = 0 since it is more difficult

to find A,B satisfying [A,B]ξ = 0, of course, the conclusions are also different.

The paper is organized as follows. LetM be a von Neumann algebra with the

center Z(M) and L : M → M an additive map. In Section 2, we show that, if M
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has no central summands of type I1 or type I2, then L is Lie derivable at zero if and

only if there exists an element Z0 ∈ Z(M), an additive derivation φ : M → M
and an additive map h : M → Z(M) such that L(A) = φ(A) + h(A) + Z0A

for all A ∈ M (Theorem 2.1). There are counterexamples to illustrate that

the condition “M has no central summands of type I1 or type I2” can not be

replaced simply by “M has no central summands of type I1”. Section 3 is devoted

to discussing additive maps ξ-Lie derivable at zero with ξ ̸= 1. Assume that M
is a von Neumann algebra without central summands of type I1. It is shown

that L satisfies L(AB − ξBA) = L(A)B − ξBL(A) +AL(B)− ξL(B)A whenever

AB−ξBA = 0 if and only if L(I) ∈ Z(M) and there exists an additive derivation

φ : M → M with φ(ξA) = ξφ(A) for each A such that L(A) = φ(A)+L(I)A for

all A ∈ M (Theorem 3.1). Thus, zero is not a full ξ-Lie derivable point, though

they have a structure very close to ξ-Lie derivation. From these results, one can

easily get a characterization of additive ξ-Lie derivations. As a consequence, our

approach also enables us to improve the result (4) in [22] mentioned in the third

paragraph by omitting the assumptions “L(I) ∈ Z(A) and L(ξA) = ξL(A) for

each A ∈ A”.

2. Additive maps Lie derivable at zero

In this section, we discuss additive maps Lie derivable at zero on von Neu-

mann algebras. The following is our main result in this section.

Theorem 2.1. LetM be a von Neumann algebra without central summands

of type I1 or type I2. Suppose that L : M → M is an additive map. Then L

is Lie derivable at zero, that is, L satisfies L([A,B]) = [L(A), B] + [A,L(B)] for

any A,B ∈ M with [A,B] = 0, if and only if there exists an element Z0 ∈ Z(M),

the center of M, an additive derivation φ : M → M and an additive map

h : M → Z(M) such that L(A) = φ(A) + h(A) + Z0A for all A ∈ M.

We remark that the conditions “without central summands of type I1 or

type I2” in Theorem 2.1 can not be deleted simply because (i) every additive

map on a commutative ring is a Lie derivation; and (ii) it is shown in [20, Propo-

sition 2.5] that a linear map L on 2 by 2 matrix algebra is Lie derivable at zero

if and only if L(I) = λI for some scalar λ.

To prove Theorem 2.1, we need several lemmas.

Lemma 2.2 ([2, Lemma 2]). Let M be a von Neumann algebra with no
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central summands of type I1 or type I2. Then the ideal I of M generated alge-

braically by {[A2, C]B[A,C]− [A,C]B[A2, C] : A,B,C ∈ M} is equal to M.

A ring R is said to be semiprime if, for any A ∈ R, ARA = {0} will imply

that A = 0; to be torsion-free if, for any A ∈ R and any positive integer n, nA = 0

will imply that A = 0. Every von Neumann algebra is semiprime and torsion-free.

Lemma 2.3 ([2, Lemma 6]). Let R be a semiprime torsion-free ring and G

an additive group. Suppose that maps ϵ : G×G → R and τ : G×G×G → R are

additive in each argument. If ϵ(A,A)Rτ(A,A,A) = {0} for every A ∈ G, then

ϵ(B,B)Rτ(A,A,A) = {0} for all A,B ∈ G.

Recall that a map q from a ring R into itself is commuting if [q(A), A] = 0

for all A ∈ R; is a trace of a biadditive map if there exists a biadditive map

g : R×R → R such that q(A) = g(A,A) for all A ∈ R.

The following lemma is crucial for proving our main result.

Lemma 2.4 ([2, Theorem 2]). Let M be a von Neumann algebra without

central summands of type I1 or type I2. Let q be a trace of a biadditive map. If q

is commuting, then q(A) = λA2+µ(A)A+ν(A) for all A ∈ M, where λ ∈ Z(M)

and µ, ν are maps of M into Z(M) with µ additive.

Now we are at a position to give our proof of Theorem 2.1.

Proof of Theorem 2.1. The “if” part is obvious. For the “only if” part,

assume that L : M → M is an additive map Lie derivable at zero, that is,

[L(A), B] + [A,L(B)] = 0 for all A,B ∈ M with [A,B] = 0. (2.1)

TakeB=A2 in equation (2.1) and we get L(A)A2−A2L(A)+AL(A2)−L(A2)A=0.

This yields

[L(A2)− L(A)A−AL(A), A] = 0 for all A ∈ M. (2.2)

For any A,B ∈ M, write δ(A,B) = L(AB)−L(A)B −AL(B). It is obvious

that δ : M×M → M is a biadditive map and δ(A,A) is a trace of the biadditive

map δ by equation (2.2). It follows from Lemma 2.4 that there exist an element

Z ∈ Z(M), an additive map µ : M → Z(M) and a map ν : M → Z(M) such

that δ(A,A) = ZA2 + µ(A)A+ ν(A), that is,

L(A2)− L(A)A−AL(A) = ZA2 + µ(A)A+ ν(A) holds for all A ∈ M. (2.3)

Now define two maps φ : M → M and ϵ : M×M → M as follows:

φ(A) = L(A) +
1

2
µ(A) + ZA for all A ∈ M
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and

ϵ(A,B) = φ(AB+BA)−φ(A)B−Aφ(B)−φ(B)A−Bφ(A) for all A,B ∈ M.

Clearly, φ is additive and ϵ is biadditive. By the definition of φ and equation

(2.3), we have

φ(A2) = L(A2) +
1

2
µ(A2) + ZA2

= L(A)A+AL(A) + µ(A)A+ ν(A) +
1

2
µ(A2) + 2ZA2

and

φ(A)A+Aφ(A) = L(A)A+AL(A) + µ(A)A+ 2ZA2.

The above two equations imply φ(A2) − φ(A)A − Aφ(A) = ν(A) + 1
2µ(A

2) ∈
Z(M). Replacing A by A+B in the relation, one obtains

φ(AB +BA)− φ(A)B −Aφ(B)− φ(B)A−Bφ(A) ∈ Z(M),

which implies that ϵ maps M×M into Z(M).

Claim. ϵ(A,A) = 0 for all A ∈ M.

For any A ∈ M, by the definition of ϵ, we have

2φ(A4) = 2φ(A2A2) = 2φ(A2)A2 + 2A2φ(A2) + ϵ(A2, A2)

= 2φ(A)A3 + 2Aφ(A)A2 + 2A2φ(A)A+ 2A3φ(A) + 2ϵ(A,A)A2 + ϵ(A2, A2)

and

4φ(A4) = 2φ(A3A+AA3)

= 2φ(A3)A+ 2A3φ(A) + 2φ(A)A3 + 2Aφ(A3) + 2ϵ(A3, A)

= φ(A2A+AA2)A+2A3φ(A)+ 2φ(A)A3+Aφ(A2A+AA2)+ 2ϵ(A3, A)

= 4φ(A)A3 + 4Aφ(A)A2 + 4A2φ(A)A+ 4A3φ(A)

+ 2ϵ(A3, A) + 2ϵ(A,A)A2 + 2ϵ(A2, A)A.

Comparing the above two equations gives

ϵ(A,A)A2 − ϵ(A2, A)A = ϵ(A3, A)− ϵ(A2, A2) ∈ Z(M) (2.4)

for all A ∈ M. Take any A,C ∈ M. By equation(2.4), it is easily checked that

ϵ(A,A)[A2, C] = ϵ(A2, A)[A,C]. It follows that

ϵ(A,A)([A2, C]X[A,C]− [A,C]X[A2, C]) = 0 for all A,C,X ∈ M. (2.5)
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Now fix X and C. Define a map ϕ : M×M×M → M as follows:

ϕ(A1, A2, A3) = [A1A2, C]X[A3, C]− [A1, C]X[A2A3, C] for all A1, A2, A3∈M.

It is obvious that ϕ is additive in each argument and

ϕ(A,A,A) = [A2, C]X[A,C]− [A,C]X[A2, C].

Thus, by equation (2.5), one gets ϵ(A,A)ϕ(A,A,A) = 0, and so

ϵ(A,A)Mϕ(A,A,A) = {0} for each A ∈ M as ϵ maps into the center. It follows

from Lemma 2.3 that ϵ(B,B)Mϕ(A,A,A) = {0} for all A,B ∈ M. Now by using

Lemma 2.2, we obtain that ϵ(B,B) = 0 for all B ∈ M, as desired.

Note that ϵ(A,A) = 2(φ(A2) − φ(A)A − Aφ(A)) for every A ∈ M. So by

claim, φ(A2) = φ(A)A + Aφ(A) holds for all A ∈ M, that is, φ is an additive

Jordan derivation. Since every additive Jordan derivation on a 2-torsion free

semiprime ring is an additive derivation ([1, Theorem 1]) and every von Neumann

algebra is semiprime, φ is in fact an additive derivation. Let h = − 1
2µ and

Z0 = −Z. It follows from the definition of φ that

L(A) = φ(A) + Z0A+ h(A) (2.6)

for all A, where Z0 ∈ Z(M), φ is an additive derivation and h : M → Z(M) is

an additive map. The proof of the theorem is complete. �

By Theorem 2.1, we get a characterization of Lie derivations, which is also

given in [24, Corollary 2.5] as a corollary of [24, Theorem 2.1].

Corollary 2.5. Let M be a von Neumann algebra without central sum-

mands of type I1 or type I2. Suppose that L : M → M is an additive map. Then

L is a Lie derivation if and only if there exists an additive derivation φ : M → M
and an additive map h : M → Z(M) vanishing on each commutator such that

L(A) = φ(A) + h(A) for all A ∈ M.

Proof. The “if” part is obvious. For the “only if” part, assume that L is

an additive Lie derivation. Then, L is Lie derivable at zero and hence, by Theo-

rem 2.1, has the form equation (2.6). Thus we have

L(AB −BA) = φ(AB −BA) + h(AB −BA) + Z0(AB −BA)

= φ(A)B +Aφ(B)− φ(B)A−Bφ(A) + h(AB −BA) + Z0(AB −BA) (2.7)
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and on the other hand,

L(AB −BA) = L(A)B −BL(A) +AL(B)− L(B)A

= φ(A)B +Aφ(B)− φ(B)A−Bφ(A) + 2Z0(AB −BA) (2.8)

for all A,B ∈ M. Comparing equations (2.7)–(2.8), we see that Z0(AB−BA) =

h(AB − BA) ∈ Z(M) for any A, B. Note that, for any A ∈ M and any

projection P ∈ M, PA(I − P ) = [P, P + PA(I − P )] is a commutator. Thus

h(PA(I −P )) = Z0PA(I −P ) = PZ0A(I −P ) ∈ Z(M) holds for any projection

P and any element A in M. It follows that PZ0A(I − P ) = PPZ0A(I − P ) =

PZ0A(I − P )P = 0 for all projection P and all A in M. This forces that Z0A

commutes with each projection and hence is an element in the center of M. So we

have Z0M ⊆ Z(M). Since M has no central summand of type I1, we must have

Z0 = 0, and consequently, L = φ+ h with h vanishing on all commutators. �

By Corollary 2.5, the additive maps Lie derivable at zero are very close to

Lie derivations, but, not Lie derivations in general. Thus zero is not a full Lie

derivable point of the von Neumann algebra M.

3. Additive maps ξ-Lie derivable at zero with ξ ̸= 1

In this section, we will give a characterization of additive maps ξ-Lie derivable

at zero on von Neumann algebras without central summands of type I1. Here

ξ ̸= 1.

The following is the main result of this section.

Theorem 3.1. LetM be a von Neumann algebra without central summands

of type I1. Suppose that L :M→M is an additive map and ξ is a scalar with ξ ̸=1.

Then L is ξ-Lie derivable at zero (that is, L satisfies L([A,B]ξ) = [L(A), B]ξ +

[A,L(B)]ξ for any A,B ∈ M with [A,B]ξ = 0) if and only if L(I) ∈ Z(M) and

there exists an additive derivation φ : M → M such that φ(ξA) = ξφ(A) and

L(A) = φ(A) + L(I)A for all A ∈ M.

Before proving Theorem 3.1, we need some notations. Let M be any von

Neumann algebra and A ∈ M. Recall that the central carrier of A, denoted by

A, is the intersection of all central projections P such that PA = A. If A is self-

adjoint, then the core of A, denoted by A, is sup{S ∈ Z(M) : S = S∗, S ≤ A}.
Particularly, if A = P is a projection, it is clear that P is the largest central

projection ≤ P . A projection P is called core-free if P = 0. It is easy to see that

P = 0 if and only if I − P = I.
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We first give two useful lemmas which are needed to prove Theorem 3.1.

Lemma 3.2 ([17, Lemma 4]). Let M be a von Neumann algebra without

central summands of type I1. Then each nonzero central projection C ∈ M is

the carrier of a core-free projection in M. Particularly, there exists a nonzero

core-free projection P ∈ M with P = I.

In fact, M is a von Neumann algebra without central summands of type I1
if and only if it has a projection P with P = 0 and P = I.

Lemma 3.3 ([17]). Let M be a von Neumann algebra. For projections

P,Q ∈ M, if P = Q ̸= 0 and P +Q = I, then T ∈ M commutes with PXQ and

QXP for all X ∈ M implies T ∈ Z(M).

For more properties of core-free projections, see [17].

Proof of Theorem 3.1. The “if” part is easily checked. We only need to

give the proof of the “only if” part.

Assume that ξ ̸= 1 and L :M→M is an additive map satisfying L([A,B]ξ) =

[L(A), B]ξ + [A,L(B)]ξ for any A,B ∈ M with [A,B]ξ = 0. We will prove the

“only if” part by several claims.

By Lemma 3.2, we can find a core-free projection P ∈ M with P = I. In

the sequel fix such a projection P . By the definitions of core and central carrier,

we have P = I − P = 0 and I − P = I. For the convenience, write P1 = P ,

P2 = I−P andMij = PiMPj , i, j ∈ {1, 2}. ThenM = M11+M12+M21+M22.

Claim 1. P1L(I)P2 = P2L(I)P1 = 0 and P2L(P1)P2 = P1L(P2)P1 = 0.

Since [P1, P2]ξ = [P2, P1]ξ = 0, we have [L(P1), P2]ξ + [P1, L(P2)]ξ = 0 and

[L(P2), P1]ξ + [P2, L(P1)]ξ = 0, that is,

L(P1)P2 − ξP2L(P1) + P1L(P2)− ξL(P2)P1 = 0 (3.1)

and

L(P2)P1 − ξP1L(P2) + P2L(P1)− ξL(P1)P2 = 0. (3.2)

Multiplying by P1 and P2 from the left and the right respectively in equation (3.1),

and multiplying by P2 and P1 from the left and the right respectively in equation

(3.2), one gets P1L(P1)P2 + P1L(P2)P2 = 0 and P2L(P2)P1 + P2L(P1)P1 = 0,

which imply

P1L(I)P2 = 0 and P2L(I)P1 = 0.

Multiplying by P2 and P1 from both sides in equation (3.1) and equation (3.2), re-

spectively, one gets P2L(P1)P2−ξP2L(P1)P2 =0 and P1L(P2)P1−ξP1L(P2)P1=0.

It follows from the assumption ξ ̸= 1 that

P2L(P1)P2 = 0 and P1L(P2)P1 = 0.
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The claim holds.

Now define a map δ : M → M by δ(A) = L(A)+SA−AS for each A ∈ M,

where S = P1L(P1)P2 −P2L(P1)P1. It is easily verified that δ is also an additive

map ξ-Lie derivable at zero, that is, δ satisfies

δ([A,B]ξ) = [δ(A), B]ξ + [A, δ(B)]ξ for A,B ∈ M with [A,B]ξ = 0.

Moreover, P1δ(I)P2 = P2δ(I)P1 = P2δ(P1)P2 = P1δ(P2)P1 = 0 by Claim 1. Thus

we get

δ(P1) = L(P1) + SP1 − P1S = P1L(P1)P1

= P1δ(P1)P1 − P1(SP1 − P1S)P1 = P1δ(P1)P1 ∈ M11 (3.3)
and

δ(P2) = L(P2) + SP2 − P2S = P2L(P2)P2

= P2δ(P2)P2 − P2(SP2 − P2S)P2 = P2δ(P2)P2 ∈ M22. (3.4)

Claim 2. δ(Mii) ⊆ Mii, i = 1, 2.

We only give the proof for M11. The proof for M22 is similar.

Take any A11 ∈ M11. Since [A11, P2]ξ = 0, we have

[δ(A11), P2]ξ + [A11, δ(P2)]ξ = 0. This and equation (3.4) yield

δ(A11)P2 − ξP2δ(A11) = 0. (3.5)

Multiplying by P1 from the left side in equation (3.5), one gets

P1δ(A11)P2 = 0; (3.6)

multiplying by P2 from both sides in equation (3.5), one gets (1−ξ)P2δ(A11)P2=0,

which implies

P2δ(A11)P2 = 0. (3.7)

Note that [P2, A11]ξ = 0. Then [δ(P2), A11]ξ + [P2, δ(A11)]ξ = 0, which and

equation (3.4) give P2δ(A11) − ξδ(A11)P2 = 0. Then, multiplying P1 from the

right side in this equation, one gets

P2δ(A11)P1 = 0. (3.8)

Combining equations (3.6)–(3.8), we achieve that δ(A11) ∈ M11. So the claim is

true.

Claim 3. For any Aij ∈ Mij , 1 ≤ i ̸= j ≤ 2, the following statements hold.
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(1) If ξ ̸= −1, then δ(Aij) ∈ Mij .

(2) If ξ = −1, then Piδ(Aij)Pi = Pjδ(Aij)Pj = 0 and δ(Aij)Aij +Aijδ(Aij) = 0.

For any Aij ∈ Mij (i ̸= j), since [Aij , Aij ]ξ = 0, we have [δ(Aij), Aij ]ξ +

[Aij , δ(Aij)]ξ = 0, that is,

δ(Aij)Aij − ξAijδ(Aij) +Aijδ(Aij)− ξδ(Aij)Aij

= (1− ξ)(δ(Aij)Aij +Aijδ(Aij)) = 0.

It follows from the assumption ξ ̸= 1 that

δ(Aij)Aij +Aijδ(Aij) = 0 for all Aij ∈ Mij . (3.9)

Since [Pi + Aij , Aij − Pj ]ξ = 0, by equations (3.3)–(3.4) and equation (3.9),

we have

0 = [δ(Pi) + δ(Aij), Aij − Pj ]ξ + [Pi +Aij , δ(Aij)− δ(Pj)]ξ

= δ(Pi)Aij − δ(Aij)Pj + ξPjδ(Aij) + Piδ(Aij)−Aijδ(Pj)− ξδ(Aij)Pi.

Multiplying by Pi and Pj from both sides in the above equation, respectively, and

noting that equations (3.3)–(3.4), one gets (1− ξ)Piδ(Aij)Pi = 0 and

(1− ξ)Pjδ(Aij)Pj = 0, and so

Piδ(Aij)Pi = 0 and Pjδ(Aij)Pj = 0. (3.10)

Now, combining equations (3.9) and (3.10), we see that (2) is true.

To prove (1), one needs to check further that Pjδ(Aij)Pi = 0 whenever

ξ ̸= −1. In fact, since [Aij , Pi + ξPj ]ξ = 0, by Claim 2, we have

0 = [δ(Aij), Pi + ξPj ]ξ + [Aij , δ(Pi) + δ(ξPj)]ξ

= δ(Aij)Pi + ξδ(Aij)Pj − ξPiδ(Aij)− ξ2Pjδ(Aij) +Aijδ(ξPj)− ξδ(Pi)Aij .

Multiplying by Pj and Pi from the left and the right side respectively in the above

equation, one obtains (1 − ξ2)Pjδ(Aij)Pi = 0, which implies Pjδ(Aij)Pi = 0 as

ξ ̸= −1. This and equation (3.10) yield δ(Aij) = Piδ(Aij)Pj ∈ Mij whenever

ξ ̸= −1, and so (1) holds.

Claim 4. For any Aij ∈ Mij (1 ≤ i ̸= j ≤ 2), we have δ(Pi)Aij = Aijδ(Pj).

Take any Aij ∈ Mij (1 ≤ i ̸= j ≤ 2). Since [Pi + Aij , Aij − Pj ]ξ = 0, by

equations (3.3)–(3.4) and Claim 3, we have

0 = [δ(Pi) + δ(Aij), Aij − Pj ]ξ + [Pi +Aij , δ(Aij)− δ(Pj)]ξ
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= δ(Pi)Aij + δ(Aij)Aij − δ(Aij)Pj − ξAijδ(Aij) + ξPjδ(Aij)

+ Piδ(Aij) +Aijδ(Aij)−Aijδ(Pj)− ξδ(Aij)Pi − ξδ(Aij)Aij

= Piδ(Pi)Aij + ξPjδ(Aij)Pi −Aijδ(Pj)Pj − ξPjδ(Aij)Pi.

This implies that Piδ(Pi)Aij−Aijδ(Pj)Pj = 0, that is, δ(Pi)Aij = Aijδ(Pj) holds

for all Aij ∈ Mij .

Claim 5. δ(ξI) = ξδ(I).

For any Aij ∈ Mij (1 ≤ i ̸= j ≤ 2), since [ξPi + Pj , Aij ]ξ = 0, by Claim 2,

we have

0 = [δ(ξPi) + δ(Pj), Aij ]ξ + [ξPi + Pj , δ(Aij)]ξ

= δ(ξPi)Aij − ξAijδ(Pj) + ξPiδ(Aij) + Pjδ(Aij)− ξ2δ(Aij)Pi − ξδ(Aij)Pj .

Multiplying by Pi and Pj from the left and the right side respectively in the above

equation, by Claim 2 and Claim 4, one can get

δ(ξPi)Aij = Piδ(ξPi)Aij = ξAijδ(Pj)Pj = ξAijδ(Pj) = ξδ(Pi)Aij .

That is, (δ(ξPi)− ξδ(Pi))PiAPj = 0 for all A ∈ M. Note that Pj = I. It follows

from the definition of the central carrier that span{TPj(x) : T ∈ M, x ∈ H} is

dense in H. So δ(ξPi) = ξδ(Pi) for i = 1, 2. Thus we obtain

δ(ξI) = δ(ξP1 + ξP2) = ξδ(P1) + ξδ(P2) = ξδ(I).

Claim 6. δ(I) ∈ Z(M).

By Claim 4, we have proved that, for any A12 ∈ M12 and A21 ∈ M21,

δ(P1)A12 = A12δ(P2) and δ(P2)A21 = A21δ(P1).

So, by using equations (3.3)–(3.4), we obtain

δ(I)A12 = δ(P1)A12 = A12δ(P2) = A12δ(I)

and

δ(I)A21 = δ(P2)A21 = A21δ(P1) = A21δ(I).

It follows from Lemma 3.3 that δ(I) ∈ Z(M). The claim is true.

Now, note that δ(A) = L(A) + SA− AS for each A ∈ M. By Claim 6, one

has proved that

L(I) = δ(I) ∈ Z(M). (3.11)
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Claim 7. If ξ ̸= −1, then there exists an additive derivation φ : M → M
satisfying φ(ξA) = ξφ(A) for each A ∈ M such that L(A) = φ(A) + L(I)A for

all A ∈ M.

We will complete the proof of Claim 7 by several steps.

Step 1. For any Aii ∈ Mii and Bij ∈ Mij , we have δ(AiiBij) = δ(Aii)Bij+

Aiiδ(Bij)−AiiBijδ(I), 1 ≤ i ̸= j ≤ 2.

Let 1 ≤ i ̸= j ≤ 2. For any Aii ∈ Mii and Bij ∈ Mij , since [Aii +

AiiBij , Bij − Pj ]ξ = 0, by Claim 2 and Claim 3(1), we have

0 = [δ(Aii) + δ(AiiBij), Bij − Pj ]ξ + [Aii +AiiBij , δ(Bij)− δ(Pj)]ξ

= δ(Aii)Bij − δ(AiiBij) +Aiiδ(Bij)−AiiBijδ(Pj).

Note that AiiBijδ(Pj) = AiiBijδ(I) by equations (3.3)–(3.4). So Step 1 holds.

Step 2. For any Aii ∈ Mii and Bij ∈ Mij , we have δ(AijBjj) = δ(Aij)Bjj+

Aijδ(Bjj)−AijBjjδ(I), 1 ≤ i ̸= j ≤ 2.

As [AijBjj +Bjj , Aij −Pi]ξ = 0, the assertion of Step 2 follows from Claim 2

and Claim 3(1) immediately.

Step 3. For any Aii, Bii ∈ Mii, we have δ(AiiBii) = δ(Aii)Bii+Aiiδ(Bii)−
AiiBiiδ(I), i = 1, 2.

Let i ̸= j. Take any Aii, Bii ∈ Mii and any Sij ∈ Mij . By Step 1, we get

δ(AiiBiiSij) = δ(AiiBii)Sij +AiiBiiδ(Sij)−AiiBiiSijδ(I)

and

δ(AiiBiiSij) = δ(Aii)BiiSij +Aiiδ(BiiSij)−AiiBiiSijδ(I)

= δ(Aii)BiiSij +Aiiδ(Bii)Sij +AiiBiiδ(Sij)− 2AiiBiiSijδ(I).

Comparing the above two equations, and by Claims 2 and 6, one obtains that

(δ(AiiBii)− δ(Aii)Bii −Aiiδ(Bii) +AiiBiiδ(I))SPj = 0

holds for all S ∈ M. It follows from the fact P j = I that

δ(AiiBii) = δ(Aii)Bii +Aiiδ(Bii)−AiiBiiδ(I).

Step 4. For any Aij ∈ Mij and Bji ∈ Mji, we have δ(AijBji) = δ(Aij)Bji+

Aijδ(Bji)−AijBjiδ(I), 1 ≤ i ̸= j ≤ 2.

Take any Aij ∈ Mij and Bji ∈ Mji. Note that

[−A12B21 +A12 +B21 − P2, P1 +A12 +B21 +B21A12]ξ = 0.
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By the definition of δ, Claim 2, Claim 3(1), Claim 4, Claim 6 and Steps 1-2, one

gets

0 = [−δ(A12B21) + δ(A12) + δ(B21)− δ(P2), P1 +A12 +B21 +B21A12]ξ

+ [−A12B21 +A12 +B21 − P2, δ(P1) + δ(A12) + δ(B21) + δ(B21A12)]ξ

= −δ(A12B21)− δ(A12B21)A12 + δ(A12)B21 + δ(A12)B21A12 + δ(B21)

+ δ(B21)A12− δ(P2)B21− δ(P2)B21A12+ ξδ(A12B21)− ξδ(A12)− ξA12δ(B21)

+ ξA12δ(P2)+ ξB21δ(A12B21)− ξB21δ(A12)− ξB21A21δ(B21)+ ξB21A12δ(P2)

−A12B21δ(P1)−A12B21δ(A12) +A12δ(B21) +A12δ(B21A12) +B21δ(P1)

+B21δ(A12)− δ(B21)− δ(B21A12)+ ξδ(P1)A12B21− ξδ(P1)A12− ξδ(A12)B21

+ ξδ(A12) + ξδ(B21)A12B21 − ξδ(B21)A12 − ξδ(B21A12)B21 + ξδ(B21A12)

= (ξ− 1)δ(A12B21)+ (1− ξ)δ(A12)B21+(1− ξ)A12δ(B21) + (ξ − 1)A12B21δ(I)

+ (ξ−1)δ(B21A12)+ (1− ξ)δ(B21)A12+(1−ξ)B21δ(A12)+ (ξ− 1)B21A12δ(I).

As ξ ̸= 1, the above equation implies that

δ(A12B21) = δ(A12)B21 +A12δ(B21)−A12B21δ(I)

and

δ(B21A12) = δ(B21)A12 −B21δ(A12) +B21A12δ(I).

Step 5. For any A,B ∈ M, we have δ(AB) = δ(A)B +Aδ(B)− δ(I)AB.

For any A = A11 + A12 + A21 + A22, B = B11 + B12 + B21 + B22 ∈ M, by

the additivity of δ, Claim 6 and Steps 1-4, one can easily check that δ(AB) =

δ(A)B +Aδ(B)− δ(I)AB.

Step 6. There exists an additive derivation φ : M → M satisfying φ(ξA) =

ξφ(A) for each A such that L(A) = φ(A) + L(I)A for all A ∈ M.

Define a map φ : M → M by φ(A) = L(A) − L(I)A = δ(A) − SA + AS −
L(I)A for all A ∈ M. Obviously, φ is additive. Moreover, for any A, B ∈ M, by

Step 5 and equation (3.11), one achieves

φ(AB) = δ(AB)− SAB +ABS − L(I)AB

= δ(A)B +Aδ(B)− 2L(I)AB − SAB +ABS

= (δ(A)− L(I)A− SA+AS)B +A(δ(B)− L(I)B +BS − SB)

= φ(A)B +Aφ(B),

that is, φ is an additive derivation.
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Now we show that φ(ξA) = ξφ(A) for each A ∈ M. In fact, since δ(ξI) =

ξδ(I) (Claim 5), we get φ(ξI) = ξφ(I) = 0. Hence, for any A ∈ M, we have

φ(ξA) = φ(ξIA) = φ(ξI)A+ ξφ(A) = ξφ(A).

Step 6, combining equation (3.11), ensures that Claim 7 holds.

Claim 8. If ξ = −1, then there exists an additive derivation φ : M → M
such that L(A) = φ(A) + L(I)A for all A ∈ M.

In this case, we will first show that δ(A2) = δ(A)A+Aδ(A)− δ(I)A2 for all

A ∈ M. This will be done by several steps.

Step 1. For any Aij ∈ Mij and Ajj ∈ Mjj (1 ≤ i ̸= j ≤ 2), we have

δ(AijAjj) = δ(Aij)Ajj +Aijδ(Ajj) +Ajjδ(Aij)− δ(I)AijAjj .

Let 1 ≤ i ̸= j ≤ 2. Taking any Aij ∈ Mij , Ajj ∈ Mjj , and noting that

[AijAjj+Ajj , Aij−Pi]−1 = (AijAjj+Ajj)(Aij−Pi)+(Aij−Pi)(AijAjj+Ajj) = 0,

by Claim 2, we have

0 = [δ(AijAjj) + δ(Ajj), Aij − Pi]−1 + [AijAjj +Ajj , δ(Aij)− δ(Pi)]−1

= δ(AijAjj)Aij − δ(AijAjj)Pi +Aijδ(AijAjj) +Aijδ(Ajj)− Piδ(AijAjj)

+AijAjjδ(Aij)+Ajjδ(Aij)+δ(Aij)AijAjj+δ(Aij)Ajj−δ(Pi)AijAjj . (3.12)

Multiplying by Pi and Pj from the left and the right side in equation (3.12)

respectively, by Claim 2 and Claim 3(2), we get

Piδ(AijAjj)Pj = Piδ(Aij)Ajj +Aijδ(Ajj)− δ(Pi)AijAjj

= δ(Aij)Ajj +Aijδ(Ajj)− δ(I)AijAjj .

Similarly, multiplying by Pj and Pi from the left and the right side in equation

(3.12) respectively, one can get

Pjδ(AijAjj)Pi = Ajjδ(Aij)Pi = Ajjδ(Aij).

So

δ(AijAjj) = Piδ(AijAjj)Pj + Pjδ(AijAjj)Pi

= δ(Aij)Ajj +Aijδ(Ajj) +Ajjδ(Aij)− δ(I)AijAjj .

Step 2. For any Aii ∈ Mii and Aij ∈ Mij (1 ≤ i ̸= j ≤ 2), we have

δ(AiiAij) = δ(Aii)Aij +Aiiδ(Aij) + δ(Aij)Aii − δ(I)AiiAij .
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As [AiiAij + Aii, Aij − Pj ]−1 = 0, by the same argument as that of Step 1,

one can check that this step is true.

Step 3. For any Aii ∈ Mii, we have δ(A
2
ii) = δ(Aii)Aii+Aiiδ(Aii)−A2

iiδ(I),

i = 1, 2.

Let j ̸= i. For any Aii ∈ Mii and any Sij ∈ Mij , by using Step 2 and

calculating δ(AiiAiiSij) by two different ways, one can easily check that the step

is true.

Step 4. For any Aij ∈ Mij and Aji ∈ Mji (1 ≤ i ̸= j ≤ 2), we have

δ(AijAji) = δ(Aij)Aji +Aijδ(Aji)−AijAjiδ(I).

In fact, for any Aij ∈ Mij and Aji ∈ Mji (1 ≤ i ̸= j ≤ 2), since

[AijAji +Aij +Aji + Pj , Pi +Aij −Aji +AjiAij ]−1 = 0,

the assertion of this step follows from Claim 2, Claim 3(2) and Steps 1–3 in

Claim 8.

Step 5. For any A ∈ M, we have δ(A2) = δ(A)A+Aδ(A)− δ(I)A2.

For any A = A11+A12+A21+A22 ∈ M, by the additivity of δ, Claim 5 and

Steps 1-4 in Case 2, it is easily checked that δ(A2) = δ(A)A+Aδ(A)− δ(I)A2.

Step 6. There exists an additive derivation φ : M → M such that L(A) =

φ(A) + L(I)A holds for all A ∈ M.

Define a map φ : M → M by φ(A) = L(A) − L(I)A = δ(A) − SA + AS −
L(I)A for all A ∈ M. It is clear that φ is additive and L(A) = φ(A) + L(I)A

for each A. Moreover, by using Step 5 of Claim 8, one can check that φ is a

Jordan derivation, that is, φ(A2) = φ(A)A + Aφ(A) for all A ∈ M. By [1], φ is

an additive derivation. This and equation (3.11) imply that Claim 8 holds.

Since φ(−1A) = −φ(A) for each A as φ is additive, Claims 7-8 and equation

(3.11) together ensure that Theorem 3.1 is true, finishing the proof. �

By Theorem 3.1 we get a characterization of additive ξ-Lie derivations im-

mediately.

Corollary 3.4. Let M be a von Neumann algebra without central sum-

mands of type I1. Suppose that L : M → M is an additive map and ξ is a scalar

with ξ ̸= 1. Then the following statements are equivalent.

(1) L is a ξ-Lie derivation.

(2) L is a derivation with L(ξA) = ξL(A) for all A ∈ M.

(3) L is ξ-Lie derivable at zero and L(I) = 0.
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Finally, we remark that, by a similar approach to the proof of Theorem 3.1, we

can improve further the main result [22, Theorem 2.1] omitting the assumptions

L(I) ∈ Z(A) and L(ξA) = ξL(A) for each A in the prime algebra case.

Theorem 3.5. Let A be a unital prime algebra over a field F containing

a non-trivial idempotent P . Denote by Z(A) and C the center of A and the

extended centroid of A, respectively. Assume that ξ ∈ F and L : A → A is

an additive map. If L is ξ-Lie derivable at zero, then there exists an additive

derivation τ : A → C such that

(1) if ξ = 0, then L(I) ∈ Z(A) and L(A) = τ(A) + L(I)A for all A ∈ A;

(2) if ξ = 1 and A is of characteristic not 2 with deg(A) > 2, then L(A) =

τ(A) +αA+ ν(A) for all A ∈ A, where α ∈ C and ν is an additive map from

A into C;
(3) if ξ = −1 and A is of characteristic not 2, then L(I) ∈ Z(A) and L(A) =

τ(A) + L(I)A for all A ∈ A;

(4) if ξ ̸= 0,±1, then L(I) ∈ Z(A), L(ξA) = ξL(A) and L(A) = τ(A) + L(I)A

for all A ∈ A.

Proof. Assume that L : A → A is ξ-Lie derivable at zero. We need only to

show that, for ξ ̸= 1, L(I) ∈ Z(A), L(ξA) = ξL(A).

Using the same notations as that in the proof of Theorem 3.1, but replac-

ing M by the prime algebra A, Claims 1–4 are still true. Thus, similar to the

argument in Claim 5, we have

δ(ξPi)Aij = Piδ(ξPi)Aij = ξAijδ(Pj)Pj = ξAijδ(Pj) = ξδ(Pi)Aij .

So (δ(ξPi) − ξδ(Pi))PiAPj = 0 for all A ∈ A. Since A is prime, we must have

δ(ξPi) − ξδ(Pi) = (δ(ξPi) − ξδ(Pi))Pi = 0, that is, δ(ξPi) = ξδ(Pi) for i = 1, 2.

Thus we obtain

δ(ξI) = δ(ξP1 + ξP2) = ξδ(P1) + ξδ(P2) = ξδ(I).

Then, a similar argument as in Claim 6 gives

δ(I)A12 = δ(P1)A12 = A12δ(P2) = A12δ(I).

This implies that

δ(P1)AP2 = P1Aδ(P2) for all A ∈ A.

Again, as A is prime, it follows from [6, Theorem A.7] that there exists some

central element λ ∈ C such that δ(Pi) = λPi. Hence δ(I) = δ(P1) + δ(P2) =
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λ(P1 + P2) = λ ∈ C ∩ A = Z(A). Thus L(I) = δ(I) ∈ Z(A) and L(ξI) = ξL(I).

Now, similar to the proof of Claim 8, and using the primeness of A where

needs, one can show that, for any A ∈ A, we have φ(ξA) = φ(ξIA) = φ(ξI)A+

ξφ(A) = ξφ(A). This, together with the facts proved before, entails that L(ξA) =

ξL(A) for all A ∈ A. �
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