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Reconsidering a functional equation arising from number theory

By BRUCE EBANKS (Mississippi State)

Abstract. In a recent paper Chávez and Sahoo considered the functional equation

f(ux− vy, uy + v(x+ y)) = f(x, y)f(u, v),

which arose in a number theoretical context. Unfortunately one of their results is incor-

rect. Here we reconsider the equation on various domains. We observe that it is in fact

a multiplicative Cauchy equation in disguise. We also point out some remaining open

problems.

1. Introduction

In [2], Blecksmith and Brudno point out that the quadratic form f(x, y) =

x2 + xy + y2 satisfies the functional equation

f(u, v)f(x, y) = f(ux− vy, uy + vx+ vy), u, v, x, y ∈ R, (1)

where R is the ring of integers (or any commutative ring). They make use of

this fact to explain certain interesting phenomena in number theory. Their main

result is that there are integers with an arbitrarily large number of representations

as sums of three fourth powers.

That paper inspired Chávez and Sahoo [3] to study the functional equation

(1) for an unknown function f on K × K, where K is the either the real field R
or the complex field C. In the complex case there is a small problem with their

Mathematics Subject Classification: Primary: 39B22, 39B32, 39B42, 39B52; Secondary: 20H20.
Key words and phrases: multiplicative map, matrix group, matrix semigroup, functional equa-

tion, semigroup morphism.



136 Bruce Ebanks

Theorem 2.3, in which f is a function from C × C to C∗ = C \ {0}. The only

solution of (1) in this case is f = 1, as can be seen by setting u = v = 0:

f(0, 0)f(x, y) = f(0, 0). (2)

This problem can perhaps be overcome if the point (0, 0) is excluded from the

domain of f (and from the domain of equation (1)). We provide another remedy

in Section 2, in which we start with a fundamental lemma (Lemma 2.1) a bit

different from the fundamental Theorem 2.1 in [3], while retaining their main

idea. We apply Lemma 2.1 below in the complex case to get our first main result,

Proposition 2.2. In fact the result holds not only for the field C but also for any

field containing Q(
√
−3 ). We also derive the symmetric solutions of (1) in this

case.

Section 3 deals with the real case. There is a serious flaw in the proof of

Theorem 2.4 of [3]: The set S = {(z, z) | z ∈ C} cannot be written as H ×H for

any commutative semigroup H, as is required for the application of Theorem 2.1

in [3]. In this case we take a whole new approach.

Let R be a commutative ring and let x, y ∈ R. Identifying the pair (x, y)

with the matrix (
x −y

y x+ y

)
,

we can rewrite equation (1) as

f(A)f(B) = f(AB)

for all matrices A, B from the set

M(R) =

{(
x −y

y x+ y

)
: x, y ∈ R

}
.

That is, f satisfies a multiplicative Cauchy functional equation on M(R).

Note that M(R) is itself a commutative ring, and in particular we shall use

the fact that it is a commutative monoid with respect to multiplication. Also,

every matrix in M(R) is a linear combination over R of the matrices

I =

(
1 0

0 1

)
and D =

(
0 −1

1 1

)
.

Therefore, M(R) is generated over the ground ring R by the matrix D. That

is, M(R) = R[D]. Suppose R is a field of characteristic 0 such as R or C. The
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characteristic polynomial of D is X2 − X + 1, with roots (1 ±
√
−3 )/2. The

characteristic polynomial splits into two linear factors if and only if
√
−3 ∈ R,

which sheds light on the importance of
√
−3 in the present context.

If
√
−3 ∈ R, as when R = C, then R[D] is isomorphic as a ring to the product

ring R×R. This case is treated in Section 2.

If
√
−3 ̸∈ R, as when R = R, then R[D] is the quadratic field extension of

R generated by D. In Section 3 we solve equation (1) on M(R) and find more

solutions in the real case than the ones given in [3].

Recall also that the determinant is a multiplicative function on any set of

square matrices over a commutative ring. The determinant of a matrix in M(R)

is given by

det

(
x −y

y x+ y

)
= x2 + xy + y2.

This provides another explanation for why the quadratic form x2 + xy + y2 is a

solution of the functional equation (1).

2. The complex case

In this section our fundamental lemma is a modification of Theorem 2.1

in [3]. We remind the reader that a monoid T is a semigroup with identity, here

designated by e. That is, there exists an element e ∈ T such that ex = xe = x

for all x ∈ T .

In the sequel T1 and T2 are monoids with respective identity elements e1
and e2.

For any set A, let A2 = A × A. If α : A2 → T1 × T2, then we may write

α = (α1, α2) where each component function αi maps A2 into Ti (i = 1, 2). When

we write α(x, y)α(u, v) we are employing a componentwise multiplication, so that

α(x, y)α(u, v) = (α1(x, y)α1(u, v), α2(x, y)α2(u, v)).

If T, S are semigroups, then any solution M : T → S of Cauchy’s mul-

tiplicative equation M(ab) = M(a)M(b) is called a semigroup morphism or a

multiplicative function.

Taking inspiration from Theorem 2.1 in [3], we prove the following.

Lemma 2.1. Let A be a set, S be a commutative semigroup, T1 and T2 be

monoids, and ϕ : A4 → A2. Suppose there is a bijection α = (α1, α2) : A2 →
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T1 × T2 such that

α(ϕ(x, y, u, v)) = α(x, y)α(u, v), x, y, u, v ∈ A. (3)

Then the general solution f : A2 → S of

f(ϕ(x, y, u, v)) = f(x, y)f(u, v), x, y, u, v ∈ A, (4)

is given by

f(x, y) = M1(α1(x, y))M2(α2(x, y)), x, y ∈ A,

where Mi : Ti → S is a semigroup morphism (i = 1, 2).

Proof. Beginning as in [3], define g : T1 × T2 → S by g = f ◦ α−1. Then

f = g ◦ α and (4) becomes

g(α(ϕ(x, y, u, v))) = g(α(x, y))g(α(u, v)), x, y, u, v ∈ A.

Now (3) yields

g(α(x, y)α(u, v)) = g(α(x, y))g(α(u, v)), x, y, u, v ∈ A,

and since α is surjective, with α(x, y) = (p, q), α(u, v) = (r, s) we have

g(pr, qs) = g(p, q)g(r, s), (p, q), (r, s) ∈ T1 × T2. (5)

Putting r = e1,q = e2 here, we get g(p, s) = g(p, e2)g(e1, s), that is

g(p, s) = M1(p)M2(s), (p, s) ∈ T1 × T2,

where M1(p) = g(p, e2) and M2(s) = g(e1, s). Furthermore, with p = r = e1,

resp. q = s = e2 in (5) we find that M2 and M1 are multiplicative functions (i.e.

semigroup morphisms). Finally, f = g ◦ α yields

f(x, y) = g(α1(x, y), α2(x, y)) = M1(α1(x, y))M2(α2(x, y)).

We leave the verification of the converse to the reader. �

Now we use this lemma to prove a somewhat stronger result than Theorem 2.3

in [3]. Let Q(i
√
3 ) be the extension field of the rationals generated by adjoining

i
√
3.
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Proposition 2.2. Let K be any field containing Q(i
√
3 ), and let S be a

commutative semigroup. Then the general solution f :K2 →S of (1) is given by

f(x, y) = M1

(
x+

1 + i
√
3

2
y

)
M2

(
x+

1− i
√
3

2
y

)
, (6)

where M1, M2 are semigroup morphisms from (K, ·) to S.

Proof. The proof is essentially the same as in [3]. Let A = K and T1 =

T2 = (K, ·). Define α : K2 → K2 by

α(x, y) =

(
x+

1 + i
√
3

2
y, x+

1− i
√
3

2
y

)
(7)

and ϕ : K4 → K2 by

ϕ(x, y, u, v) = (ux− vy, uy + vx+ vy)

for all x, y, u, v ∈ K. It is easy to check that α is a bijection and satisfies equa-

tion (3). The rest follows from Proposition 2.1. �

Note that the product of the two arguments of the multiplicative functions

M1 and M2 in the preceding Proposition is exactly the quadratic form x2 +

xy + y2. Yet since the two multiplicative functions may differ, in general we

cannot write f(x, y) as a function of this quadratic form. Next we show that

imposing a symmetry condition on f forces M1 = M2 and therefore f becomes

a multiplicative function of the quadratic form. In order to prove this, we make

some preliminary calculations.

We observe that the range of the map z 7→ (1+i
√
3 )z2+4z+(1−i

√
3 )

2(z2+z+1) for z ∈
Q(i

√
3 ) is all of Q(i

√
3 ). Indeed, w ∈ Q(i

√
3 ) is in the range if and only if

(1 + i
√
3 )z2 + 4z + (1− i

√
3 ) = 2w(z2 + z + 1), which can be written as

0 = (2w − 1− i
√
3 )z2 + (2w − 4)z + (2w − 1 + i

√
3 ).

If 2w = 1 + i
√
3, then the resulting linear equation has solution z = −1+i

√
3

2 ∈
Q(i

√
3 ). If not, then the quadratic equation has discriminant −12w2 = (i2

√
3w)2

and therefore has a solution z ∈ Q(i
√
3 ). This fact will be used in the proof of

the next result.

We also recall a basic fact about multiplicative functions. Suppose S is a

monoid, D is an integral domain, and M : S → D is multiplicative. Putting t = 1

in M(st) = M(s)M(t) we have M(s)[1−M(1)] = 0 for all s ∈ S. Thus M(1) = 1

unless M = 0.
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Corollary 2.3. Let K be any field containing Q(i
√
3 ), and let D be an

integral domain. The function f : K2 → D is a solution of (1) and symmetric,

that is f(x, y) = f(y, x), if and only if

f(x, y) = M(x2 + xy + y2), (8)

where M : K → D is a multiplicative function.

Proof. Suppose f is a symmetric solution of (1). By the previous proposi-

tion with S = (D, ·) we have the representation (6) for f , where M1,M2 : K → D

are multiplicative maps. If M1 = 0 or M2 = 0, then equation (8) holds with

M = 0. Henceforth we assume that neither M1 nor M2 is the zero function, so

we have M1(1) = M2(1) = 1.

Now the symmetry of f gives

M1

(
x+

1 + i
√
3

2
y

)
M2

(
x+

1− i
√
3

2
y

)

= M1

(
y +

1 + i
√
3

2
x

)
M2

(
y +

1− i
√
3

2
x

)
. (9)

Putting x = 1 here and multiplying both sides by M1((y + (1 + i
√
3 )/2)−1)×

M2((1 + (1− i
√
3 )y/2)−1), we arrive at

M1

(
(1 + i

√
3 )y2 + 4y + (1− i

√
3 )

2(y2 + y + 1)

)
= M2

(
(1 + i

√
3 )y2 + 4y + (1− i

√
3 )

2(y2 + y + 1)

)

for all y ∈ K. Thus by our preliminary computations this means that M1(w) =

M2(w) for all w ∈ K, hence M1 = M2. Putting M = M1 = M2 in (6), we get (8).

The converse is easily verified. �

Remark 2.4. Note that the integral domain D could be replaced in the pre-

vious corollary by T ∪ {0} where T is a cancellative monoid.

3. The real case: Reframing in terms of matrices

As observed in the introduction, representing (x, y) by a matrix allows us to

rewrite our functional equation (1) as the multiplicative Cauchy equation

f(A)f(B) = f(AB), (10)
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In this section we assume that R = R (the field of real numbers), so A, B in the

functional equation above belong to

M(R) =

{(
x −y

y x+ y

)
: x, y ∈ R

}
,

which is a commutative monoid under multiplication.

It will be convenient to introduce some notation here. We define

∆ = ∆(x, y) := x2 + xy + y2, x, y ∈ R,
or equivalently

∆ = ∆(A) := detA, A ∈ M(R).

Observe that

∆(x, y) =
(
x+

y

2

)2
+

(√
3y

2

)2

≥ 0, x, y ∈ R.

That is ∆ ≥ 0, with equality if and only if x = y = 0 (that is, if A is the zero

matrix O). Let M(R)∗ = M(R) \ {O}.
Also, if ∆(x, y) = 1, then the point

(
x + y

2 ,
√
3y
2

)
is on the unit circle C in

R2. In such a case we define θ = θ(x, y) to be a real number for which

(cos θ, sin θ) =

(
x+

y

2
,

√
3y

2

)
.

The value of θ is determined only up to an integer multiple of 2π. We can write

equivalently θ = θ(A) where A ∈ M(R) has determinant equal to 1.

Proposition 3.1. Let T be a commutative monoid (with operation denoted

multiplicatively), and suppose the map f : M(R) → T is a solution of equation

(10), i.e. a multiplicative function. Then there exist a multiplicative function

g : (0,∞) → T and a 2π-periodic function h : R → T satisfying the exponential

functional equation

h(s+ t) = h(s)h(t), s, t ∈ R,

such that

f(A) = g(
√
∆)h

(
θ

(
1√
∆
A

))
(11)

for all A ∈ M(R) with ∆ > 0.
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Proof. First, let U be the subgroup of (M(R)∗, ·) consisting of the matrices

of determinant 1:

U := {A ∈ M(R) : det(A) = 1}.

For each matrix A =
( x −y
y x+y

)
in U , there exists a real number θ = θ(A) such that

(cos θ, sin θ) = (x + y/2,
√
3y/2), since (x + y/2)2 + (

√
3y/2)2 = 1. The value of

θ is determined up to an integer multiple of 2π. Hence we have

A =

(
x −y

y x+ y

)
=

(
cos θ − sin θ√

3
−2 sin θ√

3
2 sin θ√

3
cos θ + sin θ√

3

)
.

Now we define a function h : R → T by

h(θ) := f

(
cos θ − sin θ√

3
− 2 sin θ√

3
2 sin θ√

3
cos θ + sin θ√

3

)
, θ ∈ R,

where h is periodic with period 2π. Then a straightforward calculation verifies

that h satisfies the exponential functional equation as claimed.

Second, let D be the positive diagonal subsemigroup of (M(R)∗, ·) defined

by

D :=

{(
x 0

0 x

)
: x > 0

}
,

and define g : (0,∞) → T by

g(x) := f

(
x 0

0 x

)
, x > 0.

Then another easy computation confirms that g is a multiplicative function, as

claimed.

Finally, note that we can factor any matrix A ∈ M(R)∗ uniquely as

A = (
√
∆I)

(
1√
∆
A

)
.

Thus, by equation (10) we have

f(A) = f(
√
∆I)f

(
1√
∆
A

)
= g(

√
∆)h

(
θ

(
1√
∆
A

))
, A ∈ M(R)∗,

which is (11). The specification of a choice of θ is immaterial here, since h is

2π-periodic.

This completes the proof. �
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Returning to the original setting of equation (1), we can write the solution

in the form

f(x, y) = g(
√
x2 + xy + y2)h(θ),

for all (x, y) ̸= (0, 0), where θ is determined (up to an integer multiple of 2π) by

(cos θ, sin θ) =

(
2x+ y

2
√
x2 + xy + y2

,

√
3y

2
√

x2 + xy + y2

)
. (12)

The g factor is the form of solution found in [3], since g ◦
√
· is multiplicative. But

we will show that the h factor cannot be neglected.

In case T is the commutative monoid (R, ·) or (C, ·), the general forms of g

and h in the previous proposition are well-known (see for example [1] or [4]). We

will concentrate here on the real solutions, that is when T = R.
Let us assume that our solution f : R2 → R is not identically 0 for (x, y) ̸=

(0, 0). Then neither is h : R → R identically 0. Under such conditions, any

solution h of the exponential functional equation is never 0 and we have

h(θ) = ea(θ), θ ∈ R,

where a : R → R is an additive function, that is a solution of Cauchy’s equation

a(x+ y) = a(x) + a(y), x, y ∈ R.

The fact that h is 2π-periodic just means that a is also. It is well known that

there exist nontrivial (i.e. not identically 0) additive functions on R such that

a(2π) = 0. If a is such a function, then h is not identically 1 and therefore cannot

be neglected in the solution of (1).

In summary, we have the following corollary to the preceding proposition.

Corollary 3.2. The general not identically 1 solution f : R2 → R of equa-

tion (1) is given by f(0, 0) = 0 and for (x, y) ̸= (0, 0) by

f(x, y) = m(x2 + xy + y2)ea(θ) (13)

for an arbitrary multiplicative function m : (0,∞) → R and an arbitrary additive

function a : R → R such that a(2π) = 0. Here θ is determined by equation (12).

Proof. We have already seen how the solution form (13) arises, and why

f(0, 0) = 0 if f ̸= 1. It only remains to check that (13) is in fact a solution of (1).

It is also easy to check that (x, y) 7→ m(x2 + xy + y2) is a solution of (1) for

any multiplicative function m.
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Now consider the factor h(x, y) = ea(θ). Suppose (x, y), (u, v) ∈ R2 \ {(0, 0)}.
Let θ be a real number such that (12) holds, and let ϕ be a real number for which

(cosϕ, sinϕ) =

(
2u+ v

2
√
u2 + uv + v2

,

√
3v

2
√
u2 + uv + v2

)
.

Then h(x, y)h(u, v) = ea(θ)ea(ϕ) = ea(θ+ϕ). On the other hand,

(cos(θ + ϕ), sin(θ + ϕ)) = (cos θ cosϕ− sin θ sinϕ, sin θ cosϕ+ cos θ sinϕ)

=

(
(2x+ y)(2u+ v)− 3yv

4
√
(x2 + xy + y2)(u2 + uv + v2)

,

√
3[y(2u+ v) + (2x+ y)v]

4
√

(x2 + xy + y2)(u2 + uv + v2)

)

=

(
2xu+ xv + yu− yv

2
√
(x2 + xy + y2)(u2 + uv + v2)

,

√
3(yu+ yv + xv)

2
√

(x2 + xy + y2)(u2 + uv + v2)

)

=

(
2z + w√

z2 + zw + w2
,

√
3w

2
√
z2 + zw + w2

)

where (z, w) = (xu− yv, yu+ xv+ yv). Thus ea(θ+ϕ) = h(xu− yv, yu+ xv+ yv),

confirming that h is indeed a solution of equation (1).

This concludes the proof. �

Now that we know there are solutions of (1) other than multiplicative func-

tions of the quadratic form x2 + xy + y2, we may ask what additional conditions

will ”kill” the h factor. It turns out that either continuity or symmetry will do

the trick.

In the next result we omit the constant solutions f = 0 and f = 1 of (1).

Corollary 3.3. The general continuous and nonconstant solution f :R2 →R
of equation (1) is given by f(0, 0) = 0 and for (x, y) ̸= (0, 0) by

f(x, y) = (x2 + xy + y2)p (14)

for an arbitrary p > 0.

Proof. By the previous corollary, we have f(0, 0) = 0 and otherwise

f(x, y) = m(x2 + xy + y2)ea(θ)

for a multiplicative m : (0,∞) → R and an additive a : R → R such that

a(2π) = 0. First we show that a = 0. Indeed, choosing (x, y) such that ∆ = 1 we

have

f(x, y) = m(1)ea(θ).
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Since f is nonconstant, it follows thatm is not the zero function and thusm(1)̸=0.

Therefore the continuity of f transfers to a. Every continuous additive function

has the form a(t) = ct for some constant c. Now a(2π) = 0 gives c = 0, hence a

is the zero function.

Thus, the representation (13) reduces to

f(x, y) = m(x2 + xy + y2), x, y ∈ R,

for a continuous multiplicative function m : (0,∞) → R. The form of such a

function m is either m(x) = xp for some constant p ∈ R, or m = 0. Again m = 0

is ruled out by the non-constancy of f . Furthermore, the continuity of f at (0, 0)

forces p > 0, and this completes the proof. �

Remark 3.4. Observe that if we do not require continuity of f at (0, 0) in the

previous result, then we get (14) for any real constant p.

In the following corollary, we again exclude the constant functions f = 0 and

f = 1, which are clearly also symmetric solutions of (1).

Corollary 3.5. The general symmetric and nonconstant solution f : R2 → R
of equation (1) is given by f(0, 0) = 0 and for (x, y) ̸= (0, 0) by

f(x, y) = m(x2 + xy + y2)

for an arbitrary (not identically 0) multiplicative function m : (0,∞) → R.

Proof. By Corollary 3.2 we have that f(0, 0) = 0 and for (x, y) ̸= (0, 0)

that f(x, y) has the form

f(x, y) = m(x2 + xy + y2)ea(θ)

for arbitrary multiplicative m and additive a such that a(2π) = 0. Moreover,

m ̸= 0 since f is nonconstant. Clearly, the m factor of this representation is

symmetric in x and y. Furthermore, as above we note that m ̸= 0 implies that m

never takes the value zero. It follows that the ea factor must also be symmetric

with respect to a switch of x and y. We will complete the proof by showing that

this forces a = 0.

Recall that θ = θ(x, y) is determined by equation (12):

(cos θ, sin θ) =

(
2x+ y

2
,

√
3y

2

)
,
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where we have taken ∆ = x2 + xy + y2 = 1 for convenience. Now symmetry of f

yields a(θ(x, y)) = a(θ(y, x)). Let us restrict the point (x, y) to the first quadrant:

x, y ≥ 0. Then ∆ = 1 implies that

y = −x

2
+

√
1− 3x2

4
,

and y remains nonnegative as long as x ≤ 1. Now for x, y ∈ [0, 1] we can write

θ(x, y) = arcsin

(√
3y

2

)
, θ(y, x) = arcsin

(√
3x

2

)
Then we have

0 = a(θ(x, y))− a(θ(y, x))

= a

(
arcsin

(√
3y

2

))
− a

(
arcsin

(√
3x

2

))

= a

(
arcsin

(√
3

2

(
−x

2
+

√
1− 3x2

4

)))
− a

(
arcsin

(√
3x

2

))

= a

(
arcsin

(
− t

2
+

√
3

2

√
1− t2

)
− arcsin(t)

)
,

where t =
√
3x
2 runs through the interval 0 ≤ t ≤

√
3/2. Letting ϕ(t) denote

the argument of a in the last displayed line above, we see that ϕ is continuous

on [0,
√
3/2], that ϕ(0) = π/3, and that ϕ(

√
3/2) = −π/3. Therefore the range

of ϕ contains the interval [−π/3, π/3]. Since a(u) = 0 for all u in this interval,

it follows that a is bounded on an interval of positive length, thus it is a linear

function and indeed the zero function. �

4. Some remarks and open problems

We have found the solutions of (1) for functions f mapping Q(i
√
3 )2 into

an integral domain, and for functions from R2 to R. In view of the origins of our

functional equation in number theory, it would be interesting to know the solutions

of this functional equation when both the domain and range are integral domains

like the integers or the Gaussian integers rather than fields.

In fact, the method of Proposition 2.2 “almost” works on the ring R =

Z
[
1
2 , i

√
3
]
generated by the integers, 1

2 , and i
√
3. The snag is that the function
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α defined by (7) has range
{
(p, q) ∈ R2 | ℜ(p) − ℜ(q) = 3r for some r ∈ Z

[
1
2

]}
,

where the operator ℜ is defined on R by ℜ
(

a
2k

+ i
√
3 b
2n

)
= a

2k
for a, b, n, k ∈ Z.

So the range of α is not of the form T1 × T2.

Problem 4.1. Find the solutions (or even the symmetric solutions) f :R2→R

of equation (1) when R = Z or R = Z[i].

It seems that a different approach is needed to solve these problems.

Problem 4.2. Another open problem is to find the solutions (or even the

symmetric solutions) f : Q2 → Q of equation (1).
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