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Dual multiplier Banach algebras and Connes-amenability

By BAHMAN HAYATI (Malayer) and MASSOUD AMINI (Tehran )

Abstract. Following M. Daws, we consider a Banach algebra B for which the

multiplier algebra M(B) is a dual Banach algebra in the sense of V. Runde, and show

that under certain continuity condition, B is amenable if and only if M(B) is Connes-

amenable. As a result, we conclude that for a discrete amenable group G, the Fourier–

Stieltjes algebra B(G) is Connes-amenable if and only if G is abelian by finite.

1. Introduction

In 1924, based on earlier work of Giuseppe Vitali, Stefan Banach and

Alfred Tarski [1] proposed a “paradoxical decomposition”: there exists a de-

composition of a ball in R3 into a finite number of disjoint subsets, which can

be put back together to yield two identical copies of the original ball. Later

John von Neumann showed that such a paradoxical decomposition is impossible

for the disk in R2 (using only Euclidean congruences) and studied the possibil-

ity of paradoxical decomposition for more general groups of equivalences. In the

course of investigation on Banach–Tarski phenomenon, von Neumann discovered

the notion of amenable groups (groups with an invariant mean) and showed that

paradoxical decomposition arises only for non-amenable groups of equivalences

[24]. The original treatment of von Neumann was only for the discrete case,

and it was Mahlon Day who extended the work of von Neumann to locally

compact groups [3].
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Later it was shown that the notion of amenability could be rephrased in

terms of homological algebra, whose origins traces back to investigations in com-

binatorial topology (later called algebraic topology) and abstract algebra. This

is mainly done by forming appropriate chain complexes and studying their ho-

mology and cohomology. In 1972, Barry E. Johnson put everything in a solid

framework. Johnson defined amenability of Banach algebras and showed that a

locally compact group G is amenable if and only if the group algebra L1(G) is

amenable as a Banach algebra [12]. Investigating the notion of amenability for

operator algebras, it was observed by Alain Connes and Uffe Haagerup that the

Johnson notion of amenability for Banach algebras fits well to the subcategory

of C∗-algebras. For von Neumann algebras, it was already observed by John-

son, in a joint paper with Richard V. Kadison and John V. Ringrose, that

it is more suitable to take into account the w∗-topology of the algebra induced

by its (unique) predual [15]. This new notion of amenability was called Connes-

amenability by A. Ya. Helemskii [9].

It is quite natural to ask if the concept of Connes-amenability could be de-

fined for Banach algebras with a predual. Before one can do this, there are few

technical problems which should be taken care of: the predual is not unique (hence

one predual should be fixed) and the corresponding module maps are not neces-

sarily w∗-continuous. This led Volker Runde to define Connes-amenability for

a suitable subclass, called dual Banach algebras [19]. Examples of dual Banach

algebras include, von Neumann algebras, measure algebras and Fourier–Stieltjes

algebras.

In the original work of Johnson, it was shown that amenability of a Banach

algebra is equivalent to the existence of an appropriate element in the second

dual of the projective tensor product of the algebra by itself. Johnson called this

a virtual diagonal and also suggested an approximate analog for the diagonal [11].

Runde added a normality condition and used the idea due to Edward G. Ef-

fros [5] (for von Neumann algebras) to show that a dual Banach algebra with a

normal virtual diagonal is Connes-amenable, and noticed that the converse is not

true in general [20], [21], [23].

The idea of the present paper originated from the simple observation that

the measure algebra M(G) is the multiplier algebra of the group algebra L1(G).

It was natural to ask if, in general, amenability of a Banach algebra B (with

bounded approximate identity) is related to Connes-amenability of its multiplier

algebra M(B). For this to make sense, one has to find suitable conditions under

which M(B) is a dual Banach space. These conditions where stated in a (not so

well known) paper by Emmanuel O. Oshobi and John S. Pym [18]. Although
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this is not explicitly stated in [18], it is easy to see that under natural conditions

on B set by the authors, the multiplier algebra M(B) is a dual Banach algebra

[18, Theorems 3.4 and 3.8].

In [10], the authors proved that under the natural conditions set by [18],

amenability of a Banach algebra B is equivalent to Connes-amenability of the

multiplier algebra M(B), as well as to the existence of a normal virtual diagonal.

The proof was straightforward and relatively short. Part of the conditions set

by [18] is a natural compatibility condition (see Assumption 2.1) which holds for

B = L1(G) when G is compact and for B = A(G) when G is discrete.

The present paper started following an observation by Matthew Daws in

[4] who set conditions, under which M(B) is a dual Banach algebra. We noticed

that adding a natural continuity condition (Assumption 3.4) our proof in [10]

carries over this more general setting and for a Banach algebra B with bounded

approximate identity, amenability of B, Connes-amenability of M(B), and exis-

tence of a normal virtual diagonal for M(B) are equivalent (Theorem 3.5).

2. Preliminaries

For a Banach algebra B and a Banach B-bimodule E, a continuous linear

map D : B → E such that

D(ab) = Da · b+ a ·Db (a, b ∈ B)

is called a derivation from B into E. The space of all derivations of B into E is

denoted by Z1(B,E). For each x ∈ E, the map a 7→ a · x − x · a is a derivation,

and these maps form the space N1(B,E) of inner derivations. The quotient

space H1(B,E) = Z1(B,E)/N1(B,E) is the first cohomology group of B with

coefficients in E, and B is called amenable if H1(B,E∗) = {0}, for every Banach

B-bimodule E [11], [12], where E∗ is the dual Banach B-bimodule whose actions

are defined by

⟨x, a · x∗⟩ = ⟨x · a, x∗⟩, ⟨x, x∗ · a⟩ = ⟨a · x, x∗⟩ (a ∈ B, x ∈ E, x∗ ∈ E∗).

A Banach algebra B is called a dual Banach algebra if it is dual as a Banach

B-bimodule. One can see that a Banach algebra which is also a dual space is

a dual Banach algebra if and only if the multiplication map is separately w∗-

continuous [19]. Examples of dual Banach algebras include all von Neumann

algebras, the algebra B(E) = (E⊗̂E∗)∗ of all bounded operators on a reflexive
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Banach space E, the measure algebra M(G) = C0(G)
∗, the Fourier–Stieljes al-

gebra B(G) = C∗(G)∗, and the second dual B∗∗ of an Arens regular Banach

algebra B.

Let B be a Banach algebra. We use the notations B⊗̂B and L2(B;C) to

denote the projective tensor product of B with itself and the space of bounded

bilinear forms on B × B, respectively. A dual Banach B-bimodule E is called

normal if for each x ∈ E, the maps a 7→ a · x and b 7→ x · b from B into E

are w∗-continuous, and Connes-amenable if for every normal dual Banach B-

bimodule E, every w∗-continuous derivation D : B → E is inner [19]. If ∆B :

B⊗̂B → B is the diagonal operator induced by a ⊗ b 7→ ab, a, b ∈ B, then since

the multiplication in B is separately w∗-continuous, ∆∗
BB∗ ⊆ L2

w∗(B;C), where
B∗ is a closed submodule of B∗ such that B = B∗

∗ , and L2
w∗(B;C) is the set of

all separately w∗-continuous elements of L2(B;C) ∼= (B⊗̂B)∗. Also, L2
w∗(B;C)

is a closed submodule of L2(B;C); in particular, L2
w∗(B;C)∗ carries a canonical

Banach B-bimodule structure which makes it a quotient module of (B⊗̂B)∗∗.

Taking the adjoint of ∆∗
B|B∗ , we may lift ∆B to a B-bimodule homomorphism

∆w∗ on L2
w∗(B;C)∗. An element M ∈ L2

w∗(B;C)∗ is called a normal, virtual

diagonal for B if

a ·M =M · a, a∆w∗M = a (a ∈ B).

A double multiplier τ on an algebra B consists of a pair of mappings of B into

itself denoted by b 7→ bτ and b 7→ τb (b ∈ B) such that (aτ)b = a(τb), for all

a, b ∈ B. Every element of B by the natural map, b 7→ (Lb, Rb), gives rise to a

double multiplier where Lb and Rb are left and right multiplications respectively.

The algebra B is called faithful if the only element b ∈ B such that abc = 0,

for all a, c ∈ B, is b = 0. The set M(B) of all double multipliers on B is an

algebra (under composition of maps) with identity 1M(B) = (idB , idB). When B

is faithful, the natural map from B into M(B) is injective and B is an ideal of

M(B). Also in this case, each double multiplier τ is a left multiplier, that is,

τ(ab) = (τa)b for all a, b ∈ B. A double multiplier is also a right multiplier which

is defined similarly. The set of all left multipliers and right multipliers on B are

denoted by L(B) and R(B) respectively.

One can see easily that a normed algebra B with a bounded approximate

identity is faithful. If B is complete and faithful, then left and right multipliers

are continuous linear operators [14]. For a double multiplier τ , the norms

∥τ∥R(B) = sup{∥aτ∥B : ∥a∥B ≤ 1}
and

∥τ∥L(B) = sup{∥τb∥B : ∥b∥B ≤ 1}.
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are finite. If we consider M(B) with the following norm

∥τ∥M(B) = max{∥τ∥R(B), ∥τ∥L(B)}

the inclusion mapB →M(B) is norm decreasing and if moreoverB has a bounded

approximate identity (eα)α with bound M , then

∥b∥B = lim
α

∥eαb∥B ≤M∥b∥L(B),

The theory of double multipliers is due to B. E. Johnson and for more informa-

tion one can see [14] and [16].

Following [18], the authors observed in [10] that M(B) is a dual Banach

algebra whenever the following assumption holds:

Assumption 2.1. There exists a continuous linear injection B∗ → M(B)

such that for each u, v ∈ B∗ and b ∈ B,

⟨u, vb⟩B = ⟨v, bu⟩B .

In this case, the predual ofM(B) is a subspace ofM(B)∗. Indeed,M(B)=A∗,

where

A = clsM(B)∗ span{a ◦ u : a ∈ B, u ∈ B∗}

and a ◦ u is an element of M(B)∗ defined by ⟨a ◦ u, τ⟩M(B) = ⟨u, τa⟩B .
In general it is not easy to verify Assumption 2.1 for typical Banach algebras

such as L1(G) and A(G). In [10] the authors verified this for these algebras in

the compact and discrete case, respectively.

M. Daws in [4, Theorem 7.1] gave the following set of assumptions for the

multiplier algebra M(B) to be a dual Banach algebra.

Theorem 2.2. Let B be a Banach algebra such that {ab : a, b ∈ B} is

linearly dense in B, (A,A∗) be a dual Banach algebra, and ı : B → A be an

isometric homomorphism such that ı(B) is an essential ideal in A. If the induced

map θ : A → M(B) is injective, then there is a w∗-topology on M(B) making

M(B) a dual Banach algebra.

Let us briefly review the structure of the predual of M(B) in the above

theorem. Consider (B⊗̂A∗) ⊕1 (B⊗̂A∗) with dual space L(B,A) ⊕∞ L(B,A).

The closure X̄ of

X = span{(b⊗ µ · ı(a))⊕ (−a⊗ ı(b) · µ) : a, b ∈ B, µ ∈ A∗}
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is a closed linear subspace of (B⊗̂A∗) ⊕1 (B⊗̂A∗) and X̄
⊥ = X⊥ is a w∗-closed

subspace of L(B,A) ⊕∞ L(B,A). For each element (S, T ) ∈ X⊥, there exists

L,R ∈ L(B) such that T = ıL and S = ıR and (L,R) ∈ M(B). Now M(B) is

isomorphic to X⊥ and therefore a dual Banach space with predual

Y =
(B⊗̂A∗)⊕1 (B⊗̂A∗)

X̄
,

where the w∗- topology is given by the embedding M(B) → (B⊗̂A∗ ⊕1 B⊗̂A∗)
∗

given by

⟨(L,R), (a⊗ µ)⊕ (b⊗ λ)⟩ = ⟨ıL(a), µ⟩+ ⟨ıR(b), λ⟩

for L,R ∈ L(B), a, b ∈ B and λ, µ ∈ A∗.

Note that under a natural assumption the w∗-topology in the above theorem

is unique [4, Theorem 7.2].

Theorem 2.3. Let A and B be as above, and θ : A→M(B) be the induced

map. There is one and only one w∗-topology on M(B) such that

i) M(B) is a dual Banach algebra,

ii) For a bounded net (aα) in A, aα → a weak∗ in A if and only if θ(aα) → θ(a)

weak∗ in M(B).

3. Connes-amenability of M(B)

Throughout this section B is a Banach algebra satisfying conditions of The-

orem 2.2. In particular M(B) is a dual Banach algebra and we may ask when it

is Connes-amenable.

Each element λ ∈ A∗ may be considered as an element of B∗ via

⟨λ, b⟩B = ⟨ı(b), λ⟩A∗ (b ∈ B).

One can easily see that A∗ is a B- submodule of B∗ with the following module

actions

⟨λ · a, b⟩B = ⟨ı(ab), λ⟩A∗ , ⟨a · λ, b⟩B = ⟨ı(ba), λ⟩A∗ (a, b ∈ B, λ ∈ A∗).

Lemma 3.1. Let ∼ : L2
w∗(M(B),C) → L2(B;C) be defined by ψ̃ := ψ|B×B,

for ψ ∈ L2
w∗(M(B),C)). Then

i) ∼ is a continuous linear map.
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ii) ∆∗
M(B)((a⊗ λ)⊕ (b⊗ µ) + X̄)∼ = ∆∗

B(a · λ+ µ · b), (a, b ∈ B, λ, µ ∈ A∗).

iii) (ψ · τ)∼ = ψ̃ · τ ; (τ · ψ)∼ = τ · ψ̃, (τ ∈M(B), ψ ∈ L2
w∗(M(B);C)).

We note that in (ii), (a⊗λ)⊕1 (b⊗µ)+ X̄ is an element of Y (⊆M(B)∗) and

since the product in M(B) is separately w∗- continuous, we have ∆∗
M(B)(Y ) ⊆

L2
w∗(M(B);C).

Proof. It is straightforward to see that ∼ is a continuous linear map. To

show (ii), let c, d ∈ B and ϕ be the natural map from B into M(B). Then

⟨∆∗
M(B)((a⊗ λ)⊕ (b⊗ µ) + X̄)∼, (c, d)⟩B×B

= ⟨∆∗
M(B)((a⊗ λ)⊕ (b⊗ µ) + X̄), (ϕ(c), ϕ(d))⟩M(B)×M(B)

= ⟨(a⊗ λ)⊕ (b⊗ µ) + X̄, ϕ(cd)⟩M(B)

= ⟨(a⊗ λ)⊕ (b⊗ µ) + X̄, (Lcd, Rcd)⟩M(B)

= ⟨(a⊗ λ)⊕ (b⊗ µ), (Lcd, Rcd)⟩M(B)

= ⟨(Lcd, Rcd), (a⊗ λ)⊕ (b⊗ µ)⟩(B⊗̂A∗)⊕1(B⊗̂A∗)

= ⟨ıLcd(a), λ⟩A∗ + ⟨ıRcd(b), µ⟩A∗ = ⟨ı(cda), λ⟩A∗ + ⟨ı(bcd), µ⟩A∗

= ⟨a · λ, cd⟩B + ⟨µ · b, cd⟩B = ⟨a · λ+ µ · b,∆B(c, d)⟩B
= ⟨∆∗

B(a · λ+ µ · b), (c, d)⟩B×B .

To prove (iii), for each τ ∈ M(B) and b ∈ B, we have τϕ(b) = ϕ(τb). If

τ ∈M(B) and ψ ∈ L2
w∗(M(B);C), and b, c ∈ B, then

⟨(ψ.τ)∼, (b, c)⟩B×B = ⟨ψ.τ, (ϕ(b), ϕ(c))⟩M(B)×M(B)

= ⟨ψ, (ϕ(τb), ϕ(c))⟩M(B)×M(B) = ⟨ψ̃.τ, (b, c)⟩B×B .

Thus (ψ.τ)∼ = ψ̃.τ . The second equality is proved similarly. �

Definition 3.2. A net (τα) in M(B) converges in weak strict topology (wst)

to τ in M(B) if ⟨ϕ, (τα − τ)b⟩B → 0 for each ϕ ∈ B∗, b ∈ B.

We recall that the induced map θ : A→M(B) is defined by θ(a) = (La, Ra)

where La and Ra as operators on B are defined by

La(b) = ı−1(aı(b)), Ra(b) = ı−1(ı(b)a) (a ∈ A, b ∈ B).

Theorem 3.3. Let B and (A,A∗) be as in Theorem 2.2. Then the followings

are equivalent:
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i) θ : A→M(B) is w∗-wst-continuous;

ii) ı(B) ·A∗ ⊆ A∗;

iii) For each b ∈ B and λ ∈ B∗, there is ω ∈ A∗ with

⟨λ, ı−1(aı(b))⟩B = ⟨a, ω⟩A∗ (a ∈ A).

Proof. To prove (i) =⇒ (ii), let b ∈ B and µ ∈ A∗ be such that ı(b) ·µ does

not belong to A∗. Then, by Hahn–Banach and Goldestein’s theorem, there is a

bounded net (aα) in A such that aα → 0 in w∗-topology, but ⟨ı(b) · µ, aα⟩A → 1.

That is

1 = lim
α
⟨µ, aαı(b)⟩A = ⟨λ, θ(aα)b⟩B

by assumption θ(aα) → 0 in wst-topology, a contradiction.

(ii) =⇒ (iii). Let b ∈ B and λ ∈ B∗ be arbitrary. σλ : ı(B) → C defined

by ⟨σλ, ı(c)⟩A = ⟨λ, c⟩B, for each c ∈ B, is a continuous linear functional. By

Hahn–Banah theorem there is µ ∈ A∗ such that µ|ı(B) is σλ. Then

⟨λ, ı−1(aı(b))⟩B = ⟨µ, aı(b)⟩A = ⟨ı(b) · µ, a⟩A (a ∈ A)

set ω = ı(b) · µ, by assumption ω is in A∗.

(iii) =⇒ (ii). Let (aα) be a net in A with aα → 0 in w∗-topology. Let b ∈ B

and λ ∈ B∗, by assumption, there exists ω ∈ A∗ such that

⟨λ, ı−1(aı(b))⟩B = ⟨a, ω⟩A∗ (a ∈ A)

then

lim
α
⟨λ, θ(aα)b⟩B = lim

α
⟨λ, ı−1(aαı(b))⟩B = lim

α
⟨aα, ω⟩A∗ = 0.

So θ is w∗-wst-continuous. �

Assumption 3.4. Let B and (A,A∗) be as in Theorem 2.2. Assume further

that one of the equivalent conditions of Theorem 3.3 holds.

Theorem 3.5. If B has a bounded approximate identity and satisfies As-

sumption 3.4, then the followings are equivalent:

i) B is amenable;

ii) M(B) is Connes-amenable;

iii) M(B) has a normal, virtual diagonal.
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Proof. (ii) =⇒ (i). Let M(B) be Connes-amenable, E be a pseudo unital

Banach B-bimodule and D : B → E∗ be a derivation. Since B is a closed ideal

of M(B) with a bounded approximate identity, there exists a unique extension

of D to a derivation D̃ : M(B) → E∗ such that D̃ is continuous with respect to

the strict topology on M(B) and the w∗-topology on E∗. We show that E∗ is a

normal, dual BanachM(B)-bimodule, and D̃ :M(B) → E∗ is w∗-w∗-continuous.

Claim 1. For ϕ ∈ E∗ and y ∈ E, the mapping ϕy : A → C defined by

a 7→ ⟨ϕ, θ(a) · y⟩E belongs to A∗.

It suffices to show that ϕy is w∗-continuous. Let aα
w∗

→ 0 in A, by Assump-

tion 3.3, θ(aα)
wst→ 0 in M(B). On the other hand, there exist c ∈ B and z ∈ E

such that y = c · z. Since θ(aα)c
w→ 0 in B, we have

lim
α
⟨ϕy, aα⟩A = lim

α
⟨ϕ, θ(aα) · y⟩E = lim

α
⟨ϕ, θ(aα) · c · z⟩E

= lim
α
⟨ϕ, θ(aα)c · z⟩E = lim

α
⟨ϕz, θ(aα)c⟩M(B)

= lim
α
⟨ϕz|B , θ(aα)c⟩B = 0,

where ϕz is an element of M(B)∗ defined by τ 7→ ⟨ϕ, τ · z⟩E and ϕz|B is in B∗.

Claim 2. For ϕ ∈ E∗ and y ∈ E, as above, if ϕy : M(B) → C is defined by

τ 7→ ⟨ϕ, τ · y⟩E and ȷ : B →M(B) is the canonical mapping ȷ(b) = ⟨Lb, Rb⟩, then
θ ◦ ı = ȷ and ϕy ◦ ı = ϕy ◦ ȷ.

Let b ∈ B, then for each c ∈ B we have

Lı(b)(c) = ı−1(ı(b)ı(c)) = bc = Lb(c)

and

Rı(b)(c) = ı−1(ı(c)ı(b)) = cb = Rb(c).

Therefore (Lb, Rb) = (Lı(b), Rı(b)), for each b ∈ B, thus

θ ◦ ı(b) = θ(ı(b)) = (Lı(b), Rı(b)) = (Lb, Rb) = ȷ(b).

Also for each b ∈ B

⟨ϕy ◦ ı, b⟩B = ⟨ϕy, ı(b)⟩A = ⟨ϕ, θ ◦ ı(b) · y⟩E = ⟨ϕ, ȷ(b) · y⟩E
= ⟨ϕy, ȷ(b)⟩M(B) = ⟨ϕy ◦ ȷ, b⟩B .

Claim 3. If τα
w∗

→ τ in M(B), then for each λ ∈ A∗ and b ∈ B we have

lim
α
⟨λ, ταb⟩B = ⟨λ, τb⟩B.
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For each (L,R) ∈M(B) and each b ∈ B, we have

(L,R)θ(ı(b)) = (LLı(b), Rı(b)R) = (LL(b), RL(b)) = ȷ(L(b)) = θ(ı(L(b))).

Let τα = ⟨Lα, Rα⟩, τ = ⟨L,R⟩ and τα
w∗

→ τ . For each b ∈ B we have

lim
α
θ(ı(Lα(b))) = lim

α
(Lα, Rα)θ(ı(b)) = (L,R)θ(ı(b)) = θ(ı(L(b))).

Therefore, by Theorem 2.3, ıLα(b)
w∗

→ ıL(b) in A for each b ∈ B. Hence for each

λ ∈ A∗ and b ∈ B,

lim
α
⟨λ, ταb⟩B = lim

α
⟨λ,Lα(b)⟩B = lim

α
⟨ıLα(b), λ⟩A∗

= ⟨ıL(b), λ⟩A∗ = ⟨λ,L(b)⟩B = ⟨λ, τb⟩B .

Now we are ready to show that E∗ is a normal dual Banach M(B)-bimodule. If

τα
w∗

→ τ in M(B), then for each x ∈ E and ϕ ∈ E∗, there exist b ∈ B and y ∈ E

such that x = b · y and

lim
α
⟨ϕ · τα, x⟩E = lim

α
⟨ϕ, τα · x⟩E = lim

α
⟨ϕ, τα · (b · y)⟩E

= lim
α
⟨ϕ, ταb · y⟩E = lim

α
⟨ϕy, ταb⟩B

= lim
α
⟨ϕy, ȷ(ταb)⟩M(B) = lim

α
⟨ϕy ◦ ȷ, ταb⟩B

= lim
α
⟨ϕy ◦ ı, ταb⟩B = lim

α
⟨ϕy, ı(ταb)⟩A

= lim
α
⟨ı(ταb), ϕy⟩A∗ = lim

α
⟨ϕy, ταb⟩B

= ⟨ϕy, τb⟩B = ⟨ϕ, τb · y⟩E = ⟨ϕ, τ · (b · y)⟩E = ⟨ϕ · τ, x⟩E .

To prove that D̃ is w∗-w∗-continuous, let τα → 0 in w∗-topology. For x ∈ E, take

y ∈ E and b ∈ B with x = b · y. Then

⟨D̃τα, x⟩E = ⟨D̃(ταb)− τα · D̃b, y⟩E = ⟨D(ταb), y⟩E − ⟨τα ·Db, y⟩E → 0.

Since M(B) is Connes-amenable, D̃ and so D is an inner derivation, therefore B

is amenable.

(i) =⇒ (iii). Since B is amenable, it has a virtual diagonal M ∈ L2(B;C)∗

such that a·M =M ·a and a·∆∗∗
B M = a for a ∈ B. Define M̃ : L2

w∗(M(B);C) → C
by ⟨M̃, ψ⟩ = ⟨M, ψ̃⟩, for ψ ∈ L2

w∗(M(B);C)). Then M̃ is linear and by Lem-

ma 3.1 (i), M̃ ∈ L2
w∗(M(B);C)∗. To prove that M̃ is a normal, virtual diagonal

for M(B), it suffices to show that for each τ ∈ M(B), M̃ · τ = τ · M̃ and
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τ∆w∗M̃ = τ . By density of B in M(B), for each τ ∈ M(B) there exists a net

(aα)α ⊆ B such that aα → τ in the strict topology. Since L2(B;C)∗ is a pseudo

unital Banach B-bimodule, there exist a ∈ B and M ′ ∈ L2(B;C)∗ such that

M = a ·M ′. Thus aαa→ τa in the norm topology, and aαa ·M → τa ·M ′ in the

w∗-topology. Next, let b ∈ B andM ′′ ∈ L2(B;C)∗ be such thatM =M ′′ · b, then
since M ′′ · baα → M ′′ · bτ in the w∗-topology, we have τ.M = M · τ , from which

and Lemma 3.2 (iii) it follows that τ ·M̃ = M̃ · τ . To complete the proof, we need

to show that ∆w∗M̃ is the unit 1M(B) of M(B) = Y ∗. Let (a⊗ λ)⊕ (b⊗ µ) + X̄

be an arbitrary element of Y . Then by Lemma 3.2 (ii)

⟨∆w∗M̃, (a⊗ λ)⊕ (b⊗ µ) + X̄⟩Y
= ⟨M̃,∆∗

M(B)((a⊗ λ)⊕ (b⊗ µ) + X̄)⟩L2
w∗ (M(B);C)

= ⟨M,∆∗
M(B)((a⊗ λ)⊕ (b⊗ µ) + X̄)∼⟩L2(B;C)

= ⟨M,∆∗
B(a · λ+ µ · b)⟩L2(B;C) = ⟨∆∗∗

B (M), a · λ+ µ · b)⟩B∗

= ⟨∆∗∗
B (M) · a, λ⟩A∗ + ⟨b ·∆∗∗

B (M), µ⟩A∗

= ⟨a, λ⟩A∗ + ⟨b, µ⟩A∗ = ⟨λ, a⟩B + ⟨µ, b⟩B = ⟨ı(a), λ⟩A∗ + ⟨ı(b), µ⟩A∗

= ⟨(IB , IB), (a⊗ λ)⊕ (b⊗ µ) + X̄)⟩Y
= ⟨1M(B), (a⊗ λ)⊕ (b⊗ µ) + X̄)⟩Y .

(iii) =⇒ (ii). This holds for any dual Banach algebra [19]. �

Example 3.6. Let G be a compact group and B = L1(G) then M(B) =

M(G) = C(G)∗, hence A = M(G) and A∗ = C(G). The map ı : B → A is

the canonical embedding which takes f ∈ L1(G) to fλ, where λ is the left Haar

measure on G and θ : A → M(B) is the identity map. We show that θ satisfies

Assumption 3.3. If µα
w∗

→ 0 in M(G), by the principle of uniform boundedness,

(µα)α is norm bounded, say ∥µα∥ ≤ M , for each α. We claim that µα → 0 in

wst-topology in M(G). For ϕ ∈ L∞(G) and f ∈ C(G), by [7, 2.39 (d)], since G

is compact we have ϕ ∗ f ∈ C(G). Therefore

lim
α
⟨µα ∗ f, ϕ⟩ = ⟨µα, ϕ ∗ f⟩ = 0,

and θ = idM(G) is w
∗-wst-continuous. Now since B = L1(G) is amenable, M(G)

is Connes amenable. Indeed by a result of V. Runde [19], [20], M(G) is Connes

amenable for each locally compact amenable group G

One should note that the identity map on M(G) is not w∗-wst-continuous in

general. Take G = R and (xn) a sequence in R such that xn → ∞. Then for each



180 Bahman Hayati and Massoud Amini

f ∈ C0(R), ⟨δxn , f⟩ = f(xn) → 0, hence δxn → 0 in the w∗-topology on M(R),
but for the constant function 1 ∈ L∞(R) and each f ∈ C0(R), 1 ∗ f is a constant

function with value cf =
∫
G
f(y)dy, hence

⟨δxn ∗ f, 1⟩ = ⟨δxn , 1 ∗ f⟩ = (1 ∗ f)(xn) = cf .

Thus δxn does not tend to zero in the wst-topology on M(R).

Example 3.7. For a locally compact group G, let A(G), B(G) and V N(G)

be the Fourier algebra, the Fourier–Stieltjes algebra and the group von Neumann

algebra of G [6]. Let G be a discrete amenable group. We claim that the followings

are equivalent:

i) A(G) is amenable;

ii) B(G) is Connes-amenable;

iii) B(G) has a normal virtual diagonal.

Since G is amenable, by [17], M(A(G)) = B(G). Let C∗(G) be the full

group C∗-algebra of G with dual space B(G). Take B = A(G), A = B(G) and

A∗ = C∗(G). By [6, Proposition 3.4] A(G) is an ideal in B(G). The induced

map from B(G) into M(A(G)) = B(G) is θ = idB(G). We show that θ Satisfies

Assumption 3.3.

Since G is amenable, A(G) has a bounded approximate identity which may

be chosen to be contained in A(G) ∩ Cc(G) [17]. Let uα
w∗

→ 0 in B(G), then by

the principle of uniform boundedness, (uα)α is norm bounded, say ∥uα∥ ≤ M .

Since G is discrete, {δx : x ∈ G} ⊆ L1(G) ⊆ C∗(G), and for each x, y ∈ G

lim
α
⟨uαδx, δy⟩ = lim

α
δx(y)uα(y) = lim

α
uα(x) = lim

α
⟨uα, δx⟩ = 0

If ϕ =
∑

y∈G αyδy, then for each x ∈ G,

lim
α
⟨uαδx, ϕ⟩ = lim

α

∑
y∈G

αyδx(y)uα(y) = lim
α
uα(x) = 0.

Finally for each T ∈ V N(G),

lim
α

⟨
uα

( ∑
x∈G

βxδx

)
, T

⟩
= 0.

Now let g ∈ A(G) and T ∈ V N(G) and ϵ > 0 be given. Since A(G) ∩ Cc(G)

is norm dense in A(G), we may choose f ∈ A(G) ∩ Cc(G) such that ∥g − f∥ < ϵ

and

|⟨uαg, T ⟩| ≤ |⟨uα(g − f), T ⟩|+ |⟨uαf, T ⟩| ≤Mϵ∥T∥+ ϵ,
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for large α, therefore θ = idB(G) satisfies Assumption 3.3. Now A(G) is amenable

if and only if G is abelian by finite [8]. Hence for a discrete amenable group G,

B(G) is Connes-amenable if and only if G is abelian by finite. This was proved

by V. Runde using a different method in [22].

Let us have a closer look to Theorem 3.3. Assume that B is a Banach algebra

such that its multiplier algebra is already a dual Banach algebra. Take A =M(B)

and let A∗ be the existing predual of M(B). Then ı is the usual inclusion, if ii)

of Theorem 3.3 holds, then for each b ∈ B, µ ∈M(B)∗, there is ω ∈M(B)∗ with

⟨µ, (L,R)b⟩M(B) = ⟨µ,L(b)⟩B = ⟨(L,R), ω⟩M(B)∗ ((L,R) ∈M(B)).

Notice that all that matters is the value of µ restricted to B. So we really want

B · B∗ ⊆ M(B)∗. Although, this condition seems very strong, there exist some

Banach algebras satisfies in such condition.

Example 3.8. Let E be a reflexive Banach space with the approximation

property, then set B = K(E), the compact operators on E, so M(B) = L(E) =

K(E)∗∗. We might then take A = L(E) and A∗ = E⊗̂E∗. Again, we then want

K(E) · (E⊗̂E∗) ⊆ E⊗̂E∗ which is always true. So we recover a result of Runde

[22]: K(E) is amenable if and only if L(E) is Connes-amenable.
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