Year: 2015 | Vol.: 86 | Fasc.: 1-2

Title: A note on lattices of idempotents in algebras

Author(s): Juncheol Han, Tsiu-Kwen Lee, Sangwon Park and Tsai-Lien Wong

Let R be a unital algebra over a field K. For idempotents $e, f \in R$, we define $e \leq f$ if and only if ef = e = fe. Let $e \wedge f$ and $e \vee f$ denote the infimum and supremum of e and f, respectively, if they exist. Let e' := 1 - e for an idempotent $e \in R$. We prove the following theorem: Let $e, f \in R$ be nontrivial idempotents. Suppose that there exists $p(\lambda) \in K[\lambda]$ with zero constant term such that p(ef) = p(fe) and p(1) = 1. Then $e \wedge f = p(ef)$ and $e \vee f = 1 - p(e'f')$.

Address:

Juncheol Han Department of Mathematics Education Pusan National University Pusan South Korea Address:

Tsiu-Kwen Lee Department of Mathematics National Taiwan University Taipei Taiwan

Address:

Sangwon Park Department of Mathematics Dong-A University Pusan, 609-714 South Korea

Address:

Tsai-Lien Wong Department of Applied Mathematics National Sun Yat-sen University Kaohsiung Taiwan