Publ. Math. Debrecen 86/1-2 (2015), 183–186 DOI: 10.5486/PMD.2015.7047

A note on lattices of idempotents in algebras

By JUNCHEOL HAN (Pusan), TSIU-KWEN LEE (Taipei), SANGWON PARK (Pusan) and TSAI-LIEN WONG (Kaohsiung)

Abstract. Let R be a unital algebra over a field K. For idempotents $e, f \in R$, we define $e \leq f$ if and only if ef = e = fe. Let $e \wedge f$ and $e \vee f$ denote the infimum and supremum of e and f, respectively, if they exist. Let e' := 1 - e for an idempotent $e \in R$. We prove the following theorem: Let $e, f \in R$ be nontrivial idempotents. Suppose that there exists $p(\lambda) \in K[\lambda]$ with zero constant term such that p(ef) = p(fe) and p(1) = 1. Then $e \wedge f = p(ef)$ and $e \vee f = 1 - p(e'f')$.

1. Results

Throughout, R is an associative unital algebra over a field K. Let Id(R) denote the set of all idempotents in R. For $e, f \in Id(R)$, we define $e \leq f$ if and only if ef = e = fe. Clearly, $e \leq f$ if and only if $e \in fRf$. Define e < f if $e \leq f$ and $e \neq f$. Let $e \wedge f$ and $e \vee f$ denote the infimum and supremum of e and f, respectively, if they exist. Then $(Id(R), \leq)$ forms a partially ordered set.

Following [1], two idempotents $e, f \in R$ are called generalized commuting if there exists a positive integer n such that $(ef)^n = (fe)^n$ or $(ef)^n e = (fe)^n f$. We denote by $\langle e, f \rangle_s$ the subsemigroup of the multiplicative monoid of R generated by e and f. For an idempotent $e \in R$, we set e' := 1 - e, the complementary idempotent of e. In [1], CĂLUGĂREANU proved the following (see [1, Theorem 7, Proposition 4 and Lemma 2]).

Mathematics Subject Classification: 16U99, 16P10, 16P60.

Key words and phrases: algebra, idempotent, generalized commuting idempotent, infimum, supremum.

Corresponding author: T.-K. Lee. The work of T.-K. Lee was supported by NSC of Taiwan and NCTS/Taipei, and that of T.-L. Wong by NSC 102-2115-M-110-006-MY2 of Taiwan.

184 Juncheol Han, Tsiu-Kwen Lee, Sangwon Park and Tsai-Lien Wong

Theorem 1. Let $e, f \in Id(R)$. Then both $e \wedge f$ and $e \vee f$ exist, and $e \wedge f \in \langle e, f \rangle_s$ if and only if e and f are generalized commuting idempotents. In this case, there exists a positive integer n such that $e \wedge f = (ef)^n$ and $e \vee f = 1 - (e'f')^n$.

In a recent paper [2], HAN and PARK proved that for idempotents $e, f \in R$ and a positive integer n, $(ef)^n = (fe)^n$ if and only if $(e'f')^n = (f'e')^n$. Thus, Theorem 1 is easily proved by the result (see [2, Theorem 2.5]). However, there exist idempotents $e, f \in R$ such that $e \wedge f$ and $e \vee f$ exist but e, f are not generalized commuting idempotents (see the example below). In this situation, of course, $e \wedge f \notin \langle e, f \rangle_s$.

We let $M_n(K)$ stand for the $n \times n$ matrix algebra over the field K and let \mathbb{R} denote the field of real numbers.

Example 2. In $R := M_2(\mathbb{R})$, let $e = \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}$ and $f = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$. Then $e \wedge f = 0$ and $e \vee f = 1$.

Indeed, let $g \in R$ be an idempotent such that $g \leq e$ and $g \leq f$. Then g(e-f) = 0. But $e - f = \begin{pmatrix} 0 & 2 \\ -1 & 0 \end{pmatrix}$. Then g = 0 follows since e - f is a unit in R. This proves that $e \wedge f = 0$. On the other hand, let $h \in R$ be an idempotent such that $e \leq h$ and $f \leq h$. Then (1-h)e = 0 = (1-h)f, implying (1-h)(e-f) = 0. Thus, h = 1. This proves that $e \vee f = 1$. However,

$$(ef)^{n} = 3^{n} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad (fe)^{n} = 3^{n-1} \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$$
$$(ef)^{n} e = 3^{n} \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix} \quad \text{and} \quad (fe)^{n} f = 3^{n} \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$$

for all $n \ge 1$. Thus, e and f are not generalized commuting idempotents.

In this note, we will prove some theorems to compute $e \wedge f$ and $e \vee f$ for idempotents $e, f \in R$ even when e and f are not generalized commuting idempotents. Let $K[\lambda]$ be the polynomial ring over K in the indeterminate λ . The main goal of this note is to prove the following theorem (see Section 2 for its proof).

Theorem 3. Let $e, f \in Id(R)$. Suppose that there exists $p(\lambda) \in K[\lambda]$ with zero constant term such that p(ef) = p(fe) and p(1) = 1. Then the following hold:

- (i) p(ef) and p(e'f') are idempotents.
- (ii) $e \wedge f = p(ef)$ and $e \vee f = 1 p(e'f')$.

A note on lattices of idempotents in algebras

Theorem 4. Let $e, f \in Id(R)$. Suppose that there exists $q(\lambda) \in K[\lambda]$ with zero constant term such that q(ef) = 0 and $q(1) \neq 0$. Then $e \wedge f = 0$ and $e \vee f = 1 - q(1)^{-1}e'f'q(e'f')$.

PROOF. Let $p(\lambda) := q(1)^{-1}\lambda q(\lambda) \in K[\lambda]$. Then p(ef) = 0 and

$$p(fe) = q(1)^{-1} feq(fe) = q(1)^{-1} fq(ef)e = 0.$$

Also, p(1) = 1. In view of Theorem 3, $e \wedge f = p(ef) = 0$ and $e \vee f = 1 - p(e'f')$. \Box

Corollary 5. Let $e, f \in Id(R)$ be such that $(ef)^n = 0$ for some positive integer n. Then $e \wedge f = 0$ and $e \vee f = 1 - (e'f')^{n+1}$.

PROOF. Let $q(\lambda) := \lambda^n$. Thus, q(ef) = 0. In view of Theorem 4, $e \wedge f = 0$ and $e \vee f = 1 - e'f'q(e'f') = 1 - (e'f')^{n+1}$.

2. Proof of Theorem 3

Recall that R is always a unital algebra over a field K. For an idempotent $e \in R$, we let e' := 1 - e. We begin with the following key observation.

Lemma 6. Let $e, f \in R$ be idempotents and $p(\lambda) \in K[\lambda]$ with p(0) = 0. Then p(ef) = p(fe) if and only if p(e'f') = p(f'e').

PROOF. Clearly, it suffices to prove the "only if" part. Suppose that p(ef) = p(fe). Write

$$p(\lambda) = \beta_m \lambda^m + \beta_{m-1} \lambda^{m-1} + \dots + \beta_1 \lambda,$$

where $\beta_1, \ldots, \beta_m \in K$. Note that

$$(1-e')(1-f')e' = (1-e')(-f')e'$$
 and $(1-f')(1-e')f' = (1-f')(-e')f'$.

Thus, for a positive integer $k \ge 1$,

$$[1 - e, (ef)^{k}] = [e', ((1 - e')(1 - f'))^{k}] = -((1 - e')(1 - f'))^{k}e' = (1 - e')(f'e')^{k}$$

and so

$$[1 - e, p(ef)] = \left[1 - e, \sum_{k=1}^{m} \beta_k (ef)^k\right] = \sum_{k=1}^{m} \beta_k [1 - e, (ef)^k]$$
$$= (1 - e') \sum_{k=1}^{m} \beta_k (f'e')^k = (1 - e')p(f'e').$$
(1)

185

J. Han et al. : A note on lattices of idempotents...

On the other hand,

$$[1 - e, p(fe)] = e'p(fe) = e'p((1 - f')(1 - e')) = -p(e'f')(1 - e').$$
(2)
Since $p(ef) = p(fe)$, it follows from equations (1) and (2) that

$$(1 - e')p(f'e') = -p(e'f')(1 - e').$$

Thus, (1 - e')p(f'e') = 0 = -p(e'f')(1 - e') and hence p(f'e') = e'p(f'e') = p(e'f')e' = p(e'f'),

as asserted.

PROOF OF THEOREM 3. Set h := p(ef). Since p(ef) = p(fe), we see that he = h = eh and hf = h = fh. Thus, $(ef)^k h = h = (fe)^k h$ for any positive integer k. Write

$$p(\lambda) = \beta_m \lambda^m + \beta_{m-1} \lambda^{m-1} + \dots + \beta_1 \lambda,$$

where $\beta_1, \ldots, \beta_m \in K$. Then, by p(1) = 1, $h^2 = hn(ef) =$

$$p^{2} = hp(ef) = hp(1) = h.$$

This proves that h is an idempotent. In particular, $h \leq e$ and $h \leq f$. We claim that $h = e \wedge f$. Suppose that $g \leq e$ and $g \leq f$. Then

$$gh = gp(ef) = p(gef) = p(g) = gp(1) = g.$$

Similarly, g = hg. This implies that $g \le h$. This proves that $h = e \land f$.

By Lemma 6, we see that p(e'f') = p(f'e'). Since p(1) = 1, it follows from (i) that $e' \wedge f' = p(e'f')$. This implies that $e \vee f = 1 - e' \wedge f' = 1 - p(e'f')$. \Box

References

- [1] G. CĂLUGĂREANU, Rings with lattices of idempotents, Comm. Algebra **38** (2010), 1050–1056.
- [2] J. HAN and S. PARK, Generalizing commuting idempotents in rings, preprint.

JUNCHEOL HAN	TSIU-KWEN LEE
DEPARTMENT OF MATHEMATICS EDUCATION	DEPARTMENT OF MATHEMATICS
PUSAN NATIONAL UNIVERSITY	NATIONAL TAIWAN UNIVERSITY
PUSAN	TAIPEI
SOUTH KOREA	TAIWAN
<i>E-mail:</i> jchan@pusan.ac.kr	<i>E-mail:</i> tklee@math.ntu.edu.tw
SANGWON PARK	TSAI-LIEN WONG
DEPARTMENT OF MATHEMATICS	DEPARTMENT OF APPLIED MATHEMATICS
DONG-A UNIVERSITY	NATIONAL SUN YAT-SEN UNIVERSITY
PUSAN, 609-714	KAOHSIUNG
SOUTH KOREA	TAIWAN
<i>E-mail:</i> swpark@donga.ac.kr	<i>E-mail:</i> tlwong@math.nsysu.edu.tw

(Received April 22, 2014; revised September 15, 2014)

186