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On generalised pseudo symmetric manifolds

By M. C. CHAKI (Calcutta)

Dedicated to the memory of Professor Béla Barna

1. Introduction

The notion of a pseudo symmetric manifold was introduced by the
author in an earlier paper [1]. A non-flat Riemannian manifold (M™,g)
(n > 2) was called pseudo symmetric if its curvature tensor R satisfies the
condition

(VxR)(Y,Z, W) =2A(X)R(Y,Z, W)+ AY)R(X,Z, W)
(1) +AZ)R(YY, X, W)+ AW)R(Y,Z,X)+ g(R(Y,Z,W), X)P;
X,Y,Z,P € x(M")

where A is a non-zero 1-form, V denotes the operator of covariant differ-
entiation with respect to the metric tensor g and P is a vector field given
by

2) g(X,P) = A(X) VX.

The 1-form A was called the associated 1-form of the manifold and such an
n-dimensional manifold was denoted by (PS),,. The vector field P defined
by (2) is called the basic vector field corresponding to the associated 1-form
A.

The object of this paper is to study a type of non-flat Riemannian
manifold (M", g)(n > 2) whose curvature tensor R satisfies the condition

(VxR)(Y, Z,W) = 2A(X)R(Y, Z,W) + BY)R(X, Z, W)
+C(Z)R(Y, X, W) + D(W)R(Y, Z,X) + g(R(Y, Z,W), X)P

where A, B,C, D are non-zero 1-forms and V and P have the meaning
already mentioned.



306 M. C. Chaki

Such a manifold shall be called a generalised pseudo symmetric mani-
fold, A, B, C, D shall be called its associated 1-forms and an n-dimensional
manifold of this kind shall be denoted by G(PS),. Let

9(X,v) =D(X) VX ex(M)

Then P, A\, u,v € x(M) shall be called the basic vector fields of G(PS5),
corresponding to the associated 1-forms A, B,C, D, respectively. If, in
particular, B = C = D = A, then the manifold defined by (3) reduces to a
pseudo symmetric manifold defined by (1). This justifies the name “Gener-
alized pseudo symmetric manifold” and the use of the symbol G(PS),. It
may be mentioned in this connection that following my paper [1], TAMASSY
and BINH [2] studied a type of Riemannian manifold (M, g) whose curva-
ture tensor R satisfies the condition

(VxR)Y,Z, W) =a(X)R(Y,Z, W)+ B(Y)R(X,Z, W)
+Y(2)RY, X, W)+ d(W)R(Y,Z,X)+ g(R(Y,Z, W), X)F

where a, 3,7,6 are 1-forms and F' any vector field. They called such a
manifold weakly symmetric. (5) is a little weaker assumption than (3).
(5) gives (3) if a and F' are related by g(X,F) = a VX. Though the
definition of a G(PS),, is similar to that of a weakly symmetric manifold
mentioned above, our study of a G(P.S),, is different from that of Taméssy
and Binh.

In this paper the question whether a G(PS),, can be of constant cur-
vature has been answered. Considering an Einstein G(PS),, it is shown
that such a manifold is necessarily of zero scalar curvature under a certain
condition. Further, an interesting result of paper [1] for a conformally flat
(PS),, has been generalised for a conformally flat G(PS),,. Finally, it is
shown that if a G(PS),, admits a parallel vector field which is not orthog-
onal to the basic vector field P, then the manifold cannot be conformally
flat.

1. Preliminaries

Let L be the symmetric endomorphism of the tangent space at each
point of a G(PS),, corresponding to the Ricci tensor S of type (0,2). Then

(1.1) g(LX,Y)=S5(X,Y) VX,Y € x(M).
Further, let

(1.2)
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Then the 1-forms A, B, C, D shall be called the auxiliary associated 1-
forms of a G(PS),, corresponding to the forms A, B, C, D, respectively.
Establishing the inner product of both sides of (3) with a vector U €
X(M™) and then contracting over Z and W, we get

(VxS)(Y,U) =2A(X)S(Y,U)+ B(Y)S(X,U)
(13) + C(R(X,Y,U))+ D(R(X,U,Y)) + AU)S(X,Y).
Next, contracting (1.3) over Y and U, we obtain
(1.4) dr(X) =2A(X)r+S(X,P)+ S(X,\) + S(X,u) + S(X,v),

where r is the scalar curvature. Using the notations P+ A+ pu+v = p
and A+ B+ C + D = E, we obtain F(X) = E(LX) = S(X, p) and then
(1.4) takes the form

(1.4") dr(X) = 2A(X)r + S(X, p) = 2A(X)r + E(X).
From (1.4") we get

ddr(X,Y) = 2rdA(X,Y) + 2E(X)A(Y) - 2E(Y)A(X) + dE(X,Y).
Since ddr(X) = 0, we obtain

(1.5) rdA(X,Y) + [E(X)A(Y) - E(Y)A(X)] + %dE(X, Y) = 0.

These formulas will be used in the sequel.

2. G(PS), of non-zero constant scalar curvature

We suppose that in a G(PS),, the scalar curvature r is a constant
different from zero. Then from (1.4") we get

2A(X)r+ E(X)=0 or E(X)=—2A(X)r.
From this it follows that
(2.1) S(X,p) =—2rA(X).

If, in particular, B = C = D = A, then S(X,p) = 4A(X) and (2.1) takes
the form 4A(X) = —2rA(X), from which we get

Theorem 1. In a G(PS),, of non-zero constant scalar curvature, in
which B = C = D = A we obtain.
r

AX) = - (5) AX).

This result has already been obtained in paper [1] of the author.
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3. Einstein G(PS), (n > 2)

In this section we suppose that a G(PS), is an Einstein manifold.
Then

(3.1) S(X,Y) = %g(X, Y).

It is known [3] that in an Einstein manifold (M",g) (n > 2)r is constant.
Hence in this case dr(X) = 0. Therefore from (1.4) it follows that

2A(X)r+ S(X,P)+ S(X,\) + S(X,p) + S(X,v)=0.

Or, in virtue of (3.1) we have
2A(X)r + %[A(X) + B(X) +C(X) + D(X)] =0,

or
(3.2) [(2n+1)A(X) 4+ B(X) + C(X) + D(X)|r = 0.
From (3.2) it follows that if
(3.3) 2n+1)AX)+B(X)+C(X)+ D(X)#0, thenr=0.
This leads to the following theorem:

Theorem 2. An Einstein G(PS),, satisfying the condition (3.3) is of
zero scalar curvature.

If, in particular, B = C = D = A, then the G(PS),, reduces to a
(PS),, and the expression (2n+1)A(X)+ B(X)+C(X)+ D(X) takes the
form 2(n + 2)A(X) which is not zero, because A(X) # 0. Thus it follows
that an Einstein (PS),, with n > 2 is of zero scalar curvature — a result
already proved by the author in his paper [1]. It is known that a manifold
of constant curvature is an Einstein manifold, but the converse is not, in
general, true. The question therefore arises whether a G(PS),, can be of
constant curvature.

Suppose that a G(PS),, is of constant curvature. Then we can write

(3'4) R(X7Y7Z):H[Q(KZ)X_.Q(X?Z)Y]

where k is constant. Being of constant curvature, the G(PS),, under con-
sideration is an Einstein manifold. Hence if (3.3) holds, then according to
Theorem 2, r = 0. Therefore k = 0, because from (3.4) we easily get
r = kn(n — 1) by contraction.

Consequently, from (3.4) it follows that R(X,Y,Z) = 0, that is, the
manifold is flat. But this is not admissible by the definition of a G(PS),.
Therefore in answer to the question raised above we can state the following
theorem:
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Theorem 3. A G(PS), satisfying the condition (3.3) cannot be of
constant curvature.

Since a 3-dimensional Einstein manifold is of constant curvature ([3]
p. 293), we can state the following corollary of Theorem 3.

Corollary. An FEinstein G(PS),, satisfying the condition TA(X) +
B(X)+ C(X) + D(X) # 0 does not exist.

4. Conformally flat G(PS), (n > 3)

It has been proved by the author elsewhere [1] that in a conformally
flat (PS),, the associated 1-form A is proportional to the auxiliary as-
sociated 1-form A. It is therefore narural to enquire about the nature of
generalisation of this result for a conformally flat G(PS),,. An answer to
this enquiry is given in this section.

It is known ([4] p. 91) that in a conformally flat (M™, g)(n > 3)

(4.1) (VxS)(Y,2) = (V25 (Y, X)

_ ﬁ[mx)g(x Z) — dr(2)g(X,Y)].

In virtue of (1.4) the equation (4.1) can be written as follows:

2(n = D(VxS) (Y, Z) = (V29)(Y, X) = 2r[A(X)g(Y, Z) — A(Z)g(X,Y)]
(4.2) +[A(X)g(Y,Z) = A(Z)g(X,Y)| + [B(X)g(Y, Z) — B(Z)g(X,Y)]

+[C(X)g(Y, Z) — C(Z)g(X,Y)] + [D(X)g(Y. Z) — D(Z)g(X,Y)]
Again in virtue of (1.3)

(VxS)(Y, Z) — (V29)(Y,X) = A(X)S(Y, Z) — A(Z)S(Y, X)

+C(R(X,Z,Y)) + 2D(R(X, Z,Y)).
Therefore
2(n = D[(Vx )Y, Z) = (Vz5)(Y, X)]
(4.3) = 2(n — D)A(X)S(Y, Z) — 2(n — ) A(Z)S(Y, X)
+2(n—1)C(R(X,Z,Y) +4(n — 1)D(R(X, Z,Y)).
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From (4.2) and (4.3) we get

2(n — 1)A(X)S(Y, Z) — 2(n — 1)A(Z)S(Y, X)
)O(R(X, Z,Y)) + 4(n — 1)D(R(X, Z,Y))
=2r[A(X)g(Y,Z2) — A(2)g9(X,Y)]
A VA

Again in a conformally flat (M",g) (n > 2)

R(X,Z, Y, W) = ﬁ[S(Y, Z)g(X, W) —=S(X,Y)g(Z, W)

(4.5) + S(X, W)g(Y,Z) = S(Z,W)g(X,Y)]

+ (n — 1)(n — 2) [g(X, Y)g(Z, W) - g(Y, Z)g(X, W)]
where
(4.6) R(X,Z,Y,W) = g[R(X,Z,Y), W]

In virtue of (4.5) we get

2n — D[C(R(X, Z,Y)) + 2D(R(X, Z,Y))]
_ 2n - 21) IS(Y, ZY{C(X) + 2D(X)} — S(X,Y){C(Z) + 2D(Z)}

SN g(Y, 2){C(X) + 2D(X)} — (X, Y){C(Z) + 2D(2)}]

2r

+

519(X, Y){C(2) +2D(2)} — g(Y, 2)1C(X) +2D(X)}].
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In virtue of (4.7) we can express (4.4) as follows:

2(n —1)S(Y, Z2)[(n — 2)A(X) + C(X)
—2(n—1)S(X,Y)[(n—2)A(Z)+ C(Z) +2D(Z)]
+9(Y,Z)[2(n - 1)C(X) +
(4.8) — (n—=2){A(X) + B(X) +
—g(X,Y)[2(n — 1)C(Z) + 4(n —
— (n—-2){A(Z)+ B(Z) +
=2r[g(Y, Z){(n — 2)A(X)
(

(4.9) —(n— 2)[A(Z){ —2n+1)A

This is the required generalization.
We can therefore state the following theorem:

Theorem 4. In a conformally flat G(PS), the associated and the
auxiliary associated 1-forms satisfy the relation (4.9).

If, in particular, B = C = D = A, then the G(PS), reduces to a
(PS),, and the relation (4.9) takes the form

AX)A(Z) — A(Z2)A(X) = 0,

a result already proved by the author elsewhere [1].

5. G(PS), admitting a parallel vector field

In this section we suppose that a G(PS), admits a parallel vector
field V' ([3] p. 124, [5] p. 322)).
Then

(5.1) (VxV)=0 VX € x(G(PS),).
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Applying Ricci identity to (5.1) we get

(5.2) R(X,Y,V)=0.
From (5.2) it follows that

(5.3) R(X,Y,Z,V) = 0.
In virtue of (5.3) we get

(5.4) S(X,V)=0.

Now, by (5.1) and (5.4)

(5.5) (VxS (Y, V)=VxSY,V)-S(VxY, V)= S, VxV)=0

Again from (1.3) we get by (5.3) and (5.4)
(VxS)(Y,V)=2A4(X)S(Y,V)+ B(Y)S(X,V)

56 RY, X, 1, V)+R(Y, v, X,Y)+ A(V)S(Y, X)

From (5.5) and (5.6) we obtain

(5.7) A(V)S(Y,X) =0,

If A(V) # 0, ie., if g(P,V) # 0, then from (5.7) we get S(Y,X) = 0.
Hence

A(V)S(Y, X).

C(X,Y,Z) = R(X,Y, Z),

where C is Weyl’s conformal curvature tensor. Therefore C (X,Y,Z) #0,
for otherwise R(X,Y,Z) will be zero implying that the manifold is flat
which is inadmissible. Hence we can state the following theorem.

Theorem 5. If a G(PS), admits a parallel vector field which is not
orthogonal to the basis vector field P, then the manifold cannot be con-
formally flat.
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