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Geometry of big-tangent manifolds

By IZU VAISMAN (Haifa)

Abstract. Motivated by generalized geometry, we discuss differential geometric
structures on the total space ¥M of the bundle TM & T* M, where M is a differentiable
manifold; M is called a big-tangent manifold. We define various lifting processes from
M to TM. The vertical leaves of the bundle are para-Hermitian vector spaces and a
big-tangent manifold is endowed with canonical presymplectic, Poisson and 2-nilpotent
structures. The frame bundle structure of a big-tangent manifold is a G-structure defined
by a suitable triple of structures as mentioned above, and we establish the corresponding
integrability conditions. We introduce horizontal bundles and associated linear connec-
tions with the Bott property. Then, we discuss metrics on the vertical bundle that are
compatible with the para-Hermitian metric of the leaves. Together with a horizontal
bundle, such metrics may be seen as a generalization of the fields studied by double field
theory of string physics. These generalized fields are defined over a base manifold and
we define a corresponding canonical connection and an action functional.

1. Introduction

The geometry of the total space of a tangent bundle is of considerable interest
in differential geometry and it was the subject of many publications. In the more
recent subject of generalized geometry [8], [9], the tangent bundle TM of the
m~dimensional, differentiable manifold M is replaced by the big tangent bundle
TM =TM & T*M. Accordingly, we investigate the geometry of the total space
of a big tangent bundle, called a big-tangent manifold, which we will denote by
TM. The name big tangent bundle will refer to either the bundle structure or
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its total space as indicated by the context. The space T'M @ T* M was used as a
framework of Hamiltonian dynamics much earlier [16].

We recall that the bundle TM has a non degenerate, neutral metric and a
non degenerate 2-form defined by

9(X.Y) = H(0(¥) +u(X), w(X.D)= () —p(X). (1)
and the Courant bracket
2,9) = (X Y], Lxp — Lya+ d(a(Y) — (X)) (12)

where calligraphic characters denote pairs X = (X,«),Y = (Y,u) with X, Y
either vectors or vector fields and «, p either covectors or 1-forms. The structure
group of (TM, g) is O(m, m) and generalized geometric structures are defined as
reductions of this structure group to various subgroups.

In the paper, we use the typical notation of differential geometry [11], and
the reader may refer to [14] for the encountered foliation theory notions. For the
evaluation of exterior and symmetric products we use Cartan’s convention

aABX,Y) = a(X)B(Y) - a(Y)B(X),
a®pBX,Y) =a(X)B(Y) +a(Y)B(X),

etc., without a factor 1/2 in the right hand side. Everything will be C*°-smooth
(possibly, except along the zero section of a vector bundle).

In Section 2 we show that the leaves of the vertical foliation of a big-tangent
manifold are para-Hermitian vector spaces and that the manifold has canonical
presymplectic, Poisson, 2-nilpotent and generalized 2-nilpotent structures. Then,
we define the vertical and complete lifts of vector fields from M to M, which
are similar to those from M to T'M, and new lifts from T'M and T*M to TM.

In Section 3 we give the interpretation of the structure of M as a G-
structure, equivalent to a suitable triple (P, @, S), where P is a regular bivector
field, @ is a 2-contravariant symmetric tensor field of the same rank as P and S is
a (1,1)-tensor field with S? = 0. This leads to almost big-tangent manifolds and
their integrable case the big-tangent manifolds. We establish the corresponding
integrability conditions, which consist of the annulation of the Schouten—Nijenhuis
bracket [P, P], of the Nijenhuis tensor Ng and of the Lie derivatives of S with
respect to P-Hamiltonian vector fields.

In Section 4 we discuss horizontal bundles. We lift horizontal bundles of the
usual tangent manifold to the big tangent manifold, particularly, those defined
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by regular Lagrangians. Then, we consider the linear connections that have the
Bott property known from foliation theory and we show the main properties of
the torsion and curvature of these connections.

In Section 5 we discuss metrics and vertical metrics on a big-tangent manifold.
We review the canonical connection of foliation theory for the vertical foliation
and its curvature properties. The study of vertical metrics that are compatible
with the para-Hermitian metric of the leaves may be seen as a generalization of
double field theory [10]. We transfer to this case the para-Hermitian construction
of an invariant action of the field given in [26].

2. The big tangent manifold

The big tangent manifold TM has dimension 3m, m = dim M. The points
of TM are triples (x € M, y € T, M, z € T*M) and one has natural local coor-
dinates (2%, 9", z;), where i = 1,...,m, (2') are local coordinates on M, (y*) are
vector coordinates and (z;) are covector coordinates. The corresponding coordi-
nate transformations are:

i ais ,oxt . 9ad
T =z(a7), §'= @yj, 2= 5% (2.1)
Notice the existence of the global function ev(z,y,2) = z(y) = zy’, ev €

C>(ZM), called the evaluation function (we use the Einstein summation con-
vention overall).
On TM, a tangent vector X and a 1-form a have the coordinate expressions

.0 .0 0
=& — b i— 2.2
x g axz + 77 8y2 + CZ azz ’ ( )
a = a;dz’ + Bidy’ + 'yidzi, (2.3)

and a coordinate transformation (2.1) implies the following change of vector and
covector coordinates:

o ort . . 3gi ) o7t . ~ 05 owi
f=o=8 b= ! = J _
o Ox? ' % 4 0z 5 oI i 97t ;
Q; = ai’l Oé] + ai.z BJ + &il’}/ 9 B’L - 81’1 /8_7’ Y= 81’-77 . (24)

The manifold ¥M has the projections

p: M —> M, p:IM—TM, py:TM —>T*M
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on M and on the total spaces of the tangent and cotangent bundle, respectively.
For any fiber bundle, the tangent bundle of the fibers is called vertical and,
usually, denoted by V. On M, the vertical bundle has the decomposition

VIM =V, & Vs, (2.5)
where
Vi =p; ' (VTM), Vy=p; (VT*M)

and have the local bases (9/9y*), (0/0z;), respectively. We also have the isomor-
phisms
Vimp (TM), Vamp ((I"M), V=p '(TM). (2.6)

The subbundles Vi, Vs, are the foliations of €M by the fibers of ps, p1,
respectively, and ¥M has a multi-foliate structure [12], [17] that consists of the
diagram of foliations

S V1N
{0} =V NV, Vi®Vo =V CTIM, (27)
e

2
where the arrows are inclusions; it will be called the wvertical multi-foliation.

We denote by x(TM), xo(ZM), xa(TM) (a = 1,2) the spaces of all vector
fields and of vector fields in V, Vi, Vs, respectively. The fiber-wise infinitesimal
homotheties, called FEuler vector fields are given by

, 0
&1 :yzayi EXl(‘IM), Egzzia EXQ(‘IM), E=8&+& GXUCZM). (28)
On TM \ {0}, where {0} denotes the zero section, £ # 0 and £ is a transversal
vector field of the codimension-one foliation defined by ev = const. .

Proposition 2.1. The vertical leaves of TM have a natural structure of
para-Hermitian vector spaces.

PROOF. We refer to [7] for para-Hermitian geometry. The last isomorphism
(2.6) transfers the metric g and 2-form w given by (1.1) to a metric and a 2-form
on V, also denoted by ¢, w, given by

1 ’. . 1 > .
9EEX) = J(Gn' ¢, WX X) = S~ ) (XX e V),

where the coordinates are as in (2.2) (the coordinate characterization of V is
¢ = 0). The musical isomorphism b, yields isomorphisms Vo ~ Vi, Vi ~ Vj.
On the other hand, (2.5) defines a product structure F), on the leaves of V, with
V1, Vs as t1-eigenbundles and it is easy to see that (g, F)) is a para-Hermitian
structure on the leaves with w as fundamental form. Since the leaves of V are
vector spaces, we are done. |
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Proposition 2.2. The big tangent manifold ¥M is endowed with canonical
tensor fields w, P, @}, S, where w is a presymplectic form of rank 2m, P is a
Poisson bivector field, @) is a symmetric 2-contravariant tensor field and S is a 2-
nilpotent structure. Furthermore, the triple (S, P, Q) has the following properties:

1) rank S =m, ker S = imfp = imig,
2) fpobg =tqobp, figobpoS=-5,

where flats are the inverses of the isomorphisms onto the image of sharps.

PRrROOF. We take w to be the pullback of the canonical symplectic form of
T*M by pa, i.e., locally,

w=d\=—dz' Ndz;, )= zdz’

w is closed and has rank 2m.
The inverse of 2w along the para-Hermitian leaves of V yields the bivector

field
_ 0,0

which is a regular Poisson structure of rank 2m. The symplectic leaves of P are

P

(2.9)

the leaves of the vertical foliation V.
The inverse of 2g along the leaves of V yields the twice contravariant tensor
field of rank 2m

0 0
= - . 2.10
=57 ox (2.10)
Finally, we define
S=tpoby =dz'® a..
oy’
On the vector (2.2) we get
. 0
SX=¢— 2.11
x=¢o (211)
hence, rank S = m. We also get
S2=0, Sotp=0, b,0S=0. (2.12)

Recall that S is a 2-nilpotent structure if S? = 0, rank S = const. and the
integrability condition

Ns(X,X') = [S%, SX] — S([SX,X] + [X,SX']) = 0 (2.13)

holds, which happens in our case.
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Properties 1) and 2) follow from the local expressions of the tensor fields. In
properties 2) we refer to the isomorphisms

fp : T"TM/kertp ~imtp, f#o: T TM/kerto ~ imio,
the flats are the inverses of these isomorphisms and the composition makes sense
because of the equality of the kernels. O

Remark 2.1. Properties 1) are equivalent with
1’) rank P = rank Q = 2m, kerfp = ker o = im ‘S,

where the index t denotes transposition. Notice the following relations
Lg)\ = /\, ng =w, ﬁp/\ = O, ﬁQd(ev) = 8, LgP = —QP, LgQ = —2Q

and the 2-contravariant tensor field
1 0 0
U=- P)=—® —. 2.14
5@+ P) oy 2 o (2.14)

Proposition 2.3. A big tangent manifold ¥M is endowed with two canon-

ical, generalized, 2-nilpotent structures.

PrOOF. We refer to [25] for the notion of a generalized 2-nilpotent struc-
ture. The structures required by the proposition are given by the endomorphisms
Sp,Se : TEM — TTM with the matrix representation

_ (S tr (50
SP - <O _tsr) ) Sw - <bw _tS> .

Properties (2.12) show that these are generalized almost 2-nilpotent structures.
The structures are integrable since the Courant—Nijenhuis tensors of Sp, S,
which are defined by a formula similar to (2.13) where the arguments are cross
sections of TTM, the brackets are Courant brackets and S is replaced by Sp, S,
vanish (it suffices to check on natural bases). O

Now, we will discuss lifting procedures that extend those used for usual
tangent bundles. A cross section

(X = {i%,a = a;dz’) e TTM
has a generalized moment defined by
l(X,oz) (ZL’, Y, Z) = O[(y) + Z(X) = aiyi + Zigia (215)

which together with the functions p*f (f€C>°(M)) functionally generate C>°(TM).
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Proposition 2.4. For any point x € M, there exists a canonical isomor-
phism v : ToM = V(g y 2y C Tigy 2 (EM).

PROOF. The vector v(X, @), also denoted (X7, o?), will be called the wvertical
lift, and it is defined by the directional derivatives

(X%a") (@ f) =0, (X", a")(lv,p)) = oY) + B(X).

In local coordinates we get

.0 0
Xv’av _ ¢t o —.
( ) 5 5‘y’ ! 82’1
Obviously, the vertical lift is an isomorphism onto the vertical space. O

Remark 2.2. 1. We will denote (X?,0”) = X, (0%, a”) = a”. 2. The vertical
lift satisfies the property

(X", a"), (Y",8")] = 0.

3. Using the vertical lift we get SX = (p.X)”. 4. The vertical lift leads to
push-forward homomorphisms

ql : T(tl),y,z

M T M, " TY,  TM = TEM,
where
a(d'a) =a(a’), ¢"a(X)=a(X"),

X eT,M,a€TfM. For a given by (2.3), we have

q/la = /Bidxi7

/ 7
a= -,
q "Y 8x"

and the following relations hold
fea=(d'a)’ + (¢"a)",(¢"a)" = Ula),

where U is (2.14) seen as the homomorphism a — i(a)U (contraction on the first
index of U). 5. The vertical lift extends to tensors as in the case of the usual
tangent bundle, but, here, it always leads to completely contravariant tensors.

Proposition 2.5. For any manifold M, there exists a canonical injection
¢:x(M) — x(TM), which is compatible with the flows.
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PROOF. As in the case of TM, we define the required injection ¢(X) = X¢,
called complete lift, by the directional derivatives

Xe(p*f) =p"(Xf), XUag) =laxy), X(y)=1Ilxy (2.16)

where f € C°(M) and X,Y € x(M). By means of local coordinates, if X =
€4(0/0x"), then, ‘ ‘

0 ;08 0 0¢? 0
Oz’ ty dxi dyi % i 9z
This formula shows that c is an injection and that X¢ is projectable by the three
projections p, p1, pa.

A diffeomorphism ® of M lifts to TM acting by ®, ony and by ®~* on z, and
a left action of a group G on M lifts to a left action on ¥M. Calculations similar to
those for the tangent bundle show that the flow exp(tX) lifts to the flow exp(tX°¢),
where X € is given by (2.17), which is the meaning of flow compatibility. d

Xe=¢ (2.17)

Proposition 2.6. The complete lift has the following properties:

1
X% a")=-(a(X))?, [X9 Y] =[X,Y])° XY =[X,Y]°
Q(X® %) = o (a(X))", [X° Y] = [X,Y]°,  [X5Y9] = [X, Y], (2.18)
(fX)" = f"X° + e XV — Ix(df)".
PROOF. Use the formulas (2.16) and (2.17). O

Remark 2.3. The last relation (2.18) tells us that the complete lift is not
C° (M )-linear, therefore, it does not extend well to higher order contravariant
tensor fields. On the other hand, if needed, we may define complete lifts of covari-
ant tensor fields as pullbacks of the complete lifts to T'M by the projection p;.

The defining formulas (2.16) of the complete lift suggest natural lifts with
respect to the projections py, ps. Let

; 0 , 0
x=¢ , ¢ —
(@) 55 +'(zy) By
be a vector field on the total space of the bundle TM that is projectable with
respect to the vertical foliation. The space of functions C*°(TM) may be seen as

locally, functionally spanned by functions of the type pi¢, Iy where p € C*°(T'M),
Y = \¥(0/0y*) is a vertical vector field on TM and ly = z, \F.

Definition 2.1. The extended lift X¢ of X to TM is the vector field defined
by the directional derivatives

Xe(pip) =pi(Xep), X(y)=lxy (p€C(TM)). (2.19)
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Conditions (2.19) are correct since X' projectable implies that the bracket
[X, Y] is vertical. From (2.19) we get the local expression

e _ ¢i 9 ; 0 . _877ji
Xe=¢ p +7 oy Zj By 97 (2.20)
Similarly, if
; 0 0
U=¢'(z) ox' + Gz, 2) 0z

is a vertically projectable vector field on the manifold 7* M and if we use functions
lz = y'0; where Z = 0,(0/0z;), we define

Definition 2.2. The extended lift U® of U to TM is the vector field defined
by the directional derivatives

U(psp) = psUp), U(lz) =luz (p € CT(T™M)).

The extended lift to TM is given by

) a¢; o

S 9
oxt 7 0z Oyt

Ue=¢ 5

+Gi (2.21)
Remark 2.4. The extended lift of the complete lift of a vector field of M to
TM is the complete lift to TM.

Remark 2.5. The extended lift may be extended to a lift of a projectable
cross section of the bundle p;* (T'M), respectively p; *(T*M), to a vector field on
TM. The vertical bundle of the pullback is the pullback of the vertical bundle of
TM,T*M, respectively, the Lie brackets are calculated as if the coordinates z;,
respectively 3, were parameters, and a cross section of the pullback is projectable
if the Lie brackets with vertical cross sections are again vertical. The local ex-
pressions (2.20), (2.21) remain valid, but, in (2.20), & = &¥(z, 2),n" = n'(x,y, 2)
and, in (2.21), & = €&'(z,y), G = Gi(@, Y, 2).

3. The G-structure theory framework

G-structures are reductions of the structure group of the tangent bundle of a
manifold to a subgroup G C Gi(n,R). G-structure theory is a general framework
to study geometry on manifolds (e.g., [2] for the general theory and [4] for (almost)
tangent structures).
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The coordinate transformations (2.1) may be interpreted as telling us that
TM has an integrable G-structure where G is the following linear subgroup

C

G = Bt(3m,R) = , AeGl(m,R).

S O o
S W
o

tAfl

Accordingly, a 3m-dimensional manifold N with a Bt(3m, R)-structure is to be
seen as an almost big-tangent manifold. A characterization of such structures is
given in the following proposition.

Proposition 3.1. Let N be a 3m-dimensional differentiable manifold. An
almost big-tangent structure on N is equivalent with a triple of tensor fields
(S, P,Q), where S is of type (1,1), P and Q are of type (2,0), P is skew sym-
metric and Q) is symmetric, and these tensor fields satisfy the properties 1), 2) of
Proposition 2.2.

PROOF. Seen as a G-structure, the almost big-tangent structure is a bundle
of frames (seen as one-line matrices of vectors) with frame changes in Bt(3m, R)
and such a frame is of the form (a;, b;,c') (i = 1,...,m). If we define

Sa; =b;, Sb; =0, SCiZO, P:bi/\ci, Q:biQCi,

we get global tensor fields that have the required properties.

Conversely, if we have (S, P,Q), we may look at tangent frames (a, b;,c)
such that b; € imS and Sa; = b;, then, define ¢ as follows. Take the non
degenerate metric g defined on the subbundle V =imfgg C T'N by

hD, D) = 0oV, V").

The metric h is para-Hermitian on V with the paracomplex structure tensor ¢ =
o obp and V is the +1-eigenbundle of ¢. Accordingly, h(b;,b;) = 0, and there
exist vectors & such that

h(E, @) =0, hb;,&)=4d. (3.1)

Finally, define ¢* = (1/2)(¢" — ¢¢'). These vectors still satisfy (3.1) and yield a
basis of the —1-eigenbundle of ¢, while b; is a basis of the +1-eigenbundle. Now,
we see that, if b; change by A € GI(m,R), ¢ change by !A~! and the whole basis
changes by an element of Bt(3m, R). O
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Definition 3.1. An almost big-tangent structure (S, P, Q) is quasi-integrable
and called a quasi-big-tangent structure if there exists a canonical atlas of local
coordinates (z°,v¢, 2;) (i = 1,...,m) such that the coordinate expressions of the
tensors S and P are (2.11) and (2.9), respectively, and the structure is called
integrable or big-tangent if it is quasi-integrable and @) has the expression (2.10).

Proposition 3.2. The Jacobian matrix of a coordinate transformation be-
tween maps of the canonical atlas of a quasi-big-tangent structure (S, P, Q) is of

the form ‘
Oxd 9% 9gi

07’
0 % 0 |
, 07 0w
82’]‘ 3571

and () is of the form

o 9 9 9
®—— +

Q = Qij ayz 8y_] 6yl © 9z, (Qij = Qﬂ)

If the structure is integrable, one also has 0y;/0z; = 0.

PRrROOF. Let (z¢, 4%, 2;), (2%, 9%, Z;) be two maps of the canonical atlas. Since
im S = span{0/0y’} = span{d/07'}, we get 0%'/0y) = 0%z;/0y’ = 0. Further-
more, from S(9/0x%) = 9/dyt, S(0/0%') = 0/9y*,5(0/92;) = S(0/0%;) = 0, we
get 0F'/0z; = 0 and 9y' /0y’ = 0%'/Ox7. Then,

0 0 0 0

8y1 8Zi 6:&1 821
implies 0%;/0z; = 027 /07" and the Jacobian matrix has the required form. Fur-
thermore, if we take a general, local expression of ) and ask properties 1), 2) of
Proposition 2.2 to hold, we get the required expression of (). The last assertion

of the proposition holds because @ has the canonical expression in both maps iff
9y /0z; = 0. O

We recall that, separately, P is integrable if the Schouten—Nijenhuis bracket
is [P, P] = 0, which is equivalent with the fact that P defines a Poisson bracket.
If this happens, im#p is an integrable, generalized distribution with symplectic
leaves. The converse is also true if the leaf-wise Hamiltonian fields of differentiable
functions are differentiable on the manifold. In particular, if rank P = const., P
is integrable iff im P is a foliation and P has the expression (2.9) [21].
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On the other hand, the almost 2-nilpotent structure S, S? = 0, rank S =
const. is said to be integrable if the Nijenhuis tensor is Ng = 0. This situation is
characterized by

Proposition 3.3. A 2-nilpotent structure S of rank p on a manifold N2ItP
is integrable iff E = im S is a foliation, and there are local coordinates (t", z%, y*),
(h=1,...,p,u=1,...,q) and independent, E-projectable, local vector fields Ty,

such that 5 9 5
=—, S—=0, STp=0. 3.2
Azt gyv’ T Oy ’ 4 (32)
PROOF. Formula (3.2) shows that F is a foliation. Then, E-projectability of
Ty, means that E is preserved by the infinitesimal transformations 7T}, and we get
Ng = 0. Conversely, Ng = 0 implies the integrability of E. Put E' = ker S. Since
imS C E' and Ng(U, Z) = —S[SU, Z] whenever Z € E’, the annulation of Ng
gives [SU, Z] € TE’. Hence, if S is integrable, E’ is an E-projectable distribution
and, following [22], T'N has local bases of the following form

0 o ., 0 o 0
gs h=gmtA Xu =g g

hgu’
where (t",z%, s%) are local coordinates on M, (9/0s") is a basis of E and
(8/0s*,T}) is a basis of E'. Then, SX,, = S(9/9z") and Ng = 0 gives [S(9/dz"),
S(0/0x")] = 0. This commutation property of vector fields tangent to the leaves
of E allows us to change the coordinates s* along the leaves of E by new coordi-
nates y* such that S(9/0z%) = 9/0y™. O

Now, we come back to the integrability of a big-tangent structure and prove
the following result.

Proposition 3.4. The almost big-tangent structure (S, P, Q) is quasi-inteq-
grable iff the structures S and P are integrable and the P-Hamiltonian vector
fields preserve S, i.e.,

Ns=0, [P,P]=0, Ly,qsS =0 (f € C®(N)). (3.3)

The same structure is integrable iff it satisfies (3.3) and there exists a P-La-
grangian, QQ-isotropic, integrable distribution A such that ker S =im S @ A.

PROOF. By definition, quasi-integrability implies (3.3). Conversely assume
that (3.3) holds. Properties 1), 2) of Proposition 2.2 show that im S is a La-
grangian subfoliation of the symplectic foliation of P, where the tangent spaces
of the leaves are ker S. Then, a well known result of symplectic geometry (e..g.,
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the Carathéodory—Jacobi-Lie theorem17.2 in [13]) tells us that there exists an

atlas with local coordinates (x, ¢%, p;) such that

5} 0 0 5} 0
} P 5

dq’ “o¢ "o Cag =V Vo T

im S = span {

Accordingly, there are local, independent, vector fields X; = §f (0/0x7) such
that SX; = 9/dq¢" and the last condition (3.3) implies §f = fi(x) Then, we
have S(9/dx") = ! (x)(0/dq?), where f}ni = ¢, and Ng = 0 implies that the
vector fields S(0/0z") commute. Accordingly, there exist new local coordinates
y' = y'(z,q) along the leaves of im S such that S(9/9z") = §/0y". If we extend
our change of coordinates by the transformation z; = 775 (x)p;, we still have P =
(0/0y") A (0/0z;) and we see that the structure is quasi-integrable.

For the integrable case, what we meant by P-Lagrangian and @Q-isotropic is

<pr1, Z2> =0, <bQZ1, Zg> =0, VZ,Z>€A.

If the structure is integrable, we may take A = span{d/9z;}. Conversely, by
the conditions assumed for A, z% = const. along the leaves tangent to A and we
may use the Carathéodory—Jacobi-Lie theorem along the symplectic leaves of P
to get coordinates y, z; on them, such that P still has the canonical form, while
z; are coordinates along the leaves of A. Moreover, as in the ending argument of
the quasi-integrability part of the proof, we can arrange all the coordinates such
that both P and S preserve the canonical form. Finally, if we ask @Q-isotropy of
span{d/0z;} for Q given by Proposition 3.2, we get Q¥ = 0 and we are done. [J

Remark 3.1. The coordinate transformations of the canonical atlas of an
integrable structure (S, P, Q) are not exactly (2.1). The Jacobian matrix shown
in Proposition 3.2 shows that they are of the form

~i ~i i ~i 8&’ ; i ~ 8:53
T =3(), § = 83}ij +¢'(z), Z= o5 + ().

These formulas show a locally affine structure on the symplectic leaves of P.

The obstructions for an integrable big-tangent manifold to actually be the big
tangent manifold ¥M of a given manifold M are given by the more general theory
developed in [20].

4. Horizontal bundles and Bott connections

As for the usual tangent bundle and in foliation theory, the geometry of the
manifold €M may be enhanced by the addition of a horizontal bundle H such
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that
TIM=HOV=HDV, D Vs. (4.1)

The first equality (4.1) produces a double grading of forms and multivectors;
our convention is that bidegree or type (p,q) means H-degree p and V-degree q.
The exterior differential has the decomposition

d = dfy o)+ dio1) + 2.~ 1), (4.2)

where d” is the exterior differential along the leaves of V [18]. The second equality
(4.1), produces a double grading (r,s) (¢ = r + s) of the V-degree ¢, which
corresponds to the terms Vi, Vs. This leads to a further decomposition of the
terms of (4.2). For instance, we get

d" =do1,0+doon-

For a chosen H, a vector X € T,M has a horizontal lift X" defined by
X" e H(myy,z),p*Xh = X, and TTM has local canonical bases

a\" o ;0 o 9 9
X,L': - = - —tii,—Tiji, —
ox? oxt oy’ 0z; Oy’ 0z

where ¢, 7 are local functions of (x,y, z). The corresponding dual bases are
dazt, 6" = dy' + t;dxj, ki = dz; + Tijdxj. (4.3)

A change of coordinates (2.1) implies the following transformation formulas

- Oz ~ 0zt . Oz’
XzziXy t = - Ja ~i:f j 5
ozt b Oz’ M g
=i 9ok ko 9270 h gk 2,.h
B _ oz* oz® , 0x% 0°x' , . ox" Oz oz (4.4)

17 9ah 910 K 9w odloxk” T T Bt ol "t dxiow
Proposition 4.1. Any horizontal bundle on T'M has a canonical lift to a

horizontal bundle on ¥M. Any horizontal bundle on the cotangent bundle T™* M
has a canonical lift to a horizontal bundle on TM.

PRrROOF. In both cases, the horizontal bundle of TM is spanned by the ex-
tended lifts of the projectable, horizontal vector ﬁeld_s of TM, respectively, T*M.
If the basis of the horizontal lift of TM is 9/9x" — t!(x,y)(9/0y’), then, formula
(2.20) gives the following horizontal basis of the canonical lift
i 0 oth o

0 9 ., 90
oxt oyl Moy 0z
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Similarly, if the horizontal basis on T* M is 8/0z" —7;;(z, 2)(8/0z;), then, formula
(2.21) gives the following horizontal basis of the canonical lift

0 ,,0mm 0 0
ort Moz oy Yoz

Alternatively, as indicated in Remark 2.5, instead of using the extended
liftt we may use extensions from the pullback bundles to ¥. This implies that if
coefficients t] satisfying (4.4) are known, the formula

oth
oyl

(4.5)

Tij = —Zh

yields coefficients 7;; that satisfy (4.4), hence, we get a horizontal bundle on TM.
Similarly, if we have the coeflicients 7;; the formula

1 aTih
t] = — 4.6
; L (4.6)
completes the construction of a horizontal bundle. ([l

Remark 4.1. In a different terminology (e.g., [3]), H is called a non-linear
connection, ¢, 7 are called the connection coefficients and there exists an equivalent
covariant derivative V¥ : T'(p~}(TM)) — T'(p~(TM)) (X € TM), which has
the local expression

.0 . . 81/ . 0 - Ok; )
H i 2 Aed ) — J 7 J v 7
V5kﬁ (V Omi’ﬁjdx ) <§ <8xj +t]> 895“5 <8xj Tl]> dx > .

Ezxample 4.1. Let I' be an arbitrary linear connection on M with local con-

nection coefficients l";» .- Then, the tangent vectors of the paths defined in TM by
parallel translation of the vector y and of the covector z along paths through =z
in M span a complement H, , .y of V(, , -). The horizontal distribution obtained
in this way has the local bases

9] K 9]

B 4
kpa 4 zkl‘ma—.
j

Xi=— - | —
azi Y i+ Qyd

(4.7)

The coefficients of this connection are related by (4.5) and (4.6) simultaneously.

Ezample 4.2. We recall the following classical construction on T'M [6], [15].
A vector field

%zyi 9

ox? tn

0
3 € x(TM) (4.8)
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is of the second order because it is locally equivalent with a system of second
order, ordinary, differential equations on M. For any second order vector field X,
the (1,1)-tensor field Ly Sty is an almost product structure ((LxStar)? = 1d)
with the +1-eigenbundle equal to the vertical bundle. Hence, the —1-eigenbundle
is a horizontal bundle H ».

Let £ € C*®(TM) be a function with a non degenerate Hessian matrix
(0%L/0yt0y7), called a regular Lagrangian. Then, the equation i(I'z)f = —d€,
where or ar

0 = do, ﬁzdﬁosTM:@TJz‘ :y’ayi
defines a second order vector field I' 2, therefore, a corresponding horizontal bundle
Hr,. on TM. The extended lift of Hr,. given by Proposition 4.1 is a horizontal
bundle H, on M. Notice that the field 'y itself is not foliated, hence, it does
not have an extended lift.

det, &

~ L,

We can give a €M-version of the notion of a second order vector field of
Example 4.2 and say that the vector field (2.2) is of the second order if SX = &,
where & is defined in (2.8), equivalently, X has the local expression

;0 0

. 0

X=y'—

e

Proposition 4.2. For any second order vector field X on M, the tensor

field Qx = LxS € End(TTM) satisfies the identity Q% — Qx = 0. The —1-

eigenbundle of Qx is a horizontal bundle Hyx with the local bases
0 1097 0 n ¢; i

T o 2 dyt Oyl Oy Oz

(4.10)

PrROOF. Easy calculations show that the required identity holds on the nat-
ural tangent basis defined by (z¢,y% z;). In particular, Qx(9/9y") = 9/dy",
Qx(0/0z;) = 0 and V is the direct sum of the eigenspaces with eigenvalues 1, 0
of Qx. Hence, if we denote the —1-eigenbundle by Hx, the latter is horizontal.
The local coordinate computation of QxX’ shows that X’ is a —1-eigenvector iff
it is of the form

w0 1 ..0n8 9 ;0G0
r_ ¢l ) J
r=¢ ozt + 25 OyI Oyt +e OyJ Oz’
therefore, the horizontal lifts of 9/9z¢, are (4.10). O

Remark 4.2. For any choice of a horizontal bundle H on TM, the vector field
X = y'X;, where X; is the horizontal lift of §/0x¢, is the unique, H-horizontal,
second order vector field.
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Remark 4.3. The transformation formulas (2.4) allow us to check that, if (4.8)
is a second order vector field (or, more generally, a cross section of p; ' (T(TM)),
i.e., the coefficients 1’ also depend on the “parameters” zj), it has a canonical
extension to a second order vector field on TM, which is given by

.0 1on" 0
+ n

* oy 20y o

N
7y8xi

Remark 4.4. On both TM and TM, the set Q(T'M), respectively Q(TM),
of second order vector fields is closed under convex linear combinations and its
geometric interpretation is that of the set of global cross sections of an affine fiber
bundle modeled over the vertical vector bundle. In fact, this is an affine subbundle
of the affine tangent bundle of the manifold 7'M, respectively M [11]. The points
of the affine fibers are vectors of the form (4.8), respectively (4.9), where the first
term is the origin and the two other terms define the vector from the origin to
the point X. The coefficients n?, {; are fiber-wise affine coordinates.

Remark 4.5. On ¥M, we can also define a special class of 1-forms, namely,
a 1-form a will be Liouwville-related if a o S is the Liouville form A. Then locally
a looks as follows
a=a;dz’ + zl-dyi + 'yidzi.

For the rest of this section we fix a horizontal bundle H. Then, foliation
theory offers the following important linear connections.

Definition 4.1. A connection with no mixed torsion or Bott connection is a
linear connection on M that preserves the subbundles H,V and its torsion Ty
satisfies the condition Tw (%,9) =0,VX € H, Y € V.

The required torsion condition is equivalent to

and also equivalent to
VxY =[X,2], VgX=0, (4.12)

where the horizontal field X is projectable by p.
If D is an arbitrary, linear connection on €M, the addition of the derivatives

VX' =pryDxX', V92 =prvDy" (X, X' €M, 9,9 V) (4.13)

to (4.11) defines a Bott connection V¥ = V. Following [1], which traced back
the history of this connection to a 1931 paper by G. VRANCEANU [27], we call
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VP a Vrdnceanu-Bott connection. Furthermore, if D has zero torsion, VP has
the torsion

Typ(31,32) = —pro[prudi, prudz] = —Ru(31,32), 31,32 € x(TM). (4.14)

Ry, is called the Ehressmann curvature of the non-linear connection H.

Definition 4.2. A connection with no multi-mized torsion on TM is a Bott
connection V that also preserves the subbundles Vy, V5 and satisfies the condition
Tv(X4,9a) =0, where a,a’ € {1,2}, o’ =a+1(mod.2) and X,,9, € Va.

The new torsion condition of Definition 4.2 is equivalent to

vxagja/ = prva/ [xm 2)@'}' (415)

Notice that for a V-projectable vector field X, the first equation (4.12) becomes
VQa = pry, [X,Dal-

Proposition 4.3. On M, there exists a canonical connection V with no
multi-mixed torsion, which depends only on the horizontal bundle H and such
that, along the leaves of the foliations V1, Vo, V, this is the flat connection of the
affine structure of the leaves.

ProoF. Consider the isomorphism & = S|y : H — Vi and the transposed
isomorphism 'S : V, — H* (remember that Vs ~ V;). Then, add to (4.11) and
(4.15) the following covariant derivatives

V;{%’ = Silprvl [xa Sx/]v v@19‘j/1 = Sp?”q.[ [2]13 Silg‘jll]a
v@z@é = (ts)_ler*LiDz(tS@é)a (4'16)

VX, X' € TH,D4,2,, € TV, and pry- is defined by means of (4.1). The result
is a linear connection on M, which depends only on H. The affine structure of
the leaves of Vi, Vs, V is shown by the coordinate transformations (2.1) and it
is easy to see that the parallel vector fields of this structure are ) € V; such
that S719)} is projectable, 2, € V5 such that 82)} is projectable and sums of
such vector fields, respectively. Then, (4.16) implies Vg, 2} = 0, V9,95 = 0
and (4.15) implies V%,9),, = 0 (the last conclusion follows by using a parallel
extension of the point-value of X,, which leads to vanishing brackets in the right
hand side of (4.15)). O
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Any linear connection D on TM has a well defined deformation into a con-
nection VP with no multi-mixed torsion, which is obtained by adding to (4.11)
and (4.15) the first equation (4.13) and the derivatives

v1_’{)[12311 :pTVana@a- (417)

Generally, VP # VP, If D has no torsion, the torsion of VP is still given
by (4.14).
We also recall the following notion from foliation theory

Definition 4.3. A Bott connection V is said to be projectable if for any two
projectable, horizontal vector fields X, X', VX' is projectable.

Ezxample 4.3. If H is the horizontal space defined in Example 4.1, then, the
corresponding canonical connection given by Proposition 4.3 is projectable. The
result follows by applying the first formula (4.16) to the vector fields (4.7).

Concerning curvature, we can extend results from foliation theory and we
have

Proposition 4.4. The curvature Ry of a connection V without mixed tor-
sion has the following properties

Ry(9,9)X =0, Rv(Y,X)X =pru[D, VxX]
RV(x7 %I)QJ = TV(QJ7R"H(%a xl)) - v?} (R’H(%, :{/))v (418)
where X,X' € H, 9,2’ € V, Ry is the Ehressmann curvature of H and the

right hand sides are computed by using projectable fields X1, X5. If V has no
multi-mixed torsion one also has

Ry (9a: Vo)V =0, (4.19)

where the indices are as in (4.15) and ), € V,.

PROOF. Since only the point-wise values of the arguments count, we get
(4.18) from (4.12) by assuming that X is V-projectable. Similarly, we get (4.19)
from (4.15) by assuming that 9, is V,-projectable. (]

Corollary 4.1. For a projectable connection one has Ry (9),X)X’ = 0.

PRrROOF. The result follows from the second formula (4.18). O
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Proposition 4.5. The curvature of the Vranceanu-Bott connection V7,
where D is a torsionless linear connection on M, also has the following properties

Ryp (9, X)X = Ry (Y, X)X,
RVD (%7 xl)fy = vg(TVD (x7 %l))v

> Ryn(%,X)x" =0,
Cycl(X,X',X")

>, Eee(2.999" =0,
Cycl(9,9",9")
Ryo(X,9)Y" = Ryr(X,9)D, (4.20)
where all X € H (and projectable when needed) and all 9) € V. The same
properties hold for the connection with no multi-mixed torsion VP defined by

the torsionless connection D. In particular, for VP we have Ryn(24,2,)2 = 0,
VDo € Vo,V eV, a=12.

PROOF. The first and second formulas (4.20) are a consequence of (4.18)
and of the expression (4.14) of the torsion. The three other formulas follow from
(4.14) and the Bianchi identity ([11], vol. I)

Z [Ryp (X, X)X —T(T(X,X"),X") — (VxT)(X',X")] = 0.
Cyel(X,X'X"")
We give some details for the case where all the arguments are horizontal, while
assuming that they also are projectable. Then, the first torsion term of the
Bianchi formula vanishes since its first argument is vertical and the second is
horizontal. If we use projectable vector fields X, X’, X, the second torsion term
of the Bianchi formula must be vertical and, since the curvature term is horizontal,
we are done. The same properties hold for the connection VP because it has the
same torsion as V. The last assertion of the proposition follows by using the
fourth relation (4.20) for 9,9’ € V,, 9” € V,» and by decomposing 9) into its
V,-components. (Il

5. Metrics and double field theory
The general, local expression of a pseudo-Riemannian metric on the big-
tangent manifold TM is
g = lgida’ © da? + %gi;da’ © dy’ + 3¢ldat © dz;
+ 4gijdyi o dy’ + E’gfdyi ©dzj + %9"dz; © dz;,
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where the coefficients 'g, g, % are symmetric.

Besides, we will always assume that the metric has a non degenerate restric-
tion to the vertical bundle V, which implies that the orthogonal bundle Hy L4 V
is a horizontal bundle and g|3; is non degenerate too. Hereafter, always, in the
presence of a metric, we will use the horizontal bundle H = H,.

Ezxample 5.1. The formula
5= gijdmi ® dz’ + giiji ® Dyl + g9 Dz ® Dz;,
where ¢ is a pseudo-Riemannian metric on M, D is the Levi-Civita connection
of g and Dy?, Dz; are the usual expressions of the covariant differential of a

contravariant and covariant vector field, respectively, defines a metric on TM,
which is non degenerate on V and will be called the Sasaki metric.

Ezample 5.2. Let g be a pseudo-Riemannian metric on M, H an arbitrary
horizontal bundle and (dz?,6% k;) the corresponding cobasis (4.3). Then, the
formula

g =gijdr' @ dr! + g;;0' @ 07 + g k; @ K
defines a metric on M, which is non degenerate on V and will be called a Sasaki-
type metric. In particular, if H = H, and g;; = 0*L/0y’dy’, where L is a regular
Lagrangian, we get a metric g..

We recall the following result of foliation theory [18], [19]:

Proposition 5.1. Let D be the Levi-Civita connection of g. The corre-
sponding Vranceanu-Bott connection VP defined by (4.13) is the unique connec-
tion such that: i) the subbundles H and V are preserved ii) parallel translations
along curves that are tangent to either H or V preserve the restriction of g to
H,V, respectively, iii) the restrictions of the torsion to H and V take values in V
and H, respectively.

PROOF. The meaning of the properties i), ii), iii) is
Vixen, VIYeW, for3ex(TM), XeH, PeV,
V2e(9,3) =0, ifX,9,3cHor X, 3V,
pryTyp (.'%;Q_)) =0 ifxX,9QeH, pryIyo (X,Q‘]) =0 ifx,9eV.

All these equalities follow from the definition of V¥ and of the Levi-Civita con-
nection D. Conversely, if the previous equalities hold, the trick that gives the
global expression of the Levi-Civita connection (e.g., [11], vol. I) yields

9(VED,3) = a(pruDx2.3), o(VRY,3) = g(prvDx,3),
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where all the arguments belong to H in the first case and to V in the second case,
whence, the required result. ([l

Notice that the restriction of VP to the leaves of V is the Levi-Civita con-
nection of the leaves. The connection VP above will be called the canonical
connection of g on TM.

The canonical connection does not preserve the subbundles Vy, Vs. Instead,
the latter are preserved by the corresponding connection (4.17), which may also
be written as

?3DL[ = v?u7 ?ga@a =Dpry, le?aq)aa ?lx)a@a’ =Dpry, [xaa @a’]v (51)

where at least one of the vector fields 3,4l is horizontal and a,a’ € {1,2}, o/ =
a + 1(mod. 2).

The torsion and curvature of the canonical connection VP satisfy the for-
mulas (4.14), (4.18) and (4.20) and these imply corresponding properties for the
covariant curvature tensor

Ryp (31,32, 33, 34) = 9(Ryo (33, 34)32, 31),

particularly,

Ryo(31,32,35.34) = —Ryo(31,32,34,33), Y. Ryn(3,%1,%,X3) =0,
Cycl(1,2,3)

where X are horizontal vectors, ) are vertical vectors and 3 are arbitrary vectors.)

For other identities one needs a horizontal tensor C' called the Cartan tensor
(a name suggested by Finsler geometry). This tensor is defined by [23]

C(%1,%2,X3) = (Lsx, 9)(X2, X3) = (VEx, 9) (X2, X3),
where g = g|y is a horizontal metric extended by 0 on vertical arguments. The
local components of C' are

99k
oyt
whence, we deduce that C' = 0 iff g is a projectable metric and C is totally

symmetric iff, locally (but, possibly, not globally), g is the Hessian of a function
“in the direction of V;”.
The following curvature identities may be proven as in [23]:

Ryn (X1, X9, %3,%4) + Ryp (X2, X1, X3,%4) = —C(S ' Tyn (X3,%4), X1, X2),

RVD (xla x?a xSa x4) - RVD (%37x47x17x2)

1
= i[C(SilTvD (361,%2),363,%4) — C(SilTvD (%3,%4),%1,352)].
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Corollary 5.1. If either the horizontal component of the metric g is pro-
jectable or the horizontal bundle is integrable, the restriction of the curvature of
VP to horizontal arguments satisfies the Riemannian curvature identities.

PrOOF. The first case is characterized by C' = 0 and the second case by
Tgop = 0. O

Definition 5.1. A non degenerate metric gy on the vertical bundle V is called
a wvertical metric on TM. A vertical metric that has a non degenerate restriction
to Vy is called strongly non degenerate’.

If non degenerate (which was assumed), the restriction to V of a pseudo-
Riemannian metric of M is a vertical metric. Conversely, any choice of a hori-
zontal bundle H with a metric gy allows us to extend the vertical metric gy to
the metric g = gy + gy-

Hereafter, all the vertical metrics are assumed strongly non degenerate.

In this section we will discuss vertical metrics that are compatible with the
para-Hermitian metric of V, compatibility having the meaning of [26] and it is
equivalent with conditions in [8]. The results too are based on these sources.

It is convenient to use V =~ V; @Vy and, correspondingly, write vertical vectors
as pairs (9),a), where ) is the Vy-component and a € Vy is the image of the V-
component. Then, the restrictions h = gy|y, xv,, kK = gvlvaxve, | = V|V xvs
appear as tensors of type (0,2), (1,1), (2,0) of the bundle V.

Remark 5.1. The strong non degeneracy condition means that k is non de-
generate and there exists a Legendre-type involution on ¥M given by

(-’E,y, Z) — (LIZ‘, ﬁkza bky)

Ezample 5.3. Let K be a function in C*°(TM). Hess K(3,3') = 3'3K, 3,3 €
V restricted to V; X Vi, Vo X Vo,V X Vs yields tensor fields h, I, k. Thus, if the
Hessian is non degenerate, it defines a vertical metric, which is strongly non
degenerate if k is non degenerate. Moreover, if we chose a horizontal bundle H
and transfer k to H by (S|»)~! we obtain a metric of TM associated to the
function K.

Consider the endomorphism ¢ € End(V) defined by

29(¢3,3") = 9v(3,3), 3¢ (D,a),3 < (D) eV, (5.2)

1The choice of Vo rather than Vj in this definition is geometrically more convenient, but it is
not essential. In any case, there is no reason to ask for both restrictions to be non degenerate.
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where ¢ is the para-Hermitian metric of V. The symmetry of gy implies the
property
9(¢3,3") = 9(3, #3"). (5.3)

From (5.2) we get the following matrix representation of ¢

O -

Definition 5.2 ([8]). The vertical metric gy is g-compatible if ¢? = Id.

If ¢*> = Id and, with the same notation, (5.2) and (5.3) imply

29(3,3") = av(¢3,3), av(¢3,3') = 9v(3,63). (5.5)

In terms of h, I, k the condition ¢? = Id means
2 +t,ob,=1Id, lof+trol=0, bpol+tob,=0. (5.6)

Proposition 5.2. The strongly non degenerate,vertical g-compatible met-
rics gy are in a bijective correspondence with pairs (o,1) where o is a non de-
generate metric on V; and 1 € I A? Vi

PROOF. We proceed as in the case of generalized Riemannian metrics [8].
By (5.2), instead of looking at gy, we may look at the corresponding ¢ € End(V),
then, define the corresponding pair by?

o=k by=-b,ol

(the skew symmetry of ¢ follows from (5.6)). Conversely, given a pair (o, ), if
we take

k=01 1= —f,by, bn=>byo(Id—(f,y)?), (5.7)
we get the endomorphism ¢ and the required metric gy . O

Remark 5.2. A vertical metric gy may be interpreted as a metric on the
vector bundle p~1(TM) ~ V and the tensors 0,1 may be interpreted as tensors
of the vector bundle p~ (T M) ~ V.

’In fact, o is the covariant version of k but, we prefer to use the new symbol to avoid any
possible confusion.
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Proposition 5.3. Let Uy C V be the (£1)-eigenbundles of the product
structure ¢ that defines a compatible metric gy. Then, U 14, U_, the projec-
tions pry, lu, : Ux — V1 defined by the decomposition V = Vy @ Vs, are isomor-
phisms, and the corresponding pullbacks of the metric o are equal to (1/2)gy|u,. -

Proor. We follow [26]. The first conclusion is a consequence of (5.5). For
the second, we first show that Uy NV, = 0. Indeed, if Q) € Uy N Vs, then,

(9, 3) =29(¢9,3) = £29(Y,3) =0, V3 €y,

because V, is g-isotropic. Since gy is strongly non degenerate, we deduce ) = 0.
Together with the orthogonality between U4, this result implies rankUs = m,
therefore, Vo @ Uy =V and pry, [y, : Ux — Vs are isomorphisms with inverses,
say, t+. The expression of ¢4 was established in [8], [26] and is given by

129 = (V011 F1d)Y) = (Y, Oy £55)Y)

() € V1 and the pairs correspond to vertical vectors). The last assertion of the
proposition is a consequence of this expression. (I

Remark 5.3. Similarly, one gets
Uy LoU—,  glu, = E£(pry,)"o.

On para-Hermitian manifolds, compatible, generalized, pseudo-Riemannian
metrics may be seen as a generalization of the fields of double field theory [10],
[26]. This suggests the following definition.

Definition 5.3. A double field® over a manifold M is a pair (H,gy) where
‘H is a horizontal bundle on TM and gy is a compatible metric on V.

By Proposition 5.2 double fields over M are in a bijective correspondence
with triples (H,o,1) where o is a non degenerate metric on p~!(T'M) ~ V; and
1 is a 2-form on the same bundle. o and 1 are called the components of the field.

Ezample 5.4. Let (M, ~) be a pseudo-Riemannian manifold. The Levi-Civita
connection of v yields a horizontal bundle H, defined by (4.7) and (M, gv),
where gy is a vertical, compatible metric is a double field over M. In particular,
there exists a double field with the component o equal to the transfer of v to its
isomorphic bundle p~!(T'M) and the form component ¢ = 0. The corresponding
vertical metric is the vertical component of the Sasaki metric associated to v and
its Levi—Civita connection.

3This term is a simple way to express the fact that the field is treated by double field theory.
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Ezxample 5.5. Let L be a regular Lagrangian on TM and let H,, o, be
the horizontal bundle and the horizontal component of the metric g, defined in
Example 5.2 (transferred to p~*(T'M)). Furthermore, consider the 1-form ¥ =
dLoS and the corresponding 2-form d’v, where d’ is defined by the decomposition
(4.2) associated to the horizontal bundle H .. d'v transfers to a 2-form ¢, on the
bundle p~(T'M) and the triple (H.,0.,1%,) defines a double field over M that
is canonically associated to the Lagrangian L.

We will define an action functional of a double field over M that extends
the one constructed for para-Hermitian manifolds in [26].

Definition 5.4. A wertical, double metric connection is a connection on the
vertical bundle V that preserves the para-Hermitian metric g and the double field
metric gy.

Proposition 5.4. A connection VY onV is a vertical double metric connec-
tion iff it preserves the subbundles Uy and their metrics (pry, )*o.

PROOF. By (5.5), the preservation of the pair of metrics (g, gy) is equivalent
with the preservation of the pair (gy, ¢). Therefore, the eigenbundles U1 and the
metrics gy |y, must be preserved too. (Il

Corollary 5.2. The connection VY is double metric iff it is expressible as

VY(4®) = 14(D5Y) (Y €TV, 3 € x(TM)),

where DT is a pair of o-metric connections on V; ~ p~'(TM).
PROOF. Obvious. 0

The action of a double field over M will be defined by means of a canonical
double metric connection obtained by adapting the construction of [26].

Proposition 5.5. There exist an invariant procedure to derive double metric
connections from the horizontal bundle H and the components (c,1)) of a given
double field over M.

PrOOF. We start by transferring the component metric o of the field to
Vo = V; and to the horizontal bundle ‘H ~ V. By adding up the results we get
a metric g, on TM and there exists a corresponding connection VP given by
(5.1), where D7 is the Levi-Civita connection of the metric g,. The restriction
DY =vVY7]y, (3 € x(TM)) yields a connection on Vi, which, for 3 € Vi, is just
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the Levi-Civita connection of ¢ along the leaves tangent to V;. The invariant
transformation

1
D§Y:1 = DYV1 + 5 tabpga D, (5.8)

where Do € T ®* VY, yields a connection that preserves the metric o along any
path (check by a calculation). Then, following Corollary 5.2, we get a double
metric connection D? on V that corresponds to the pair (D, D).

Now, we add a torsion defined by the field component ¥ and define a pair of
connections on V; by

D), = DY + %ﬁa[i@l)i(l’rvli’))dvﬂ/)] (D1 € V),

where dy, is the exterior differential along the leaves of V;. The additional term
is a vector in V; and vanishes for 3 € H,V,. D'* still preserve o under parallel
translations along paths in the leaves of V;. Then, we use transformations (5.8)
to change D'* to o-preserving connections D* and introduce the double metric
connection D on V, which corresponds to the pair D* by Corollary 5.2. (]

To follow the footsteps of physical double field theory, we have to use a
connection that is related to the C-bracket of string theory literature. We will
use the metric bracket on V [24], [26].

Definition 5.5. Let gy be a vertical metric and V a gy-metric connection on
V. The operation Ay is defined by the formula

(D9 Av V") = 5[0v( Vo) ~ v(D", Vo)

where all the arguments are in V. The gy-metric bracket is the bracket defined
by the formula

[Q‘jl, Q‘j//}gv _ D%/@// o ,D%//Q)/ _ 2)/ /\’DO 2)//.
The name “metric bracket” comes from the following properties [24], [26]
1
V(ev(D,9") = 091D,V ey + 5970day, (0v(D,9'),2")

V(2,109 + 5orade, (av(.9")

9,706, = FD.9 e + DNV — Lov@.V)grade, f. (59)

The metric bracket leads to new invariants of gy-preserving connections
V [26].
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Definition 5.6. The bracket

2.V, = 9.V ay +D A0 Y
is the deformed Lie bracket. The vertical tensor field
TZ(D,Y) = Vo' — V) — (2, VY,
is the deformed torsion of V. The vertical tensor field

™v(2,Y.9") = w15 (9,Y),2")
is the Gualtieri torsion of V.
Proposition 5.6. If V is a gy-metric connection and if we denote
0(2.9') = Vo' - Dy, E(9,2.9") =w(0D,9),9"),
we get
E(@? @/7 SZJH) = _E(mv @Na Q‘j,)a

~©.2.9)= )., E2.9.9".
Cycl(9,9,9")

PRrROOF. The first equality follows from the metric character of the two con-
nections. The second follows from the definition of v by a straightforward cal-
culation. O

Corollary 5.3. The Gualtieri torsion v is totally skew symmetric.
PrOOF. Obvious. O

Proposition 5.7. Starting with the data of a given double field, there exists
an invariant procedure that yields a double metric connection with a vanishing
Gualtieri torsion.

[26]. Change the connections D* by the transformation

D¥Y = DxV1,  DyD1 = Dy + prvyoru [prus D, 12 D1lo,

where X € H, Q) € V, Y1 € Vi. A technical calculation, namely the one made
for formula (4.15) of [26], which uses (5.9), shows that D* preserve the metric o.
Thus, the change provides a double metric connection D on V that corresponds
to the pair D*. Another technical calculation shows that the Gualtieri torsion
of D vanishes if two arguments belong to Uy and the third to U=. Now, denote
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by ©,© the values of the tensor © of Proposition 5.6 for the connections D, D
where D = D + ® for an arbitrary tensor ®. Then, we get

TD(@a@/’@H) = T[)@L@/a 2)”) + gv(q)(ngJ/)?@N)

and there is a unique choice of ® such that the second term in the right hand side
is totally skew symmetric and 75 = 0, given by

0v(2(2.9).9") = ~375(0.9,0")

We regard D as the connection required by the proposition and call it the field-
adapted connection. O

Since D-covariant derivatives in vertical directions work as on para-Hermitian
manifolds, we can transfer the definition of the action given in [26], thereby,
keeping close to double field theory.

The vertical tensor field

R%V (QJ, 23/)2)// _ @2)@2)/2)// . @g)@gyﬁjﬁ o @[@,y/]ﬁjﬁ
is the wertical curvature of the connection D. The vertical tensor field

RicY’ (2,9) = %Z K@Z’,R%V (5}&)) 2)> + <m,R%” (;Zi,@) ®>

i=1

+ <0i,R$; (5@) @> + <ni,R;’; (i@) zJ> ]

where 0%, k; are defined by (4.3), is the wertical, Ricci curvature of the connec-
tion D.
Now, in order to get an action that is more intimately related with the double

field, we introduce the following modified vertical, Ricci curvature:

S, = Ricy (pru, D, pru,Y') + Ricy (pru_ D, pru_Y’).

Then, we define the modified, vertical, scalar curvature by the formula

2m

D S I

q,s=1

where the tensor components are with respect to any local basis of the bundle V.
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If the manifold M is oriented and if (x?) are positive local charts, the double
field (H, gy) yields the volume form

d(vol) = |det o|"/2daz' A--- Adz™ ANOY A AOT AR A A B

on TM (the dx' and 6° portions of the form multiply by J~! and the x; por-
tion multiplies by J under a coordinate transformation ' = #%(x’) with the
Jacobian J). Now, we can formulate the final result as

Proposition 5.8. Let (H,gy) be a double field over the manifold M with
density ¢ € C*°(TM). Then, provided that the integral is finite, the formula

Algy ) = [ e p8yd(vol
TM

yields a canonical action functional of the field.
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