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Units in FD2p

By KULDEEP KAUR (Rupnagar) and MANJU KHAN (Rupnagar)

Abstract. In this paper, we present the structure of the group of ∗-unitary units

in the group algebra FD2p, where F is a finite field of characteristic p > 2, D2p is the

dihedral group of order 2p, and ∗ is the canonical involution of the group algebra FD2p.

We also provide the structure of the maximal p-subgroup of the unit group U (FD2p)

and compute a basis of its center.

1. Introduction

Let FG be the group algebra of a group G over a field F . For a normal sub-

group H in G, the natural homomorphism G→ G/H can be extended to an alge-

bra homomorphism from FG to F [G/H], defined by
∑

g∈G agg 7→
∑

g∈G aggH.

The kernel of this homomorphism, denoted by Γ(H), is the ideal generated by

{h−1 | h ∈ H}. Therefore, FG/Γ(H) ∼= F [G/H]. In particular, for H = G, Γ(G)

is known as the augmentation ideal of the group algebra FG. Since FG/Γ(G)∼=F ,
it follows that the Jacobson radical J(FG) is contained in Γ(G). The equality oc-

curs if G is a finite p-group and F is a field of characteristic p and hence 1+Γ(G)

is same as the normalized unit group V (FG) of the group algebra FG. Therefore,

U (FG) = V (FG)×F ∗, where F ∗ is the cyclic group of all nonzero elements of F .

If x =
∑

g∈G xgg is an element of FG, then the element x∗ =
∑

g∈G xgg
−1

is called the conjugate of x. The map x 7→ x∗ is an anti-automorphism of FG

of order 2, which is known as the canonical involution of the group algebra FG.

An element x ∈ U (FG) is called unitary if x∗ = x−1. The unitary units of the
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unit group U (FG) form a subgroup U∗(FG), and is called unitary subgroup of

U (FG).

Sandling in[6] described the structure of V (FG) for an arbitrary finite

abelian p-group G and a finite field F of p elements. In [7] Sandling provided

generators and relators of V (FG) for each 2-group G of order dividing 16 over

a finite field F with 2 elements. Creedon and Gildea in [10] described the

structure of V (FD8) for the dihedral group D8 of order 8 and a finite field F

of characteristic 2. For dihedral groups of orders 6 and 10, the structure of unit

group is presented in [2] and [1]. In [13] Kaur and Khan described the structure

of the unit group U(FD2p) over a finite field F with two elements. Gildea in

[8] studied some properties of the center of the maximal p-subgroup of the unit

group U (FD2p) over a finite field F of characteristic p. However, basis of its

center is not known.

The set of all unitary units in the normalized unit group V (FG) forms a

subgroup of U∗(FG). We denote it by V∗(FG). The unitary subgroup U∗(FG)

coincides with V∗(FG) if F is a finite field of characteristic 2. Otherwise, it co-

incides with V∗(FG)× ⟨−1⟩. Bovdi and Sakacs in [14] described the structure

of V∗(FG), where G is a finite abelian group and F is a finite field of character-

istic p. Bovdi and Erdei in [4] provided the structure of the unitary subgroup

V∗(F2G), where G is a nonabelian group of order 8 and 16. V. Bovdi and Rosa

in [3] computed the order of the unitary subgroup of the group of units, when G is

either an extraspecial 2-group or the central product of such a group with a cyclic

group of order 4 and F is a finite field of characteristic 2. They also computed

the order of the unitary subgroup V∗(FG), where G is a 2-group with a finite

abelian subgroup A of index 2 and an element b such that b inverts every element

in A and the order of b is 2 or 4. V. Bovdi and Rozgonyi in [5] described the

structure of V∗(F2G) if order of b is 4. If G is a nonabelian group of order 8 and

F is a finite field of characteristic 2, then the structure of V∗(FG) is described in

[12] and [11].

Here, we obtain generators of the unitary subgroup U∗(FD2p) for dihedral

group D2p of order 2p over a finite field F of characteristic p. We also obtain a

basis of the center of the maximal p-subgroup of the unit group U (FD2p). Finally,

we establish that the maximal p-subgroup of U (FG) is a general product of the

unitary subgroup with a metabelian group.

Let D2p = ⟨a, b | ap = 1 = b2, b−1ab = a−1⟩. The distinct conjugacy

classes of D2p are C0 = {1}, Ci = {ai, a−i}, for 1 ≤ i ≤ l, where l = p−1
2 and

C = {b, ab, a2b, · · · , ap−1b}. For a set H, if Ĥ denotes the sum of all the elements
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of H, then {Ĉ0, Ĉ1, Ĉ2, · · · , Ĉl, Ĉ} forms a F -basis for the center Z(FD2p) of the

group algebra FD2p.

2. Unit group of FD2p

If A denotes the normal subgroup of D2p generated by element a in D2p,

then FD2p/Γ(A) ∼= FC2. Since Γ(A) is a nilpotent ideal of FD2p, we have

U (FD2p)/(1 + Γ(A)) ∼= U (FC2), which is isomorphic to F ∗ × F ∗. Let θ :

U (FD2p) → U (FC2) be a group epimorphism defined by

p−1∑
i=0

αiai +

p−1∑
j=0

βja
jb 7→

p−1∑
i=0

αi +

p−1∑
j=0

βjx,

where C2 = ⟨x⟩. We can define a group homomorphism ψ : U(FC2) → U(FD2p)

by a0+a1x 7→ a0+a1b. Since θ◦ψ = 1, we have U (FD2p) ∼= (1+Γ(A))oF ∗×F ∗.

If order of F is pn, then 1+Γ(A) is a nilpotant group of order p4nl with exponent p,

where l = p−1
2 .

We first establish the structure of the unitary subgroup U∗(FD2p).

3. Structure of the unitary subgroup U∗(FD2p)

Theorem 1. If A is the normal subgroup of D2p, then the unitary subgroup

U∗(FD2p) of the group algebra FD2p is the semidirect product of the normal

subgroup V∗(FA) with an elementary abelian 2-group.

We need following lemmas:

Lemma 2. The group of unitary units in 1 + Γ(A) is V∗(FA).

Proof. Assume that v = 1 + x1 + x2b, where xi ∈ ω(FA) is an arbitrary

element of 1 + Γ(A). Since ω(FA) is a nilpotent ideal, 1 + x1 is an invertible

element and thus v can be written as v = u(1 + xb), where u ∈ V (FA) and

x ∈ ω(FA). In particular, if v is a unitary unit, then from the equation v∗v = 1,

we obtain u∗u+ bx∗u∗uxb = 1 and bx∗u∗u+u∗uxb = 0. Moreover, since by = y∗b

for any y ∈ FA, we have u ∈ V∗(FA). Further, note that u−1v = 1 + xb is a

symmetric unit as well as a unitary unit. Since the exponent of 1 + Γ(A) is p, it

implies that 1 + xb = 1 and hence v = u. �
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Since A is a normal subgroup of D2p, FD2p/Γ(A) is an algebra over F . Also

note that Γ(A) is ∗-stable nil ideal, and therefore the set of all unitary units in

FD2p/Γ(A) form a subgroup of U(FD2p/Γ(A)) and is denoted by U∗(FD2p/Γ(A)).

Lemma 3. The unitary subgroup U∗(FD2p/Γ(A)) of U (FD2p/Γ(A)) is the

group generated by {−1 + Γ(A), b+ Γ(A)}.

Proof. If u+Γ(A) is a unitary unit of U(FD2p/Γ(A)), then (u+Γ(A))∗(u+

Γ(A)) = 1+Γ(A) and hence u∗u is a symmetric unit in 1+Γ(A) because Γ(A) is a

∗-stable nil ideal. Further, if u = x0+x1b, where x0, x1 ∈ FA, then uu∗ = x0x
∗
0+

x1x
∗
1+2x0x1b. For x =

∑p−1
i=0 (αia

i+βia
ib), we can define χ(x) =

∑p−1
i=0 (αi+βi).

Since uu∗ is an element of 1 + Γ(A), it follows that χ(x0x
∗
0 + x1x

∗
1) = 1 and

χ(x0x1) = 0. In particular, if x0 =
∑p−1

i=0 αia
i and x1 =

∑p−1
i=0 βia

i, then we

obtain

p−1∑
i=0

α2
i +

p−1∑
i=0

β2
i + 2

p−1∑
i,j=0
i<j

αiαj + 2

p−1∑
i,j=0
i<j

βiβj = 1 (1)

(
p−1∑
i=0

αi

)(
p−1∑
j=0

βj

)
= 0. (2)

Now if (
∑p−1

i=0 αi) = 0, then from equation (1) we obtain (
∑p−1

i=0 βi)
2 = 1 and

hence
∑p−1

i=0 βi = ±1. Thus, either x1 or −x1 is an element of V (FA) and so the

unitary units in FD2p/Γ(A) are ±b+Γ(A). Further, if (
∑p−1

i=0 βi) = 0, then, in a

similar way, one can show that the unitary units in FD2p/Γ(A) are ±1+Γ(A). �
Proof of the theorem. Note that V∗(FA) is a normal subgroup of U∗(FG)

and ⟨V∗(FA), b,−1⟩ ⊆ U∗(FG). Now suppose that u ∈ U(FG) \ V∗(FA) is a

unitary unit, then u + Γ(A) is a unitary unit in U(FG/Γ(A)). In particular, if

u + Γ(A) = b + Γ(A), then u = bx for some x ∈ V∗(FA). Hence, U∗(FG) =

V∗(FA)o (⟨b⟩ × ⟨−1⟩). �

4. The structure of center Z(1 + Γ(A))

To find a basis of center Z(1+Γ(A)) of the maximal p-subgroup 1+Γ(A) of

the unit group U(FD2p), we need following lemma:

Lemma 4. If ωi = (ai − a−i)(1 + b) and ω′
i = (ai − a−i)(1− b) for1 ≤ i ≤ l,

then the set {ωi, ω
′
i, ωiω

′
i, ω

′
iωi | 1 ≤ i ≤ l} is a free F - basis of Γ(A) as a free

F -module.
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Proof. It is known that the set {(ai − 1), (ai − 1)b | 1 ≤ i ≤ 2l} is a free F -

basis of Γ(A) as a free F -module. Observe that ωiωj = 0, ω′
iω

′
j = 0 for 1 ≤ i, j,≤ l.

Also note that ωiω
′
i = 2(a2i+a−2i−2)(1− b) and ω′

iωi = 2(a2i+a−2i−2)(1+ b).

Thus, if t = 2i, then

(at − 1) =
1

4
(ω2i + ω′

2i) +
1

8
(ωiω

′
i + ω′

iωi)

(at − 1)b =
1

4
(ω2i − ω′

2i)−
1

8
(ωiω

′
i − ω′

iωi)

 0 < 2i ≤ l

(at − 1) = −1

4
(ωp−2i + ω′

p−2i) +
1

8
(ωiω

′
i + ω′

iωi)

(at − 1)b = −1

4
(ωp−2i − ω′

p−2i)−
1

8
(ωiω

′
i − ω′

iωi)

 l < 2i ≤ (p− 1)

If t = p− 2i, then

(at − 1) = −1

4
(ω2i + ω′

2i) +
1

8
ωiω

′
i + ω′

iωi)

(at − 1)b = −1

4
(ω2i − ω′

2i)−
1

8
(ωiω

′
i − ω′

iωi)

 0 < 2i ≤ l

(at − 1) =
1

4
(ωp−2i + ω′

p−2i) +
1

8
(ωiω

′
i + ω′

iωi)

(at − 1)b =
1

4
(ωp−2i − ω′

p−2i)−
1

8
(ωiω

′
i − ω′

iωi)

 l < 2i ≤ (p− 1)

Therefore, Γ(A) = span{ωi, ω
′
i, ωiω

′
i, ω

′
iωi | 1 ≤ i ≤ l}. Since the dimension of

Γ(A) over F is 4l, the result follows. �

Assume that F is a finite field of order pn. Let f(x) be a monic irreducible

polynomial of degree n over Fp such that F ∼= Fp[x]/⟨f(x)⟩ and α denote the

residue class of x modulo ⟨f(x)⟩.

Theorem 5. If ui,k = 1 + αi(a − 1)k, then the center Z(1 + Γ(A)) is an

elementary abelian p group of order pn(l+1) with the set {u∗i,kui,k, 1 + αiÂb | 0 ≤
i ≤ (n− 1), 1 ≤ k ≤ (p− 1) and k is even} as a basis.

Proof. First we prove that Z(1 + Γ(A)) = Z(FD2p) ∩ (1 + Γ(A)). Let

x ∈ Z(FD2p) ∩ (1 + Γ(A)). It is clear that x is of the form

x = 1 +
l∑

i=1

αi(Ĉi − 2) + βÂb,

where αi, β ∈ F . Since Z(FD2p) ∩ 1 + Γ(A) ⊆ Z(1 + Γ(A)), it implies that
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|Z(1 + Γ(A))| ≥ pn(l+1). To show the equality, we compute the dimension of

Z(Γ(A)) over F. Take x ∈ Z(Γ(A)) such that

x =
l∑

i=1

αiωi +
l∑

i=1

α′
iω

′
i +

l∑
i=1

αiiωiω
′
i +

l∑
i=1

α′
iiω

′
iωi.

First, note that if i = 2k + 1, where 1 ≤ i ≤ l then

ω1ω
′
i = ωk+1ω

′
k+1 − ωkω

′
k and ω′

iω1 = ω′
k+1ωk+1 − ω′

kωk.

For i = 2k, where 1 ≤ i ≤ l

ω1ω
′
i = ωl−kω

′
l−k−ωl−(k−1)ω

′
l−(k−1) and ω′

iω1 = ω′
l−kωl−k−ω′

l−(k−1)ωl−(k−1).

Next, observe that if l is odd, then

ω1ω
′
jωj = 4ω2j+1 − 4ω2j−1 − 8ω1, for 1 ≤ j ≤ l − 1

2

ω1ω
′
jωj = −4ω2l−2j + 4ω2l−2j+2 − 8ω1, for

l + 3

2
≤ j ≤ l − 1

ω1ω
′
l+1
2

ω l+1
2

= −4ωl−1 − 4ωl − 8ω1

ω1ω
′
lωl = 4ω2 − 8ω1

and if l is even, then

ω1ω
′
jωj = 4ω2j+1 − 4ω2j−1 − 8ω1, for 1 ≤ j ≤ l − 2

2

ω1ω
′
jωj = −4ω2l−2j + 4ω2l−2j+2 − 8ω1, for

l + 2

2
≤ j ≤ l − 1

ω1ω
′
l
2
ω l

2
= −4ωl − 4ωl−1 − 8ω1

ω1ω
′
lωl = 4ω2 − 8ω1

Now, after substituting these values in the equations ω1x = xω1 and ω′
1x =

xω′
1, we obtain αi = α′

i = 0 ∀ 1 ≤ i ≤ l and the following set of l equations in 2l

variables.

α′
ii − α′

i+1i+1 − αii + αi+1i+1 = 0

−3(α′
11 − α11)− 2

l∑
i=2

(α′
ii − αii) = 0
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Further, observe that the last equation can be written as

−
l−1∑
k=1

(2k + 1)(α′
kk − α′

k+1k+1 − αkk + αk+1k+1) = 0

Therefore, the dimension of the solution space of the above system of linear

equation is l+1 and hence |Z(1+Γ(A))| ≤ pn(l+1). Thus, |Z(1+Γ(A))| = pn(l+1)

and

Z(1 + Γ(A)) =

{
1 +

l∑
i=1

αi(Ĉi − 2) + βÂb | αi, β ∈ F

}
= S∗(FA)× (1 + FÂb).

Further, note that

B = {u∗i,kui,k | 0 ≤ i ≤ (n− 1), 1 ≤ k ≤ (p− 1) and k is even}

forms a basis of S∗(FA) and hence the result follows. �

5. Structure of 1 + Γ(A)

In this section, we obtain the structure of 1+Γ(A). We shall use the following

result:

Theorem 6 (Pavesic [9]). Let (e1, e2, . . . en) be an ordered n-tuple of

orthogonal idempotents in a unital ring R such that 1 = e1 + e2 + · · · + en
and each ei strongly preserves a circle subgroup M of the circle group of R,

i.e. eiM ⊆ M and Mei ⊆ M , then (M, ◦) = (L, ◦) ◦ (D, ◦) ◦ (U, ◦), where

L = {m ∈ M | (∀ i) eim = eimei}, D = {m ∈ M | (∀ i) eim = eimei}
and U = {m ∈ M | (∀ i) eim = eimei}, where ei = ei+1 + ei+2 + · · · + en,

ei = e1 + e2 + · · ·+ ei−1, e1 = 0 and en = 0.

Theorem 7. If A is the normal subgroup of D2p, then 1+Γ(A) is the general

product of unitary subgroup with a metabelian group.

Proof. Note that Γ(A) is a circle group and {e1 = 1+b
2 , e2 = 1−b

2 } is a

complete set of orthogonal idempotents that strongly preserve Γ(A). Therefore,

(Γ(A), o) = (L, o)o(D, o)o(U, o), where (L, o) = ⊕l
i=1Fω

′
i, (U, o) = ⊕l

i=1Fωi and

(D, o) = ⊕l
i=1Fωiω

′
i ⊕l

i=1 Fω
′
iωi. Hence, 1+Γ(A) is a general product of elemen-

tary abelain p-groups (1 + L), (1 + D), and 1 + U . Moreover, 1 + D normalize

1 + L; thus the group W = (1 + L)o (1 +D) is a metabelian group.
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If C1+Γ(A)(a) is a centralizer of a in 1 + Γ(A), then it is clear that it is

an elementary abelian p-group of order pnp. Since V∗(FA) and Z(1 + Γ(A))

are in C1+Γ(A)(a) and their intersection is identity, it follows that C1+Γ(A)(a) =

V∗(FA)×Z(1 + Γ(A)). Also note that W ∩C1+Γ(A)(a) = Z(1 + Γ(A)). Thus we

obtain that 1+Γ(A) =WC1+Γ(A)(a) is a general product of W and V∗(FA). �

If α is the residue class of x mod ⟨f(x)⟩, then the set {1 + αiω′
j | 0 ≤ i ≤

n − 1, 1 ≤ j ≤ l} generates (1 + L) and {1 + αiωj | 0 ≤ i ≤ n − 1, 1 ≤ j ≤ l}
generates (1 + U). The following lemma provides the structure of 1 +D.

Lemma 8. The set {1+αi(a− a−1)2k(1− b), 1+αi(a− a−1)2k(1 + b) | 1 ≤
k ≤ l and0 ≤ i ≤ (n− 1)} forms a basis of 1 +D.

Proof. First, we show that
∑l

i=1 Fωiω
′
i = span{(a − a−1)2k(1 − b) | 1 ≤

k ≤ l}. For this, we prove ωkω
′
k ∈ span{(a − a−1)2k(1 − b) | 1 ≤ k ≤ l} by

induction over k. The result is trivial for k = 1, as ω1ω
′
1 = 2(a − a−1)2(1 − b).

Assume the result for k − 1. Consider ωkω
′
k. Notice that

ωkω
′
k = 2(ak − a−k)2(1− b) = 2(a2k + a−2k − 2)(1− b).

Now,

(a− a−1)2k =
k−1∑
j=0

(−1)j
(
2k

j

)
(a2k−2j + a−(2k−2j)) + (−1)k

(
2k

k

)

=
k−1∑
j=0

(−1)j
(
2k

j

)
(a2k−2j + a−(2k−2j) − 2)

(a− a−1)2k(1− b) =

k−1∑
j=0

(−1)j
1

2

(
2k

j

)
ωk−jω

′
k−j

Therefore, 1
2ωkω

′
k = (a− a−1)2k(1− b)− (

∑k−1
j=1 (−1)j 1

2

(
2k
j

)
ωk−jω

′
k−j). Hence, by

the induction hypothesis, we obtain

ωkω
′
k ∈ span{(a− a−1)2k(1− b) | 1 ≤ k ≤ l}.

Therefore,
∑l

i=1 Fωiω
′
i =

∑l
k=1 F (a− a−1)2k(1− b). It implies that

1 +

l∑
i=1

Fωiω
′
i = 1+

l∑
k=1

F (a− a−1)2k(1− b) =

l∏
k=1

n−1∏
i=0

(1 + αi(a− a−1)2k)(1− b)

Similarly, we can show that

1 +
l∑

i=1

Fω′
iωi =

l∏
k=1

n−1∏
i=0

(1 + αi(a− a−1)2k)(1 + b)

Since 1 +D = (1 +
∑l

i=1 Fωiω
′
i)× (1 +

∑l
i=1 Fω

′
iωi), the result follows. �
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