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Fixed points and exponential stability of stochastic functional
partial differential equations driven by fractional

Brownian motion

By DEHAO RUAN (Guangzhou) and JIAOWAN LUO (Guangzhou)

Abstract. In this paper, the fixed point theory is used to investigate the stability

for stochastic functional partial differential equations driven by fractional Brownian

motion

dX(t) = [AX(t) + f(t,Xt)]dt+ g(t)dBH
Q (t),

where H ∈ (1/2, 1). The obtained results improve the results due to Caraballo,

Garrido-Atienza, Taniguchi [3].

1. Introduction

In 1892, Lyapunov established a method to investigate the stability prob-

lems. From then on, the Lyapunov’s direct method was widely used to investigate

the stability properties of ordinary, functional, partial differential and integro-

differential equations. However, there exist a number of serious obstacles if the

delays are unbounded or if the equations has unbounded terms [2]. In recent years,

several authors made a attempt to use the fixed point theory to investigate the

stability, which shows that some of those difficulties vanish or might be overcome

when applying fixed point theory (see [1], [2], [4], [5]). The fixed point theory

does not only solve the stability problem but also has other remarkable advantage
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over Lypunov’s. The conditions of the former are usually averages but those of

the latter are often pointwise (see [2]).

In this paper, we consider the following stochastic functional partial differ-

ential equation{
dX(t) = [AX(t) + f(t,Xt)]dt+ g(t)dBH

Q (t), t ≥ 0,

X(s) = φ(s), −r ≤ s ≤ 0, r ≥ 0,
(1.1)

under suitable conditions on the operator A, the coefficient functions f , g and

the initial value φ. Here BH
Q (t) denotes a fractional Brownian motion (fBm) with

H ∈ (1/2, 1) (see [3]).

The purpose of this paper is to investigate the exponential stability in mean

square of mild solution of stochastic functional partial differential equations driven

by fractional Brownian motion by means of the fixed point theory.

This paper is organized as follows. In Section 2 some necessary preliminaries

on the stochastic integration equations with respect to fractional Browanian mo-

tion are established. In Section 3 the exponential stability in mean square of mild

solution of stochastic functional partial differential equations driven by fractional

Brownian motion is proved, the results in [3] are improved.

2. Preliminaries

Let (U, | · |U , (·, ·)U ) and (K, | · |K , (·, ·)K) be two real separable Hilbert spaces.

Let L(K,U) denote the space of all bounded linear operators from K to U . Let

Q be a non-negative self-adjoint nuclear operator on K. Let L0
Q(K,U) denote the

space of all η ∈ L(K,U) such that ηQ
1
2 is a Hibert-Schmidt operator. The norm

is given by

|η|2L0(K,U) =
∣∣∣ηQ 1

2

∣∣∣2
HS

= tr(ηQη∗).

Then η is called a Q-Hilbert–Schmidt operator from K to U .

Let (Ω,F ,P) be a complete probability space. Let {βH
n (t)}n∈N be a sequence

of two-sided one-dimensional standard fractional Brownian motions mutually in-

dependent on (Ω,F ,P). Let {en}n∈N is a complete orthonormal basis in K. Then

we consider a K-valued stochastic process BH
Q (t) given formally by the following

series:

BH
Q (t) =

∞∑
n=1

βH
n (t)Q1/2en, t ≥ 0.
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If Q is a non-negative self-adjoint nuclear operator, then this series converges in

the space K, that is, it holds that BH
Q (t) ∈ L2(Ω,K). Then, we can say that

the above BH
Q (t) is a K-valued Q-cylindrical fractional Brownian motion with

covariance operator Q.

Lemma 2.1 (Caraballo [3]). Let φ : [0, T ] 7−→ L0
Q(K,U) such that

∞∑
n=1

∥(φQ1/2en)∥L1/H([0,T ];U) <∞ (2.1)

holds, and for any α, β ∈ [0, T ] with α > β,

E
∣∣∣∣∫ α

β

φ(s)dBH
Q (s)

∣∣∣∣2
U

≤ cH(2H − 1)(α− β)2H−1
∞∑

n=1

∫ α

β

|φ(s)Q1/2en|2Uds,

where c = c(H). If, in addition,
∞∑

n=1

|φ(t)Q1/2en|U is uniformly convergent for t ∈ [0, T ],

then

E
∣∣∣∣∫ α

β

φ(s)dBH
Q (s)

∣∣∣∣2
U

≤ cH(2H − 1)(α− β)2H−1

∫ α

β

|φ(s)|2L0
Q(K,U)ds. (2.2)

Consider (Ω,F ,P), the complete probability space which was previously in-

troduced. Denote Ft = F0 for all t ≤ 0.

We denote by C(a, b;L2(Ω;U)) = C(a, b;L2(Ω,F ,P;U)) the Banach space

of all continuous functions from [a, b] into L2(Ω;U) endowed with the supremum.

Consider two fixed real numbers r ≥ 0 and T > 0. If X ∈ C(−r, T ;L2(Ω;U))

for each t ∈ [0, T ] we denote by Xt ∈ C(−r, 0;L2(Ω;U)), the function defined by

Xt(s) = X(t+ s), for s ∈ [−r, 0].
We consider the exponential stability of mild solution to the following sto-

chastic functional partial differential equation:{
dX(t) = [AX(t) + f(t,Xt)]dt+ g(t)dBH

Q (t), t ∈ [0, T ],

X(t) = φ(t), t ∈ [−r, 0],
(2.3)

where BH
Q (t) is the fractional Brownian motion which was previously introduced,

the initial value φ ∈ C(−r, 0;L2(Ω;U)) and A : Dom(A) ⊂ U → U is the infini-

tesimal generator of a strongly continuous semigroup S(·) on U , that is, for t ≥ 0,

it holds

|S(t)|U ≤Meρt, M ≥ 1, ρ ∈ R.

f : [0, T ] × C(−r, 0;U) → U a family of nonlinear operators defined for almost

every t (a.e.t) which satisfies
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(f.1) The mapping t ∈ (0, T ) → f(t, ξ) ∈ U is Lebesgue measurable, for a.e.t and

for all ξ ∈ C(−r, 0;U).

(f.2) There exists a constant Cf > 0 such that for any X,Y ∈ C(−r, T ;U) and

t ∈ [0, T ],

(f.3)

∫ t

0

|f(s,Xs)− f(s, Ys)|2Uds ≤ Cf

∫ t

−r

|X(s)− Y (s)|2Uds.∫ T

0

|f(s, 0)|2Uds <∞.

Moreover, for g : [0, T ] → L0
Q(K,U) we assume the following conditions: for

the complete orthonormal basis {en}n∈N in K, we have

(g.1)
∞∑

n=1

∥gQ1/2en∥L2([0,T ];U) <∞.

(g.2)
∞∑

n=1

|g(t)Q1/2en|U is uniformly convergent for t ∈ [0, T ].

Definition 2.1. A U -valued process X(t) is called a mild solution of (2.3) if

X ∈ C(−r, T ;L2(Ω;U)), X(t) = φ(t) for t ∈ [−r, 0], and, for t ∈ [0, T ], satisfies

X(t) = S(t)φ(0)+

∫ t

0

S(t−s)f(s,Xs)ds+

∫ t

0

S(t−s)g(s)dBH
Q (s) P-a.s. (2.4)

Notice that, because of (g.1) and H ∈ (1/2, 1), (2.1) holds, which implies that

the stochastic integral in (2.4) is well-defined since S(·) is a strongly continuous

semigroup. Moreover, (g.1) together with (g.2) immediately imply that, for ∀t ∈
[0, T ], ∫ T

0

|g(s)|2L0
Q(K,U)ds <∞.

Theorem 2.1 (Caraballo [3]). Under the assumptions on A and condition

(f.1)–(f.3) and (g.1)–(g.2), for every φ ∈ C(−r, 0;L2(Ω;U)) there exists a unique

mild solution X to (2.3).

Definition 2.2. Equation (2.3) is said to be exponentially stable in mean

square, if for any initial value φ, there exists a pair of constants γ > 0 and C > 0

such that

E|X(t)|2 ≤ Ce−γt, t ≥ 0. (2.5)
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In order to set the stability problem, we assume that the following hold,

which are also imposed in [3]:

|S(t)|U ≤Me−λt, ∀t ≥ 0, where M ≥ 1 and λ > 0. (2.6)

There exists a constant Cf ≥ 0, such that, for any X,Y ∈ C(−r, T ;U), and for

all t ≥ 0 ∫ t

0

ems|f(t,Xs)− f(t, Ys)|2Uds ≤ Cf

∫ t

−r

ems|X(s)− Y (s)|2Uds,

for all 0 ≤ m ≤ λ, (2.7)

and ∫ ∞

0

eλs|f(s, 0)|2Uds <∞. (2.8)

In addition to assumptions (g.1) and (g.2), assume∫ ∞

0

eλs|g(s)|2L0
Q(K,U)ds <∞. (2.9)

3. Exponential stability in mean square

In this section, we will consider the exponential stability in mean square of

mild solution of (2.3) by means of the fixed point theory.

Theorem 3.1. Suppose that conditions (2.6)–(2.9) hold. Then equation

(2.3) is exponentially stable in mean square if

λ2 > CfM
2. (3.1)

Proof. Denote by S the Banach space of all F-adapted processes ϕ(t, w) :

[−r,∞) × Ω −→ R, which is almost surely continuous in t for fixed ω ∈ Ω.

Moreover, ϕ(s, w) = φ(s) for s ∈ [−r, 0] and eαtE|ϕ(t, w)|2U −→ 0 as t −→ ∞,

where α is a positive constant such that 0 < α < λ.

Define an operator π : S −→ S by (πX)(t) = ψ(t) for t ∈ [−r, 0] and for

t ≥ 0,

(πX)(t) = S(t)φ(0) +

∫ t

0

S(t− s)f(s,Xs)ds

+

∫ t

0

S(t− s)g(s)dBH
Q (s) :=

3∑
i=1

Ii(t). (3.2)
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We first verify the continuity in mean square of π on [0,∞). Let X ∈ S, t1 ≥ 0,

and r be positive and sufficiently enough, then

E|(πX)(t1 + r)− (πX)(t1)|2U ≤ 3
3∑

i=1

E|Ii(t1 + r)− Ii(t)|2U .

Obviously

E|Ii(t1 + r)− Ii(t)|2U −→ 0, i = 1, 2, as r −→ 0.

Further, by using Cauchy–Schwarz inequality, we get

E|I3(t1 + r)− I3(t1)|2U ≤ 2E
∣∣∣∣∫ t1

0

(S(t1 + r − s)− S(t1 − s))g(s)dBH
Q (s)

∣∣∣∣2
U

+2E
∣∣∣∣∫ t1+r

t1

S(t1 + r − s)g(s)dBH
Q (s)

∣∣∣∣2
U

:= J1 + J2.

Firstly, applying inequality (2.2) and condition (2.6) to J1

J1 = 2E
∣∣∣∣∫ t1

0

(S(t1 + r − s)− S(t1 − s))g(s)dBH
Q (s)

∣∣∣∣2
U

≤ 2cH(2H − 1)t2H−1
1

∫ t1

0

|S(t1 − s)(S(r)− Id)g(s)|2L0
Q(K,U)ds

≤ 2cH(2H − 1)t2H−1
1 M2

∫ t1

0

|(S(r)− Id)g(s)|2L0
Q(K,U)ds −→ 0

when r −→ 0 since for every s fixed

S(r)g(s) −→ g(s), |S(r)g(s)|L0
Q(K,U) ≤M |g(s)|L0

Q(K,U).

Applying inequality (2.2) and condition (2.6) to J2, we can obtain

J2 ≤ 2cH(2H − 1)r2H−1M2

∫ t1+r

t1

|g(s)|2L0
Q(K,U)ds −→ 0 as r −→ 0.

Thus, π is indeed continuous in mean square on [0,∞). Next, we show that

π(S) ⊂ S. It follows from (3.3) that

eαtE|(πX)(t)|2U ≤ 3eαtE|S(t)φ(0)|2U + 3eαtE
∣∣∣∣∫ t

0

S(t− s)f(s,Xs)ds

∣∣∣∣2
U

+ 3eαtE
∣∣∣∣∫ t

0

S(t− s)g(s)dBH
Q (s)

∣∣∣∣2
U

. (3.3)
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Now we estimate the terms on the right-hand side of (3.4). Firstly, by the condi-

tion (2.6), we can obtain

3eαtE|S(t)φ(0)|2U ≤ 3M2e−2λteαt|φ(0)|2U −→ 0 as t −→ ∞. (3.4)

Secondly, Hölder’s inequality and (2.7), (2.8) yield

3eαtE
∣∣∣∣∫ t

0

S(t− s)f(s,Xs)ds

∣∣∣∣2
U

≤ 3eαtE
[∫ t

0

|S(t− s)f(s,Xs)|Uds
]2

≤ 3eαtE
[∫ t

0

Me−λ(t−s)|f(s,Xs)|Uds
]2
≤ 3M2eαtλ−1E

[∫ t

0

e−λ(t−s)|f(s,Xs)|2Uds
]

= 3M2eαtλ−1E
[∫ t

0

e−λ(t−s)|f(s,Xs)− f(s, 0) + f(s, 0)|2Uds
]

≤ 6M2Cfe
αtλ−1

∫ t

−r

e−λ(t−s)E|X(s)|2Uds+ 6M2eαtλ−1

∫ t

0

e−λ(t−s)|f(s, 0)|2Uds

≤ 6M2Cfe
(α−λ)tλ−1

∫ t

−r

e(λ−α)seαsE|X(s)|2Uds

+ 6M2e(α−λ)tλ−1

∫ t

0

eλs|f(s, 0)|2Uds := k1(t) + k2(t).

For any X(t) ∈ S and any ε > 0 there exists a t1 > 0, such that eαsE|X(s)|2U <
λ(λ−α)ε
6M2Cf

for t > t1 we can get

6M2Cfe
(α−λ)tλ−1

∫ t

t1

e(λ−α)seαsE|X(s)|2Uds < ε,

As e(α−λ)t → 0 as t→ ∞, there exists t2 > t1 such that for any t ≥ t2, we have

6M2Cfe
(α−λ)tλ−1

∫ t1

−r

e(λ−α)seαsE|X(s)|2Uds < ε,

so for any t > t2, we can obtain

k1(t) ≤ 6M2Cfe
(α−λ)tλ−1

∫ t

t1

e(λ−α)seαsE|X(s)|2Uds

+ 6M2Cfe
(α−λ)tλ−1

∫ t1

−r

e(λ−α)seαsE|X(s)|2Uds < 2ε.

So from the above, we conclude that k1(t) −→ 0 as t −→ ∞.
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As e(α−λ)t → 0 as t → ∞ and condition (2.8), we can obtain k2(t) −→ 0 as

t −→ ∞.

That is to say

3eαtE
∣∣∣∣∫ t

0

S(t− s)f(s,Xs)ds

∣∣∣∣2
U

−→ 0 as t −→ ∞. (3.5)

As for the third term on the right-hand side of (3.4), for anyX(t) ∈ S, t ∈ [−r,∞)

we have

3eαtE
∣∣∣∣∫ t

0

S(t− s)g(s)dBH
Q (s)

∣∣∣∣2
U

≤ 3M2cH(2H − 1)t2H−1eαt
∫ t

0

e−2λ(t−s)|g(s)|2L0
Q(K,U)ds

≤ 3M2cH(2H − 1)t2H−1e(α−λ)t

∫ t

0

eλs|g(s)|2L0
Q(K,U)ds −→ 0. (3.6)

Thus, from (3.4)–(3.7), we know that eαtE|(πX)(t)|2U −→ 0 as t −→ 0. So

we conclude that π(S) ⊂ S.
Thirdly, we will show that π is contractive. For X,Y ∈ S, as proceeding as

we did previously, we can obtain

E sup
s∈[0,T ]

|(πX)(t)− (πY )(t)|2 = E sup
s∈[0,T ]

∣∣∣∣∫ t

0

S(t− s)(f(s,Xs)− f(s, Ys))ds

∣∣∣∣2
U

≤ sup
s∈[0,T ]

E|X(s)− Y (s)|2U × CfM
2λ−2. (3.7)

Thus by (3.1) we know that π is a contraction mapping.

Hence by the Contraction Mapping Theorem, π has a unique fixed point X(t)

in S, which is a solution of (2.3) with X(s) = φ(s) on [−r, 0] and eαtE|X(t)|2U as

t −→ ∞ This completes the proof. �
Remark 3.1. Our results improve the results in [3]. Our condition is

λ2 > CfM
2. (3.8)

However, the corresponding condition in [3] is

λ2 > 6CfM
2. (3.9)

In this sense, this paper improves the results in [3].
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