On the planar, outer planar, cut vertices and end-regular comaximal graph of lattices

By MOJGAN AFKHAMI (Neyshabur), KAZEM KHASHYARMANESH (Mashhad) and FAEZE SHAHSAVAR (Mashhad)

Abstract

In this paper, we determine the cut vertices in the comaximal graphs of lattices and study the lattices with end-regular comaximal graphs. Also, we investigate the comaximal graph of the product of two lattices. In particular, we determine all lattices with planar and outerplanar comaximal graphs.

1. Introduction

The investigation of graphs related to various algebraic structures is a very large and growing area of research. In particular, Cayley graphs have attracted serious attention in the literature and in the last 50 years, it has been grown into a substantial branch in algebraic graph theory. Cayley graphs have found many useful applications in solving and understanding a variety of problems of scientific interest, see [10], [13], [15], [18], [20], [24] for examples of recent results and further references. Several other classes of graphs associated with algebraic structures have been also actively investigated. For example, power graphs and divisibility graphs have been considered in [11], [12], zero-divisor graphs have been studied in [3], [4], [5], [6], [7], [8] and cozero-divisor graphs have been introduced in [2].

Let R be a commutative ring with non-zero identity. In [19], Sharma and BHATWADEKAR defined the comaximal graph on R, denoted by $\Gamma(R)$, with all elements of R being the vertices of $\Gamma(R)$, where two distinct vertices a and b are

[^0]adjacent if and only if $R a+R b=R$. In [16] and [21], the authors considered a subgraph $\Gamma_{2}(R)$ of $\Gamma(R)$ consisting of non-unit elements of R, and studied several properties of the comaximal graph. Also the comaximal graph of a noncommutative ring was defined and studied in [22]. Recently, the first two authors defined and studied the comaximal graph of a lattice, which is denoted by $\Gamma_{2}(L)$, in [1].

In Section 2, we study the cut vertices in the comaximal graph $\Gamma_{2}(L)$. Also, we investigate some basic properties of $\Gamma_{2}\left(L_{1} \times L_{2}\right)$, where L_{1} and L_{2} are two bounded lattices. In Section 3, we study the planarity of $\Gamma_{2}\left(L_{1} \times L_{2}\right)$. In Section 4, we investigate the outerplanarity in the comaximal graphs of lattices, and in the last section, we study the end-regularity in $\Gamma_{2}(L)$.

In a graph G, the distance between two distinct vertices a and b, denoted by $\mathrm{d}(a, b)$, is the length of the shortest path connecting a and b, if such a path exists; otherwise, we set $\mathrm{d}(a, b):=\infty$. The diameter of a graph G is $\operatorname{diam}(G)=$ $\sup \{\mathrm{d}(a, b): a$ and b are distinct vertices of $G\}$. A graph G is said to be connected if there exists a path between any two distinct vertices, and it is complete if it is connected with diameter one. We use K_{n} to denote the complete graph with n vertices. Also, we say that G is totally disconnected if no two vertices of G are adjacent. For a vertex x of a graph G, The neighborhood (resp, degree) of x, denoted by $\mathrm{N}(x)($ resp, $\mathrm{d}(x))$, is the set of vertices which are adjacent to x (resp, the cardinality of $\mathrm{N}(x)$). A clique of a graph is a maximal complete subgraph of it and the number of vertices in a largest clique of G is called the clique number of G and is denoted by $\omega(G)$. Also, a vertex a is an end vertex, if there is only one edge incident to a. In the graph theory, a unicycle graph is a graph that has exactly one cycle. The graph with no vertices and no edges is the null graph.

A lattice is a set L with two binary operations \wedge and \vee on L satisfying the following conditions: for all $a, b, c \in L$,

1. $a \wedge a=a, a \vee a=a$,
2. $a \wedge b=b \wedge a, a \vee b=b \vee a$,
3. $(a \wedge b) \wedge c=a \wedge(b \wedge c), a \vee(b \vee c)=(a \vee b) \vee c$, and
4. $a \vee(a \wedge b)=a \wedge(a \vee b)=a$.

Note that in every lattice $a \wedge b=a$ always implies that $a \vee b=b$.
By [17, Theorem 2.1], one can define an order \leq on a lattice L as follows:
For any $a, b \in L$, we set $a \leq b$ if and only if $a \wedge b=a$. Then (L, \leq) is an ordered set in which every pair of elements has a greatest lower bound (g.l. b.) and a least upper bound (l.u. b.). Conversely, let P be an ordered set such that,
for every pair $a, b \in P$, g.l.b. (a, b), l.u.b. $(a, b) \in P$. For each a and b in P, we define $a \wedge b:=$ g.l.b. (a, b) and $a \vee b:=$ l.u.b. (a, b). Then (P, \wedge, \vee) is a lattice.

A lattice L is said to be bounded if there are elements 0 and 1 in L such that $0 \wedge a=0$ and $a \vee 1=1$, for all $a \in L$. Clearly every finite lattice is bounded. A lattice with two elements is called a trivial lattice. In a partially ordered set (P, \leq), we say that a covers b or b is covered by a, in notation $b \prec a$, if and only if $b<a$ and there is no element p in P such that $b<p<a$. Assume that S is a subset of P. Then an element x in P is a lower bound of S if $x \leqslant s$ for all $s \in S$. The set of all lower bounds of S is denoted by S^{ℓ} i.e. $S^{\ell}:=\{x \in P \mid x \leqslant s$, for all $s \in S\}$. An element a in L is called an atom if $0 \prec a$. Similarly, a is called a co-atom if $a \prec 1$. Throughout the paper, all lattices are finite. Also, $C(L)=\left\{\mathfrak{m}_{1}, \mathfrak{m}_{2}, \ldots, \mathfrak{m}_{n}\right\}$ is the set of all co-atoms of L.

2. Cut vertices in the comaximal graph of a lattice

An element a in L is said to be unit if there exits an element b in L such that $a \wedge b=1$. It is easy to see that 1 is the only unit element in every lattice. The comaximal graph of a lattice L, denoted by $\Gamma(L)$, is an undirected graph with all elements of L being the vertices, and two distinct vertices a and b are adjacent if and only if $a \vee b=1$ (see [1]). In $\Gamma(L)$ the vertex 1 , which is the only unit element in L, is adjacent to all other vertices. Thus we consider $L \backslash\{1\}$ as vertex-set and denote this set by $W(L)$. In [1, Proposition 3.1], it was mentioned that an induced subgraph of the comaximal graph with vertex-set $\bigcap\{\mathfrak{m}\}^{\ell}$, where $\mathfrak{m} \in C(L)$, is totally disconnected and it is disjoint from an induced subgraph with vertices in $W(L) \backslash \bigcap_{\mathfrak{m} \in C(L)}\{\mathfrak{m}\}^{\ell}$. Hence, all vertices in $\bigcap_{\mathfrak{m} \in C(L)}\{\mathfrak{m}\}^{\ell}$ are isolated vertices. Therefore we ignore these isolated vertices and consider an induced subgraph with vertex-set $W(L) \backslash \bigcap_{\mathfrak{m} \in C(L)}\{\mathfrak{m}\}^{\ell}$, which is denoted by $\Gamma_{2}(L)$.

Clearly, if $|C(L)|=1$, then $\Gamma_{2}(L)$ is a null graph. Therefore, we suppose that $n=|C(L)| \geq 2$.

Recall that a vertex a of a graph G is called a cut vertex if the removal of a and all edges incident to a creates a graph with more connected components than G.

Theorem 2.1. If \mathfrak{m} is a cut vertex in $\Gamma_{2}(L)$, then \mathfrak{m} is a co-atom of L.
Proof. Assume that \mathfrak{m} is not a co-atom. Since \mathfrak{m} is a cut vertex, $\Gamma_{2}(L) \backslash\{\mathfrak{m}\}$ has at least two components X and Y. We claim that $C(L) \subseteq X$ or $C(L) \subseteq Y$. Otherwise there are co-atoms \mathfrak{m}_{i} and \mathfrak{m}_{j}, where $1 \leq i \neq j \leq n$, such that $\mathfrak{m}_{i} \in X$
and $\mathfrak{m}_{j} \in Y$. Now we have that \mathfrak{m}_{i} is adjacent to \mathfrak{m}_{j}, which is impossible. Without loss of generality, we may assume that $C(L) \subseteq X$. Then, for all $y \in Y$, we have $y \in\left\{\mathfrak{m}_{i}\right\}^{\ell}$, for $i=1,2, \ldots, n$. Thus $y \in \cap_{i=1}^{n}\left\{\mathfrak{m}_{i}\right\}^{\ell}$, which is impossible. Therefore $\mathfrak{m} \in C(L)$.

The following example shows that the converse of Theorem 2.1 is not true in general.

Example 2.2. Suppose that L is a lattice in Figure 1. Then, it is easy to see that \mathfrak{m}_{1} is a co-atom, but it is not a cut vertex in $\Gamma_{2}(L)$.

Figure 1. L and $\Gamma_{2}(L)$

Notation 2.3. Let $i_{1}, i_{2}, \ldots, i_{k}$ be integers with $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$. The notation $S_{i_{1} i_{2} \ldots i_{k}}^{L}$ stands for the following set:

$$
\left\{x \in L \mid x \in \cap_{t=1}^{k}\left\{\mathfrak{m}_{i_{t}}\right\}^{\ell} \backslash \cup_{j \neq i_{1}, i_{2}, \ldots, i_{k}}\left\{\mathfrak{m}_{j}\right\}^{\ell}\right\}
$$

Note that no two distinct elements in $S_{i_{1} i_{2} \ldots i_{k}}^{L}$ are adjacent in $\Gamma_{2}(L)$. Also if the index sets $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ and $\left\{j_{1}, j_{2}, \ldots, j_{k^{\prime}}\right\}$ of $S_{i_{1} i_{2} \ldots i_{k}}^{L}$ and $S_{j_{1} j_{2} \ldots j_{k^{\prime}}}^{L}$, respectively, are distinct, then one can easily check that $S_{i_{1} i_{2} \ldots i_{k}}^{L} \cap S_{j_{1} j_{2} \ldots j_{k^{\prime}}}^{L}=\emptyset$, and also each vertex in $S_{i_{1} i_{2} \ldots i_{k}}^{L}$ is adjacent to all vertices in $S_{j_{1} j_{2} \ldots j_{k^{\prime}}}^{L}$. Moreover $L \backslash\{1\}=\cup_{k=1,1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n}^{n} S_{i_{1} i_{2} \ldots i_{k}}^{L}$. If there is no ambiguity, we denote the set $S_{i_{1} i_{2} \ldots i_{k}}^{L}$ by $S_{i_{1} i_{2} \ldots i_{k}}$. Also by $1 \ldots \hat{i} \ldots n$ we mean that $1 \ldots i-1 i+1 \ldots n$.

In the next theorem, we provide conditions under which the converse of Theorem 2.1 holds.

Theorem 2.4. Suppose that $\left|V\left(\Gamma_{2}(L)\right)\right| \geq 3$. Then there exists a positive integer i with $1 \leqslant i \leqslant n$ such that \mathfrak{m}_{i} is a cut vertex in $\Gamma_{2}(L)$, if $S_{i}=\left\{\mathfrak{m}_{i}\right\}$ and $S_{1 \ldots \hat{i} \ldots n} \neq \emptyset$, for some $1 \leq i \leq n$.

Proof. It is enough to show that there exist vertices b and c in L such that \mathfrak{m}_{i} is in every path from b to c in $\Gamma_{2}(L)$. Since $S_{1 \ldots \hat{i} \ldots n} \neq \emptyset$, there is an element b in $S_{1 \ldots \hat{i} \ldots n}$. Also, for some $j \neq i$, consider $c \in S_{j}$. Now, in view of Notation 2.3, since $S_{i} \cap S_{1 \ldots \hat{i} \ldots n}=\emptyset$, we have that \mathfrak{m}_{i} is a unique neighbor of b. Also, \mathfrak{m}_{i} is adjacent to c. Therefore, \mathfrak{m}_{i} is a cut vertex in $\Gamma_{2}(L)$.

Definition 2.5. For any x in L, set

$$
Z_{x}:=\{y \in L \mid x \vee y=1\}
$$

We say that Z_{x} is properly maximal if $Z_{x} \subseteq Z_{b}$, for some $b \in L$, then we have $Z_{x}=Z_{b}$.

Theorem 2.6. If \mathfrak{m} is a cut vertex in $\Gamma_{2}(L)$, then $Z_{\mathfrak{m}}$ is properly maximal.
Proof. Assume on the contrary that $Z_{\mathfrak{m}} \varsubsetneqq Z_{b}$, for some vertices b in $\Gamma_{2}(L)$ with $b \neq \mathfrak{m}$. Then clearly all vertices adjacent to \mathfrak{m} are also adjacent to b. This is a contradiction with the fact that \mathfrak{m} is a cut vertex.

Let $\left(L_{1}, \wedge_{1}, \vee_{1}\right)$ and $\left(L_{2}, \wedge_{2}, \vee_{2}\right)$ be two bounded lattices. Then, clearly $\left(L_{1} \times L_{2}, \wedge, \vee\right)$ is also a bounded lattice with the following relations. For two distinct elements $(a, b),(c, d) \in L_{1} \times L_{2}$ we say that $(a, b) \wedge(c, d)=\left(a \wedge_{1} c, b \wedge_{2} d\right)$ and $(a, b) \vee(c, d)=\left(a \vee_{1} c, b \vee_{2} d\right)$. Clearly $\left(L_{1} \times L_{2}, \wedge, \vee\right)$ has the minimum element $(0,0)$ and the maximum element $(1,1)$. Suppose that L_{1} and L_{2} are two finite lattices such that $C\left(L_{1}\right)=\left\{\mathfrak{m}_{1}, \mathfrak{m}_{2}, \ldots, \mathfrak{m}_{n}\right\}$ and $C\left(L_{2}\right)=\left\{\mathfrak{t}_{1}, \mathfrak{t}_{2}, \ldots, \mathfrak{t}_{m}\right\}$. In the following, we study some properties of the comaximal graph $\Gamma_{2}\left(L_{1} \times L_{2}\right)$.

Lemma 2.7. In the lattice $L_{1} \times L_{2}$, we have $C\left(L_{1} \times L_{2}\right)=\left(C\left(L_{1}\right) \times\{1\}\right) \cup$ $\left(\{1\} \times C\left(L_{2}\right)\right)$, and so $\left|C\left(L_{1} \times L_{2}\right)\right|=\left|C\left(L_{1}\right)\right|+\left|C\left(L_{2}\right)\right|$.

Proof. Suppose that $(\mathfrak{m}, \mathfrak{t})$ is an arbitrary element in $C\left(L_{1} \times L_{2}\right)$. If $\mathfrak{m}, \mathfrak{t} \neq 1$, then we have $(\mathfrak{m}, \mathfrak{t})<(\mathfrak{m}, 1)<(1,1)$ which is impossible. Thus we have $\mathfrak{m}=1$ or $\mathfrak{t}=1$. Without loss of generally, we may assume that $\mathfrak{t}=1$. If $\mathfrak{m} \notin C\left(L_{1}\right)$, then there exists a co-atom $\mathfrak{m}_{i} \in C\left(L_{1}\right)$, for some $1 \leq i \leq n$, such that $\mathfrak{m}<\mathfrak{m}_{i}$. Hence we have that $(\mathfrak{m}, 1)<\left(\mathfrak{m}_{i}, 1\right)<(1,1)$ which is impossible. Therefore $\mathfrak{m} \in C\left(L_{1}\right)$, and so the result holds.

We can extend the concept of $L_{1} \times L_{2}$ for a product of finite number of lattices.

Corollary 2.8. Let $L=L_{1} \times L_{2} \times \cdots \times L_{n}$, where for $i=1,2, \ldots, n,\left(L_{i}, \leq_{i}\right)$ is a lattice with 1 . Then $C(L)$ consists of elements $\left(\mathfrak{m}_{1}, \mathfrak{m}_{2}, \ldots, \mathfrak{m}_{n}\right)$ such that there exists $1 \leq j \leq n$ with $\mathfrak{m}_{j} \in C\left(L_{j}\right)$, and, for all i with $1 \leq i \neq j \leq n$, $\mathfrak{m}_{i}=1$.

Proposition 2.9. Assume that L_{1}, \ldots, L_{n} are non-trivial lattices. Let $L=$ $L_{1} \times L_{2} \times \cdots \times L_{n}$ be a lattice such that $L \neq L_{1} \times L_{2}$, with $\left|L_{1}\right|=\left|L_{2}\right|=3$. If $\mathfrak{m}=\left(1, \ldots, 1, u_{i}, 1, \ldots, 1\right) \in V\left(\Gamma_{2}(L)\right)$, is a cut vertex with component u_{i} such that $u_{i} \notin V\left(\Gamma_{2}\left(L_{i}\right)\right)$, then $\left|L_{i}\right|=3$.

Proof. Assume on the contrary that L_{i} has at least four elements, and so there exists v_{i} in $L_{i} \backslash\left\{0,1, u_{i}\right\}$. It is easy to see that $Z_{\mathfrak{m}} \subseteq Z_{\left(1, \ldots, 1, v_{i}, 1, \ldots, 1\right)}$. Since \mathfrak{m} is a cut vertex, by Theorem 2.6, we have that $Z_{\mathfrak{m}}=Z_{\left(1, \ldots, 1, v_{i}, 1, \ldots, 1\right)}$. If $\mathfrak{m} \neq$ $\left(1, \ldots, 1, v_{i}, 1, \ldots, 1\right)$, then \mathfrak{m} is not a cut vertex. So $\mathfrak{m}=\left(1, \ldots, 1, v_{i}, 1, \ldots, 1\right)$. Hence $u_{i}=v_{i}$, which is a contradiction.

Lemma 2.10. In the graph $\Gamma_{2}(L)$, we have $\omega\left(\Gamma_{2}(L)\right) \geq|C(L)|$.
Proof. The induced subgraph of $\Gamma_{2}(L)$ with vertex-set $C(L)$ is a complete graph. So we have $\omega\left(\Gamma_{2}(L)\right) \geq|C(L)|$.

Now the following corollary follows from Lemmas 2.7 and 2.10.
Corollary 2.11. In the graph $\Gamma_{2}\left(L_{1} \times L_{2}\right)$, we have

$$
\omega\left(\Gamma_{2}\left(L_{1} \times L_{2}\right)\right) \geq\left|C\left(L_{1}\right)\right|+\left|C\left(L_{2}\right)\right|
$$

For a graph G, the girth of G is the length of the shortest cycle in G and is denoted by $\operatorname{gr}(G)$. If G has no cycles, we put $\operatorname{gr}(G):=\infty$. In 1916, the Hungarian mathematician, DÉNES KÖNIG (1884-1944) deduced that a graph is bipartite if and only if it contains no cycles of odd length.

One can easily see that $\Gamma_{2}(L)$ is a star graph if and only if L has two coatoms \mathfrak{m}_{1} and \mathfrak{m}_{2}, such that $\left|S_{1}\right|=1$ or $\left|S_{2}\right|=1$. Also, $\Gamma_{2}(L)$ is a bipartite graph but not a star graph if and only if L has two co-atoms \mathfrak{m}_{1} and \mathfrak{m}_{2} such that $\left|S_{1}\right|,\left|S_{2}\right|>1$.

In $\left[1\right.$, Theorem 3.6], it was proved that $\operatorname{gr}\left(\Gamma_{2}(L)\right) \in\{3,4, \infty\}$. In the following theorem, we characterize the cases that $\operatorname{gr}\left(\Gamma_{2}(L)\right)$ is 3,4 or ∞.

Theorem 2.12. Let L be a lattice. Then the following statements hold:
(i) $\operatorname{gr}\left(\Gamma_{2}(L)\right)=\infty$ if and only if $\Gamma_{2}(L)$ is a star graph.
(ii) $\operatorname{gr}\left(\Gamma_{2}(L)\right)=4$ if and only if $\Gamma_{2}(L)$ is a bipartite graph which is not a star graph.
(iii) $\operatorname{gr}\left(\Gamma_{2}(L)\right)=3$ if and only if $\Gamma_{2}(L)$ contains an odd cycle.

Proof. (i) First assume that $\operatorname{gr}\left(\Gamma_{2}(L)\right)=\infty$. Suppose that $\Gamma_{2}(L)$ is not a star graph. Since by [1, Theorem 3.2], $\Gamma_{2}(L)$ is connected, we have that $|W(L)|$ $\cap_{\mathfrak{m} \in C(L)}\{\mathfrak{m}\}^{\ell} \mid \geq 4$. Also, since the graph $\Gamma_{2}(L)$ is not a star graph, so there
is a path of the form $a-x-b-c$ in the graph $\Gamma_{2}(L)$ such that $a, b, x, c \in$ $W(L) \backslash \cap_{\mathfrak{m} \in C(L)}\{\mathfrak{m}\}^{\ell}$. If a is adjacent to c, then $a-x-b-c-a$ is a cycle in $\Gamma_{2}(L)$, a contradiction. If a is not adjacent to c, then there exits $z \in L \backslash\{0,1\}$ such that $z \geq a$ and $z \geq c$. So z is adjacent to both vertices x and b. Hence we have the cycle $z-x-b-z$ in $\Gamma_{2}(L)$, which is a contradiction. Therefore $\Gamma_{2}(L)$ is a star graph.

Conversely, if $\Gamma_{2}(L)$ is a star graph, then it is easy to see that $\operatorname{gr}\left(\Gamma_{2}(L)\right)=\infty$.
(ii) First assume that $\operatorname{gr}\left(\Gamma_{2}(L)\right)=4$. Clearly, $\Gamma_{2}(L)$ is not a star graph. We show that $\Gamma_{2}(L)$ has no odd cycles, which implies that it is bipartite. On the contrary, let us assume that $\Gamma_{2}(L)$ has an odd cycle and that $x_{1}-x_{2}-x_{3}-$ $\cdots-x_{n}-x_{1}$ be an odd cycle of minimal length n in $\Gamma_{2}(L)$. Clearly, $n \geq 5$, since $\operatorname{gr}\left(\Gamma_{2}(L)\right) \neq 3$. Now, the minimality of n ensures that $x_{2} \vee x_{4} \neq 1$. Suppose that $z=x_{2} \vee x_{4}$ and it is not equal to 1 . Then we have $x_{1} \vee z \geq x_{1} \vee x_{2}=1$ and $x_{5} \vee z \geq x_{5} \vee x_{4}=1$. It follows that $x_{1}-z-x_{5}-\cdots-x_{n}-x_{1}$ is a cycle of length $n-2$ in $\Gamma_{2}(L)$. This contradicts the minimality of n. Hence $\Gamma_{2}(L)$ has no odd cycles.

Conversely, suppose that $\Gamma_{2}(L)$ is a bipartite graph which is not a star graph. Then, we have $\operatorname{gr}\left(\Gamma_{2}(L)\right) \neq 3$. Also, by $(\mathrm{i}), \operatorname{gr}\left(\Gamma_{2}(L)\right) \neq \infty$. Hence, we have $\operatorname{gr}\left(\Gamma_{2}(L)\right)=4$.
(iii) It follows from (i) and (ii).

The following corollary follows immedietly from Theorem 2.12.
Corollary 2.13. In the graph $\Gamma_{2}(L), \operatorname{gr}\left(\Gamma_{2}\left(L_{1} \times L_{2}\right)\right) \in\{3,4, \infty\}$.

3. Planarity of $\Gamma_{2}\left(L_{1} \times L_{2}\right)$

Recall that a graph is said to be planar if it can be drawn in the plane, so that its edges intersect only at their ends. A subdivision of a graph is any graph that can be obtained from the original graph by replacing edges by paths. A remarkable characterization of the planar graphs was given by Kuratowski in 1930. Kuratowski's Theorem says that a graph is planar if and only if it contains no subdivision of K_{5} or $K_{3,3}$.

Theorem 3.1. If $\Gamma_{2}\left(L_{1} \times L_{2}\right)$ is planar, then $\left|C\left(L_{1}\right)\right|+\left|C\left(L_{2}\right)\right| \leq 4$.
Proof. Suppose on the contrary that $\left|C\left(L_{1}\right)\right|+\left|C\left(L_{2}\right)\right| \geq 5$. Since the induced subgraph of $\Gamma_{2}\left(L_{1} \times L_{2}\right)$ with the vertex-set $C\left(L_{1} \times L_{2}\right)$ is a complete
graph, we can find a subgraph isomorphic to K_{5} in $\Gamma_{2}\left(L_{1} \times L_{2}\right)$, and so, by Kuratowski's Theorem, it is not planar. Hence we have $\left|C\left(L_{1}\right)\right|+\left|C\left(L_{2}\right)\right| \leq 4$.

By Theorem 3.1, we must study the cases that $\left|C\left(L_{1}\right)\right|+\left|C\left(L_{2}\right)\right|$ is equal to 2,3 and 4 . In the following proposition, we state the necessary and sufficient condition for planarity of $\Gamma_{2}\left(L_{1} \times L_{2}\right)$, when $\left|C\left(L_{1}\right)\right|+\left|C\left(L_{2}\right)\right|=2$.

Proposition 3.2. Suppose that $\left|C\left(L_{1}\right)\right|+\left|C\left(L_{2}\right)\right|=2$. Then $\Gamma_{2}\left(L_{1} \times L_{2}\right)$ is planar if and only if $\left|L_{1}\right| \leq 3$ or $\left|L_{2}\right| \leq 3$.

Proof. Since $\left|C\left(L_{1}\right)\right|+\left|C\left(L_{2}\right)\right|=2$, one can easily see that $\Gamma_{2}\left(L_{1} \times L_{2}\right) \cong$ $K_{\left|L_{1}\right|-1,\left|L_{2}\right|-1}$. Therefore, the graph $\Gamma_{2}\left(L_{1} \times L_{2}\right)$ is planar if and only if $\left|L_{1}\right| \leq 3$ or $\left|L_{2}\right| \leq 3$.

Now, suppose that L_{1} and L_{2} are lattices such that $\left|C\left(L_{1}\right)\right|+\left|C\left(L_{2}\right)\right|=3$. Let $\left|C\left(L_{1}\right)\right|=1$ and $\left|C\left(L_{2}\right)\right|=2$. If $\left|L_{1}\right|,\left|L_{2}\right| \geq 5$, then one can find a copy of $K_{3,3}$ in the graph $\Gamma_{2}\left(L_{1} \times L_{2}\right)$. Thus, by Kuratowski's Theorem, $\Gamma_{2}\left(L_{1} \times L_{2}\right)$ is not planar. Therefore, if $\Gamma_{2}\left(L_{1} \times L_{2}\right)$ is planar, then $\left|L_{1}\right| \leq 4$ or $\left|L_{2}\right| \leq 4$. Now, we have the following cases:

Case 1. Suppose that $\left|L_{1}\right|=3$. If $\left|S_{i}^{L_{2}}\right| \geq 2$, for all $1 \leq i \leq 2$, then we can find a subdivision of K_{5} as in Figure 2, where $y_{i} \in S_{i}^{L_{2}} \backslash\left\{\mathfrak{t}_{i}\right\}$, for all $1 \leq i \leq 2$, and so $\Gamma_{2}\left(L_{1} \times L_{2}\right)$ is not planar.

Figure 2

If $\left|S_{i}^{L_{2}}\right|=1$ and $\left|S_{j}^{L_{2}}\right| \geq 2$, for some $1 \leq i \neq j \leq 2$, then we can find a subdivision of K_{5} as in Figure 3, where $y_{j} \in S_{j}^{L_{2}} \backslash\left\{\mathfrak{t}_{j}\right\}$, for some $1 \leq i \neq j \leq 2$. Hence $\Gamma_{2}\left(L_{1} \times L_{2}\right)$ is not planar.

Now, if $\left|S_{i}^{L_{2}}\right|=1$, for all $1 \leq i \leq 2$, then $\Gamma_{2}\left(L_{1} \times L_{2}\right)$ is pictured in Figure 4, and so $\Gamma_{2}\left(L_{1} \times L_{2}\right)$ is planar.

Figure 3

Figure 4

Figure 5

Case 2. Suppose that $\left|L_{1}\right|=4$. In this situation one can find a copy of $K_{3,3}$ as in Figure 5, where $x \in L \backslash\left\{0,1, \mathfrak{m}_{1}\right\}$, and so $\Gamma_{2}\left(L_{1} \times L_{2}\right)$ is not planar.

Case 3. Suppose that $\left|L_{2}\right|=4$ and $\left|L_{1}\right|=3$. In this situation $\Gamma_{2}\left(L_{1} \times L_{2}\right)$ is pictured in Figure 6, and hence $\Gamma_{2}\left(L_{1} \times L_{2}\right)$ is planar.

Figure 6

Thus we have the following theorem.
Theorem 3.3. Suppose that $\left|C\left(L_{1}\right)\right|+\left|C\left(L_{2}\right)\right|=3$ such that $\left|C\left(L_{1}\right)\right|=1$ and $\left|C\left(L_{2}\right)\right|=2$. Then $\Gamma_{2}\left(L_{1} \times L_{2}\right)$ is planar if and only if one of the following conditions holds.
(i) $\left|L_{1}\right|=3$ and $\left|S_{i}^{L_{2}}\right|=1$, for all $1 \leq i \leq 2$.
(ii) $\left|L_{2}\right|=4$ and $\left|L_{1}\right|=3$.

Finally assume that $\left|C\left(L_{1}\right)\right|+\left|C\left(L_{2}\right)\right|=4$. Now, we have the following cases:
Case 1. Suppose that $\left|C\left(L_{1}\right)\right|=1$ and $\left|C\left(L_{2}\right)\right|=3$. Then we can find a subdivision of K_{5} as in Figure 7. So $\Gamma_{2}\left(L_{1} \times L_{2}\right)$ is not planar.

Figure 7

Case 2. Assume that $\left|C\left(L_{1}\right)\right|=2=\left|C\left(L_{2}\right)\right|$. In this situation we can find a subdivision of $K_{3,3}$ as in Figure 8, and so $\Gamma_{2}\left(L_{1} \times L_{2}\right)$ is not planar.

Figure 8

Now we have the following theorem from the above discussion.
Theorem 3.4. Suppose that $\left|C\left(L_{1}\right)\right|+\left|C\left(L_{2}\right)\right|=4$. Then $\Gamma_{2}\left(L_{1} \times L_{2}\right)$ is not planar.

4. Outerplanarity of $\Gamma_{2}(L)$ and $\Gamma_{2}\left(L_{1} \times L_{2}\right)$

An undirected graph is outerplanar if it can be drawn in the plane without crossing in such a way that all of the vertices belong to the unbounded face of the drawing. There is a characterization for outerplanar graphs that says a graph is outerplanar if and only if it does not contain a subdivision of K_{4} or $K_{2,3}$.

In the following, we characterize all lattices L such that $\Gamma_{2}(L)$ is outerplanar.
Lemma 4.1. If $\Gamma_{2}(L)$ is outerplanar, then $|C(L)| \leq 3$.
Proof. Assume to the contrary that $|C(L)| \geq 4$. Since the induced subgraph of $\Gamma_{2}(L)$ with vertex-set $C(L)$ is a complete subgraph, one can find a copy of K_{4} in $\Gamma_{2}(L)$, and so $\Gamma_{2}(L)$ is not outerplanar. Hence we have $|C(L)| \leq 3$.

By Lemma 4.1, we must study the cases that $|C(L)|$ is equal to 2 and 3 . In the following proposition, we state the necessary and sufficient condition for outerplanarity of $\Gamma_{2}(L)$, when $|C(L)|=2$.

Proposition 4.2. Suppose that $|C(L)|=2$. Then $\Gamma_{2}(L)$ is outerplanar if and only if $\left|S_{i}\right|=1$, for some $1 \leq i \leq 2$, or $\left|S_{i}\right| \leq 2$, for all $1 \leq i \leq 2$.

Proof. Since $|C(L)|=2$, we have that $\Gamma_{2}(L)$ is a complete bipartite graph. Now one can easily see that $\Gamma_{2}(L)$ is outerplanar if and only if $\left|S_{i}\right|=1$, for some $1 \leq i \leq 2$, or $\left|S_{i}\right| \leq 2$, for all $1 \leq i \leq 2$.

In the sequel of this section, we investigate the outerplanarity of $\Gamma_{2}(L)$, when $|C(L)|=3$. If $\left|\cup_{i=1}^{3} S_{i}\right| \geq 5$, then one can find a copy of $K_{2,3}$ in the structure of $\Gamma_{2}(L)$, and so $\Gamma_{2}(L)$ is not outerplanar. Therefore, if $\Gamma_{2}(L)$ is outerplanar, then $\left|\cup_{i=1}^{3} S_{i}\right| \leq 4$. Now, we have the following cases:

Case 1. Suppose that $\left|\cup_{i=1}^{3} S_{i}\right|=3$. In this situation $\Gamma_{2}(L)$ is a unicyclic graph which is in pictured in Figure 9, and so it is outerplanar.

Figure 9
Case 2. Suppose that $\left|\cup_{i=1}^{3} S_{i}\right|=4$. Assume that $\left|S_{i}\right|=2$. If $\left|S_{j k}\right| \geq 1$, for some $1 \leq i \neq j \neq k \leq 3$, then we can find a copy of $K_{2,3}$ as in Figure 10, where $\mathfrak{m}_{i}^{\prime} \in S_{i} \backslash \mathfrak{m}_{i}$ and $c_{j k} \in S_{j k}$, for some $1 \leq i \neq j \neq k \leq 3$, and so $\Gamma_{2}(L)$ is not outerplanar.

Figure 10
Now, if $S_{j k}=\emptyset$, for all $1 \leq i \neq j \neq k \leq 3$, then $\Gamma_{2}(L)$ is isomorphic to the graph which is pictured in Figure 11, and so $\Gamma_{2}(L)$ is outerplanar.

Theorem 4.3. Suppose that $|C(L)|=3$. Then $\Gamma_{2}(L)$ is outerplanar if and only if one of the following conditions holds.
(i) $\left|\cup_{i=1}^{3} S_{i}\right|=3$.
(ii) $\left|\cup_{i=1}^{3} S_{i}\right|=4$ and if $\left|S_{i}\right|=2$, for some $1 \leq i \leq 3$, then $S_{j k}=\emptyset$, for all $1 \leq i \neq j \neq k \leq 3$.

Figure 11

In the following, we characterize all lattices L_{1} and L_{2} such that $\Gamma_{2}\left(L_{1} \times L_{2}\right)$ is outerplanar. Clearly, if $\Gamma_{2}\left(L_{1} \times L_{2}\right)$ is outerplanar, then, by Lemmas 2.7 and 4.1, $\left|C\left(L_{1}\right)\right|+\left|C\left(L_{2}\right)\right| \leq 3$. In the next two theorems, we investigate the cases that $\left|C\left(L_{1}\right)\right|+\left|C\left(L_{2}\right)\right|=2$ and $\left|C\left(L_{1}\right)\right|+\left|C\left(L_{2}\right)\right|=3$.

Theorem 4.4. Suppose that $\left|C\left(L_{1}\right)\right|+\left|C\left(L_{2}\right)\right|=2$. Then $\Gamma_{2}\left(L_{1} \times L_{2}\right)$ is outerplanar if and only if $\left|L_{i}\right| \leq 3$ or, $\left|L_{j}\right| \leq 4$ with $\left|L_{i}\right| \leq 2$, for some $1 \leq i \neq$ $j \leq 2$.

Proof. Since $\left|C\left(L_{1}\right)\right|+\left|C\left(L_{2}\right)\right|=2$, one can easily see that $\Gamma_{2}\left(L_{1} \times L_{2}\right) \cong$ $K_{\left|L_{1}\right|-1,\left|L_{2}\right|-1}$. Therefore, $\Gamma_{2}\left(L_{1} \times L_{2}\right)$ is an outerplanar graph if and only if $\left|L_{i}\right| \leq 3$ or, $\left|L_{j}\right| \leq 4$ and $\left|L_{i}\right| \leq 2$, for some $1 \leq i \neq j \leq 2$.

Now, suppose that L_{1} and L_{2} are lattices such that $\left|C\left(L_{1}\right)\right|=1$ and $\left|C\left(L_{2}\right)\right|=2$. If $\left|L_{i}\right| \geq 4$ and $\left|L_{j}\right| \geq 5$, for all $1 \leq i \neq j \leq 2$, then we can find a copy of $K_{2,3}$ in the graph $\Gamma_{2}\left(L_{1} \times L_{2}\right)$. Thus $\Gamma_{2}\left(L_{1} \times L_{2}\right)$ is not outerplanar. Therefore, if $\Gamma_{2}\left(L_{1} \times L_{2}\right)$ is outerplanar, then $\left|L_{1}\right|=3$, or $\left|L_{2}\right|=4$ with $\left|L_{1}\right| \leq 4$. Now, in the following two cases, we study the outerplanarity of $\Gamma_{2}\left(L_{1} \times L_{2}\right)$ whenever $\left|L_{1}\right|=3$, or $\left|L_{1}\right| \leq 4$ with $\left|L_{2}\right|=4$.

Case 1. Suppose that $\left|L_{1}\right|=3$. If $\left|S_{i}^{L_{2}}\right| \geq 2$, for some $1 \leq i \leq 2$, then we can find a subdivision of K_{4} as in Figure 12, where $y_{i} \in S_{i}^{L_{2}} \backslash\left\{\mathfrak{t}_{i}\right\}$, and so $\Gamma_{2}\left(L_{1} \times L_{2}\right)$ is not outerplanar.

Now, if $\left|S_{i}^{L_{2}}\right|=1$, for all $1 \leq i \leq 2$, then one can find a copy of $K_{2,3}$ as in Figure 13, and so $\Gamma_{2}\left(L_{1} \times L_{2}\right)$ is not outerplanar.

Case 2. Suppose that $\left|L_{2}\right|=4$ and $\left|L_{1}\right| \leq 4$. If $\left|L_{1}\right|=4$, then one can find a copy of $K_{2,3}$ as in Figure 13, and so $\Gamma_{2}\left(L_{1} \times L_{2}\right)$ is not outerplanar.

If $\left|L_{1}\right|=3$, then $\Gamma_{2}\left(L_{1} \times L_{2}\right)$ is pictured in Figure 14, and so it is outerplanar.

Figure 12

Figure 13

Figure 14

Theorem 4.5. Suppose that $\left|C\left(L_{1}\right)\right|+\left|C\left(L_{2}\right)\right|=3$ such that $\left|C\left(L_{1}\right)\right|=1$ and $\left|C\left(L_{2}\right)\right|=2$. Then $\Gamma_{2}\left(L_{1} \times L_{2}\right)$ is outerplanar if and only if $\left|L_{2}\right|=4$ and $\left|L_{1}\right|=3$.

Let G be a graph with n vertices and q edges. We recall that a chord is any edge of G joining two nonadjacent vertices in a cycle of G. Let C be a cycle of G. We say C is a primitive cycle if it has no chords. Also, a graph G has the primitive cycle property $(P C P)$ if any two primitive cycles intersect in at most one edge. The number $\operatorname{frank}(G)$ is called the free rank of G and it is the number of primitive cycles of G. Also, the number $\operatorname{rank}(G)=q-n+r$ is called the cycle rank of G,
where r is the number of connected components of G. The cycle rank of G can be expressed as the dimension of the cycle space of G. By [9, Proposition 2.2], we have $\operatorname{rank}(G) \leq \operatorname{frank}(G)$. A graph G is called a ring graph if it satisfies one of the following equivalent conditions (see [9]).
(i) $\operatorname{rank}(G)=\operatorname{frank}(G)$,
(ii) G satisfies the $P C P$ and G does not contain a subdivision of K_{4} as a subgraph.
Clearly, every outerplanar graph is a ring graph and every ring graph is a planar graph.

Now, in view of the proofs of Proposition 4.2 and Theorem 4.3, we have the following result.

Theorem 4.6. The comaximal graph $\Gamma_{2}(L)$ is a ring graph if and only if it is an outerplanar graph.

5. End-regularity of zero-divisor graphs of lattices

Let G and H be graphs. A homomorphism from G to H is a map from $V(G)$ to $V(H)$ such that for any $a, b \in V(G), a$ is adjacent to b implies that $f(a)$ is adjacent to $f(b)$. Moreover, if f is bijective and its inverse mapping is also a homomorphism, then we call f an isomorphism from G to H, and in this case we say G is isomorphic to H, denoted by $G \cong H$. A homomorphism (resp, an isomorphism) from G to itself is called an endomorphism (resp, automorphism) of G. An endomorphism f is said to be half-strong if $f(a)$ is adjacent to $f(b)$ implies that there exist $c \in f^{-1}(f(a))$ and $d \in f^{-1}(f(b))$ such that c is adjacent to d. By $\operatorname{End}(G)$, we denote the set of all the endomorphisms of G. It is wellknown that $\operatorname{End}(G)$ is a monoid with respect to the composition of mappings. Let S be a semigroup. An element a in S is called regular if $a=a b a$ for some $b \in S$ and S is called regular if every element in S is regular. Also, a graph G is called end-regular if $\operatorname{End}(G)$ is regular.

Now, we recall the following Lemma from [14].
Lemma 5.1 ([14, Lemma 2.1]). Let G be a graph. If there are pairwise distinct vertices a, b, c in G satisfying $\mathrm{N}(c) \varsubsetneqq \mathrm{N}(a) \subseteq \mathrm{N}(b)$, then G is not endregular.

Lemma 5.2. Suppose that $|C(L)| \geq 3$. If $S_{i \ldots j}, S_{i \ldots j \ldots k} \neq \emptyset$, such that $\left|S_{i \ldots j}\right|>1$, for some $1 \leq i<j<k<n$, or $S_{i \ldots j}, S_{i \ldots j \ldots k}, S_{i \ldots j \ldots k \ldots t} \neq \emptyset$, for some $1 \leq i<j<k<t<n$, then $\Gamma_{2}(L)$ is not end-regular.

Proof. First suppose that $S_{i \ldots j}, S_{i \ldots j \ldots k} \neq \emptyset$ and $\left|S_{i \ldots j}\right|>1$, for some $1 \leq$ $i<j<n$. Let $a, b \in S_{i \ldots j}$ and $c \in S_{i \ldots j \ldots k}$. Then $\mathrm{N}(c) \varsubsetneqq \mathrm{N}(a)$, since $\mathfrak{m}_{k} \in$ $\mathrm{N}(a) \backslash \mathrm{N}(c)$. Now, we have $\mathrm{N}(c) \varsubsetneqq \mathrm{N}(a) \subseteq \mathrm{N}(b)$, and so, by Lemma 5.1, $\Gamma_{2}(L)$ is not end-regular. If $S_{i \ldots j}, S_{i \ldots j \ldots k}, S_{i \ldots j \ldots k \ldots t} \neq \emptyset$, for some $1 \leq i<j<k<t<n$, then consider the elements $a \in S_{i \ldots j}, b \in S_{i \ldots j \ldots k}$ and $c \in S_{i \ldots j \ldots k \ldots t}$. Now, we have $\mathrm{N}(c) \varsubsetneqq \mathrm{N}(b) \subseteq \mathrm{N}(a)$. Hence $\Gamma_{2}(L)$ is not end-regular.

Proposition 5.3. Suppose that $|C(L)|=2$. Then $\Gamma_{2}(L)$ is end-regular.
Proof. Clearly $\Gamma_{2}(L)$ is a complete bipartite graph. Now, by [23, Theorem 3.4], we have that $\Gamma_{2}(L)$ is end-regular.

Lemma 5.4. Suppose that $x, y \in W(L) \backslash \bigcap_{\mathfrak{m} \in C(L)}\{\mathfrak{m}\}^{\ell}$. Then $\mathrm{N}(x) \subseteq \mathrm{N}(y)$ if and only if $Z_{x} \subseteq Z_{y}$ and $x \vee y \neq 1$.

Proof. (\Leftarrow) It is trivial.
(\Rightarrow) If $\mathrm{N}(x) \subseteq \mathrm{N}(y)$, then $Z_{x} \subseteq Z_{y}$. Suppose to the contrary that $x \vee y=1$. Then x is adjacent to y. This means that $y \in \mathrm{~N}(x) \subseteq \mathrm{N}(y)$, and so $y \in \mathrm{~N}(y)$, which is a contradiction.

Proposition 5.5. Suppose that $L=L_{1} \times L_{2} \times \cdots \times L_{n}$. Then we have the following statements.
(i) If $n \geq 3$, then $\Gamma_{2}\left(L_{1} \times L_{2} \times \cdots \times L_{n}\right)$ is not end-regular.
(ii) If $\left|C\left(L_{1}\right)\right|=1=\left|C\left(L_{2}\right)\right|$, then $\Gamma_{2}\left(L_{1} \times L_{2}\right)$ is end-regular.

Proof. (i) Suppose that $C\left(L_{1}\right)=\left\{\mathfrak{m}_{1}, \mathfrak{m}_{2}, \ldots, \mathfrak{m}_{n}\right\}, C\left(L_{2}\right)=\left\{\mathfrak{t}_{1}, \mathfrak{t}_{2}, \ldots, \mathfrak{t}_{s}\right\}$ and $C\left(L_{3}\right)=\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$, where $n, s, r \geq 1$. Set $x:=\left(\mathfrak{m}_{i}, 1, \ldots, 1\right), y:=$ $\left(\mathfrak{m}_{i}, \mathfrak{t}_{j}, 1, \ldots, 1\right)$ and $z:=\left(\mathfrak{m}_{i}, \mathfrak{t}_{j}, v_{k}, 1, \ldots, 1\right)$, for some $1 \leq i \leq n, 1 \leq j \leq s$ and $1 \leq k \leq v$. Then $\mathrm{N}(z) \varsubsetneqq \mathrm{N}(y) \varsubsetneqq \mathrm{N}(x)$. Now, by Lemmas 5.1 and $5.4, \Gamma_{2}(L)$ is not end-regular.
(ii) Note that in this case, $\Gamma_{2}\left(L_{1} \times L_{2}\right)$ is a complete bipartite graph and, by [23, Theorem 3.4], every complete bipartite graph is end-regular.

Lemma 5.6. Assume that $\Gamma_{2}\left(L_{2}\right)$ has distinct vertices x and y such that $x, y \notin C\left(L_{2}\right)$ and $\mathrm{N}(x) \subseteq \mathrm{N}(y)$. Then $\Gamma_{2}\left(L_{1} \times L_{2}\right)$ is not end-regular.

Proof. Suppose that $b \in C\left(L_{2}\right)$. Then it follows from the fact that $\mathrm{N}((1, x)) \varsubsetneqq \mathrm{N}((1, y)) \varsubsetneqq \mathrm{N}((1, b))$.

Acknowledgments. The authors are deeply grateful to the referee for careful reading of the manuscript and helpful suggestions.

References

[1] M. Afkhami and K. Khashyarmanesh, Bull. Malays. Math. Sci. Soc. (to appear).
[2] M. Afkhami and K. Khashyarmanesh, The cozero-divisor graph of a commutative ring, Southeast Asian Bull. Math. 35 (2011), 753-762.
[3] D. F. Anderson, M. C. Axtell and J. A. Stickles, Zero-divisor graphs in commutative rings, in: Commutative Algebra, Noetherian and Non-Noetherian Perspectives, (M. Fontana, S. E. Kabbaj, B. Olberding, I. Swanson, eds.), Springer-Verlag, New York, 2011.
[4] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), 434-447.
[5] I. BECK, Coloring of commutative rings, J. Algebra 116 (1998), 208-226.
[6] F. R. Demeyer and L. DeMeyer, Zero-divisor graphs of semigroups, J. Algebra 283 (2005), 190-198.
[7] L. Demeyer, S. K. Nimbhokar and M. P. Wasadikar, Coloring of meet semilattices, Ars. Combin. 84 (2007), 97-104.
[8] E. Estaji and K. Khashyarmanesh, The zero-divisor graph of a lattice, Results Math. 61 (2012), 1-11.
[9] I. Gitler, E. Reyes and R. H. Villarreal, Ring graphs and complete intersection toric ideals, Discrete Math. 310 (2010), 430-441.
[10] A. V. Kelarev, Graph Algebras and Automata, Marcel Dekker, New York, 2003.
[11] A. V. Kelarev and S. J. Quinn, A combinatorial property and power graphs of groups, Contrib. General Algebra 12 (2000), 229-235.
[12] A. V. Kelarev and S. J. Quinn, Directed graphs and combinatorial properties of semigroups, J. Algebra 251 (2002), 16-26.
[13] A. V. Kelarev, J. Ryan and J. Yearwood, Cayley graphs as classifiers for data mining: the influence of asymmetries, Discrete Math. 309 (2009), 5360-5369.
[14] W. M. Li and J. F. Chen, Endomorphism-regularity of split graphs, European J. Combin. 22 (2001), 207-216.
[15] C. H. Li and C. E. Praeger, On the isomorphism problem for finite Cayley graphs of bounded valency, European J. Combin. 20 (1999), 279-292.
[16] H. R. Maimani, M. Salimi, A. Sattari and S. Yassemi, Comaximal graph of commutative rings, J. Algebra 319 (2008), 1801-1808.
[17] J. B. Nation, Notes on Lattice Theory, Cambridg Studies in Advanced Mathematics, Vol. 60, Cambridg University Press, Cambridg, 1998.
[18] C. E. Praeger, Finite transitive permutation groups and finite vertex-transitive graphs, Graph Symmetry: Algebraic Methods and Applications, Kluwer, Dordrecht, 1997.
[19] P. K. Sharma and S. M. Bhatwadekar, A note on graphical representation of rings, J. Algebra 176 (1995), 124-127.
[20] A. Thomson and S. Zhou, Gossiping and routing in undirected triple-loop networks, Networks 55 (2010), 341-349.
[21] H. J. WANG, Graphs assocated to co-maximal ideals of commutativr rings, J. Algebra $\mathbf{3 2 0}$ (2008), 2914-2933.
[22] H. J. WANG, Co-maximal graph of non-commutative rings, Linear Algebra and Appl. 430 (2009), 633-641.
[23] E. Wilkeit, Graphs with a regular endomorphism monoid, Arc. Math. 66 (1996), 344-352.
[24] S. Zhou, A class of arc-transitive Cayley graphs as models for interconnection networks, SIAM J. Discrete Math. 23 (2009), 694-714.

MOJGAN AFKHAMI	KAZEM KHASHYARMANESH
DEPARTMENT OF MATHEMATICS	DEPARTMENT OF PURE MATHEMATICS
UNIVERSITY OF NEYSHABUR	INTERNATIONAL CAMPUS OF
P.O. BOX 91136-899, NEYSHABUR	FERDOWSI UNIVERSITY OF MASHHAD
IRAN	P.O. BOX 1159-91775, MASHHAD
E-mail: mojgan.afkhami@yahoo.com	E-mail: khashyar@ipm.ir
FAEZE SHAHSAVAR	
DEPARTMENT OF PURE MATHEMATICS	
INTERNATIONAL CAMPUS OF	
FERDOWSI UNIVERSITY OF MASHHAD	
P.O. BOX 1159-91775, MASHHAD	
IRAN	

(Received January 18, 2014; revised December 24, 2014)

[^0]: Mathematics Subject Classification: 05C10, 05C99, 06B99.
 Key words and phrases: lattice, comaximal graph, cut vertex, planar graph, end-regular.
 The second corresponding author.

