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On the planar, outer planar, cut vertices and end-regular
comaximal graph of lattices

By MOJGAN AFKHAMI (Neyshabur), KAZEM KHASHYARMANESH (Mashhad)
and FAEZE SHAHSAVAR (Mashhad)

Abstract. In this paper, we determine the cut vertices in the comaximal graphs of

lattices and study the lattices with end-regular comaximal graphs. Also, we investigate

the comaximal graph of the product of two lattices. In particular, we determine all

lattices with planar and outerplanar comaximal graphs.

1. Introduction

The investigation of graphs related to various algebraic structures is a very

large and growing area of research. In particular, Cayley graphs have attracted

serious attention in the literature and in the last 50 years, it has been grown

into a substantial branch in algebraic graph theory. Cayley graphs have found

many useful applications in solving and understanding a variety of problems of

scientific interest, see [10], [13], [15], [18], [20], [24] for examples of recent results

and further references. Several other classes of graphs associated with algebraic

structures have been also actively investigated. For example, power graphs and

divisibility graphs have been considered in [11], [12], zero-divisor graphs have been

studied in [3], [4], [5], [6], [7], [8] and cozero-divisor graphs have been introduced

in [2].

Let R be a commutative ring with non-zero identity. In [19], Sharma and

Bhatwadekar defined the comaximal graph on R, denoted by Γ(R), with all

elements of R being the vertices of Γ(R), where two distinct vertices a and b are
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adjacent if and only if Ra + Rb = R. In [16] and [21], the authors considered

a subgraph Γ2(R) of Γ(R) consisting of non-unit elements of R, and studied

several properties of the comaximal graph. Also the comaximal graph of a non-

commutative ring was defined and studied in [22]. Recently, the first two authors

defined and studied the comaximal graph of a lattice, which is denoted by Γ2(L),

in [1].

In Section 2, we study the cut vertices in the comaximal graph Γ2(L). Also,

we investigate some basic properties of Γ2(L1 × L2), where L1 and L2 are two

bounded lattices. In Section 3, we study the planarity of Γ2(L1×L2). In Section 4,

we investigate the outerplanarity in the comaximal graphs of lattices, and in the

last section, we study the end-regularity in Γ2(L).

In a graph G, the distance between two distinct vertices a and b, denoted

by d(a, b), is the length of the shortest path connecting a and b, if such a path

exists; otherwise, we set d(a, b) := ∞. The diameter of a graph G is diam(G) =

sup{d(a, b) : a and b are distinct vertices of G}. A graphG is said to be connected

if there exists a path between any two distinct vertices, and it is complete if it

is connected with diameter one. We use Kn to denote the complete graph with

n vertices. Also, we say that G is totally disconnected if no two vertices of G

are adjacent. For a vertex x of a graph G, The neighborhood (resp, degree) of x,

denoted by N(x) (resp, d(x)), is the set of vertices which are adjacent to x (resp,

the cardinality of N(x)). A clique of a graph is a maximal complete subgraph of

it and the number of vertices in a largest clique of G is called the clique number

of G and is denoted by ω(G). Also, a vertex a is an end vertex, if there is only

one edge incident to a. In the graph theory, a unicycle graph is a graph that has

exactly one cycle. The graph with no vertices and no edges is the null graph.

A lattice is a set L with two binary operations ∧ and ∨ on L satisfying the

following conditions: for all a, b, c ∈ L,

1. a ∧ a = a, a ∨ a = a,

2. a ∧ b = b ∧ a, a ∨ b = b ∨ a,

3. (a ∧ b) ∧ c = a ∧ (b ∧ c), a ∨ (b ∨ c) = (a ∨ b) ∨ c, and

4. a ∨ (a ∧ b) = a ∧ (a ∨ b) = a.

Note that in every lattice a ∧ b = a always implies that a ∨ b = b.

By [17, Theorem 2.1], one can define an order ≤ on a lattice L as follows:

For any a, b ∈ L, we set a ≤ b if and only if a ∧ b = a. Then (L,≤) is an

ordered set in which every pair of elements has a greatest lower bound (g.l. b.)

and a least upper bound (l.u. b.). Conversely, let P be an ordered set such that,
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for every pair a, b ∈ P , g.l.b.(a, b), l.u.b.(a, b) ∈ P . For each a and b in P , we

define a ∧ b := g.l.b.(a, b) and a ∨ b := l.u.b.(a, b). Then (P,∧,∨) is a lattice.

A lattice L is said to be bounded if there are elements 0 and 1 in L such that

0 ∧ a = 0 and a ∨ 1 = 1, for all a ∈ L. Clearly every finite lattice is bounded. A

lattice with two elements is called a trivial lattice. In a partially ordered set (P,≤),

we say that a covers b or b is covered by a, in notation b ≺ a, if and only if b < a

and there is no element p in P such that b < p < a. Assume that S is a subset of P .

Then an element x in P is a lower bound of S if x � s for all s ∈ S. The set of all

lower bounds of S is denoted by S� i.e. S� := {x ∈ P | x � s, for all s ∈ S}. An
element a in L is called an atom if 0 ≺ a. Similarly, a is called a co-atom if a ≺ 1.

Throughout the paper, all lattices are finite. Also, C(L) = {m1,m2, . . . ,mn} is

the set of all co-atoms of L.

2. Cut vertices in the comaximal graph of a lattice

An element a in L is said to be unit if there exits an element b in L such

that a ∧ b = 1. It is easy to see that 1 is the only unit element in every lattice.

The comaximal graph of a lattice L, denoted by Γ(L), is an undirected graph

with all elements of L being the vertices, and two distinct vertices a and b are

adjacent if and only if a ∨ b = 1 (see [1]). In Γ(L) the vertex 1, which is the only

unit element in L, is adjacent to all other vertices. Thus we consider L \ {1} as

vertex-set and denote this set by W (L). In [1, Proposition 3.1], it was mentioned

that an induced subgraph of the comaximal graph with vertex-set
⋂{m}�, where

m ∈ C(L), is totally disconnected and it is disjoint from an induced subgraph with

vertices in W (L)\⋂m∈C(L){m}�. Hence, all vertices in ⋂
m∈C(L){m}� are isolated

vertices. Therefore we ignore these isolated vertices and consider an induced

subgraph with vertex-set W (L) \⋂m∈C(L){m}�, which is denoted by Γ2(L).

Clearly, if |C(L)| = 1, then Γ2(L) is a null graph. Therefore, we suppose

that n = |C(L)| ≥ 2.

Recall that a vertex a of a graph G is called a cut vertex if the removal

of a and all edges incident to a creates a graph with more connected components

than G.

Theorem 2.1. If m is a cut vertex in Γ2(L), then m is a co-atom of L.

Proof. Assume that m is not a co-atom. Since m is a cut vertex, Γ2(L)\{m}
has at least two components X and Y . We claim that C(L) ⊆ X or C(L) ⊆ Y .

Otherwise there are co-atoms mi and mj, where 1 ≤ i 
= j ≤ n, such that mi ∈ X
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and mj ∈ Y . Now we have that mi is adjacent to mj, which is impossible. Without

loss of generality, we may assume that C(L) ⊆ X . Then, for all y ∈ Y , we have

y ∈ {mi}�, for i = 1, 2, . . . , n. Thus y ∈ ∩n
i=1{mi}�, which is impossible. Therefore

m ∈ C(L). �

The following example shows that the converse of Theorem 2.1 is not true in

general.

Example 2.2. Suppose that L is a lattice in Figure 1. Then, it is easy to see

that m1 is a co-atom, but it is not a cut vertex in Γ2(L).

0

a1

m2m1

1

m2

m1 a1

Figure 1. L and Γ2(L)

Notation 2.3. Let i1, i2, . . . , ik be integers with 1 ≤ i1 < i2 < · · · < ik ≤ n.

The notation SL
i1i2...ik

stands for the following set:

{x ∈ L | x ∈ ∩k
t=1{mit}� \ ∪j �=i1,i2,...,ik{mj}�}.

Note that no two distinct elements in SL
i1i2...ik

are adjacent in Γ2(L). Also if

the index sets {i1, i2, . . . , ik} and {j1, j2, . . . , jk′} of SL
i1i2...ik

and SL
j1j2...jk′ , re-

spectively, are distinct, then one can easily check that SL
i1i2...ik

∩ SL
j1j2...jk′ = ∅,

and also each vertex in SL
i1i2...ik

is adjacent to all vertices in SL
j1j2...jk′ . Moreover

L \ {1} = ∪n
k=1,1≤i1<i2<···<ik≤nS

L
i1i2...ik

. If there is no ambiguity, we denote the

set SL
i1i2...ik

by Si1i2...ik . Also by 1 . . . î . . . n we mean that 1 . . . i− 1 i + 1 . . . n.

In the next theorem, we provide conditions under which the converse of

Theorem 2.1 holds.

Theorem 2.4. Suppose that |V (Γ2(L))| ≥ 3. Then there exists a positive

integer i with 1 � i � n such that mi is a cut vertex in Γ2(L), if Si = {mi} and

S1...̂i...n 
= ∅, for some 1 ≤ i ≤ n.
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Proof. It is enough to show that there exist vertices b and c in L such that

mi is in every path from b to c in Γ2(L). Since S1...̂i...n 
= ∅, there is an element b

in S1...̂i...n. Also, for some j 
= i, consider c ∈ Sj . Now, in view of Notation 2.3,

since Si ∩ S1...̂i...n = ∅, we have that mi is a unique neighbor of b. Also, mi is

adjacent to c. Therefore, mi is a cut vertex in Γ2(L). �

Definition 2.5. For any x in L, set

Zx := {y ∈ L | x ∨ y = 1}.

We say that Zx is properly maximal if Zx ⊆ Zb, for some b ∈ L, then we have

Zx = Zb.

Theorem 2.6. If m is a cut vertex in Γ2(L), then Zm is properly maximal.

Proof. Assume on the contrary that Zm � Zb, for some vertices b in Γ2(L)

with b 
= m. Then clearly all vertices adjacent to m are also adjacent to b. This

is a contradiction with the fact that m is a cut vertex. �

Let (L1,∧1,∨1) and (L2,∧2,∨2) be two bounded lattices. Then, clearly

(L1 × L2,∧,∨) is also a bounded lattice with the following relations. For two

distinct elements (a, b), (c, d) ∈ L1×L2 we say that (a, b)∧ (c, d) = (a∧1 c, b∧2 d)

and (a, b) ∨ (c, d) = (a ∨1 c, b ∨2 d). Clearly (L1 × L2,∧,∨) has the minimum

element (0, 0) and the maximum element (1, 1). Suppose that L1 and L2 are two

finite lattices such that C(L1) = {m1,m2, . . . ,mn} and C(L2) = {t1, t2, . . . , tm}.
In the following, we study some properties of the comaximal graph Γ2(L1 × L2).

Lemma 2.7. In the lattice L1 ×L2, we have C(L1 ×L2) = (C(L1)×{1})∪
({1} × C(L2)), and so |C(L1 × L2)| = |C(L1)|+ |C(L2)|.

Proof. Suppose that (m, t) is an arbitrary element in C(L1×L2). Ifm, t 
= 1,

then we have (m, t) < (m, 1) < (1, 1) which is impossible. Thus we have m = 1 or

t = 1. Without loss of generally, we may assume that t = 1. If m /∈ C(L1), then

there exists a co-atom mi ∈ C(L1), for some 1 ≤ i ≤ n, such that m < mi. Hence

we have that (m, 1) < (mi, 1) < (1, 1) which is impossible. Therefore m ∈ C(L1),

and so the result holds. �

We can extend the concept of L1 × L2 for a product of finite number of

lattices.

Corollary 2.8. Let L = L1×L2×· · ·×Ln, where for i = 1, 2, . . . , n, (Li,≤i)

is a lattice with 1. Then C(L) consists of elements (m1,m2, . . . ,mn) such that

there exists 1 ≤ j ≤ n with mj ∈ C(Lj), and, for all i with 1 ≤ i 
= j ≤ n, mi = 1.
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Proposition 2.9. Assume that L1, . . . , Ln are non-trivial lattices. Let L =

L1 × L2 × · · · × Ln be a lattice such that L 
= L1 × L2, with |L1| = |L2| = 3. If

m = (1, . . . , 1, ui, 1, . . . , 1) ∈ V (Γ2(L)), is a cut vertex with component ui such

that ui /∈ V (Γ2(Li)), then |Li| = 3.

Proof. Assume on the contrary that Li has at least four elements, and so

there exists vi in Li \ {0, 1, ui}. It is easy to see that Zm ⊆ Z(1,...,1,vi,1,...,1). Since

m is a cut vertex, by Theorem 2.6, we have that Zm = Z(1,...,1,vi,1,...,1). If m 
=
(1, . . . , 1, vi, 1, . . . , 1), then m is not a cut vertex. So m = (1, . . . , 1, vi, 1, . . . , 1).

Hence ui = vi, which is a contradiction. �

Lemma 2.10. In the graph Γ2(L), we have ω(Γ2(L)) ≥ |C(L)|.
Proof. The induced subgraph of Γ2(L) with vertex-set C(L) is a complete

graph. So we have ω(Γ2(L)) ≥ |C(L)|. �

Now the following corollary follows from Lemmas 2.7 and 2.10.

Corollary 2.11. In the graph Γ2(L1 × L2), we have

ω(Γ2(L1 × L2)) ≥ |C(L1)|+ |C(L2)|.

For a graph G, the girth of G is the length of the shortest cycle in G and is

denoted by gr(G). If G has no cycles, we put gr(G) := ∞. In 1916, the Hungarian

mathematician, Dénes König (1884–1944) deduced that a graph is bipartite if

and only if it contains no cycles of odd length.

One can easily see that Γ2(L) is a star graph if and only if L has two co-

atoms m1 and m2, such that |S1| = 1 or |S2| = 1. Also, Γ2(L) is a bipartite

graph but not a star graph if and only if L has two co-atoms m1 and m2 such

that |S1|, |S2| > 1.

In [1, Theorem 3.6], it was proved that gr(Γ2(L)) ∈ {3, 4,∞}. In the following

theorem, we characterize the cases that gr(Γ2(L)) is 3, 4 or ∞.

Theorem 2.12. Let L be a lattice. Then the following statements hold:

(i) gr(Γ2(L)) = ∞ if and only if Γ2(L) is a star graph.

(ii) gr(Γ2(L)) = 4 if and only if Γ2(L) is a bipartite graph which is not a star

graph.

(iii) gr(Γ2(L)) = 3 if and only if Γ2(L) contains an odd cycle.

Proof. (i) First assume that gr(Γ2(L)) = ∞. Suppose that Γ2(L) is not a

star graph. Since by [1, Theorem 3.2], Γ2(L) is connected, we have that |W (L) \
∩m∈C(L){m}�| ≥ 4. Also, since the graph Γ2(L) is not a star graph, so there
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is a path of the form a − x − b − c in the graph Γ2(L) such that a, b, x, c ∈
W (L) \ ∩m∈C(L){m}�. If a is adjacent to c, then a − x − b − c − a is a cycle in

Γ2(L), a contradiction. If a is not adjacent to c, then there exits z ∈ L \ {0, 1}
such that z ≥ a and z ≥ c. So z is adjacent to both vertices x and b. Hence we

have the cycle z − x− b− z in Γ2(L), which is a contradiction. Therefore Γ2(L)

is a star graph.

Conversely, if Γ2(L) is a star graph, then it is easy to see that gr(Γ2(L)) = ∞.

(ii) First assume that gr(Γ2(L)) = 4. Clearly, Γ2(L) is not a star graph. We

show that Γ2(L) has no odd cycles, which implies that it is bipartite. On the

contrary, let us assume that Γ2(L) has an odd cycle and that x1 − x2 − x3 −
· · · − xn − x1 be an odd cycle of minimal length n in Γ2(L). Clearly, n ≥ 5, since

gr(Γ2(L)) 
= 3. Now, the minimality of n ensures that x2 ∨ x4 
= 1. Suppose that

z = x2 ∨ x4 and it is not equal to 1. Then we have x1 ∨ z ≥ x1 ∨ x2 = 1 and

x5 ∨ z ≥ x5 ∨ x4 = 1. It follows that x1 − z − x5 − · · · − xn − x1 is a cycle of

length n− 2 in Γ2(L). This contradicts the minimality of n. Hence Γ2(L) has no

odd cycles.

Conversely, suppose that Γ2(L) is a bipartite graph which is not a star graph.

Then, we have gr(Γ2(L)) 
= 3. Also, by (i), gr(Γ2(L)) 
= ∞. Hence, we have

gr(Γ2(L)) = 4.

(iii) It follows from (i) and (ii). �

The following corollary follows immedietly from Theorem 2.12.

Corollary 2.13. In the graph Γ2(L), gr(Γ2(L1 × L2)) ∈ {3, 4,∞}.

3. Planarity of Γ2(L1 × L2)

Recall that a graph is said to be planar if it can be drawn in the plane,

so that its edges intersect only at their ends. A subdivision of a graph is any

graph that can be obtained from the original graph by replacing edges by paths.

A remarkable characterization of the planar graphs was given by Kuratowski in

1930. Kuratowski’s Theorem says that a graph is planar if and only if it contains

no subdivision of K5 or K3,3.

Theorem 3.1. If Γ2(L1 × L2) is planar, then |C(L1)|+ |C(L2)| ≤ 4.

Proof. Suppose on the contrary that |C(L1)| + |C(L2)| ≥ 5. Since the

induced subgraph of Γ2(L1 × L2) with the vertex-set C(L1 × L2) is a complete
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graph, we can find a subgraph isomorphic to K5 in Γ2(L1 × L2), and so, by

Kuratowski’s Theorem, it is not planar. Hence we have |C(L1)|+|C(L2)| ≤ 4. �

By Theorem 3.1, we must study the cases that |C(L1)| + |C(L2)| is equal

to 2, 3 and 4. In the following proposition, we state the necessary and sufficient

condition for planarity of Γ2(L1 × L2), when |C(L1)|+ |C(L2)| = 2.

Proposition 3.2. Suppose that |C(L1)| + |C(L2)| = 2. Then Γ2(L1 × L2)

is planar if and only if |L1| ≤ 3 or |L2| ≤ 3.

Proof. Since |C(L1)|+ |C(L2)| = 2, one can easily see that Γ2(L1 × L2) ∼=
K|L1|−1,|L2|−1. Therefore, the graph Γ2(L1 ×L2) is planar if and only if |L1| ≤ 3

or |L2| ≤ 3. �

Now, suppose that L1 and L2 are lattices such that |C(L1)| + |C(L2)| = 3.

Let |C(L1)| = 1 and |C(L2)| = 2. If |L1|, |L2| ≥ 5, then one can find a copy of

K3,3 in the graph Γ2(L1 × L2). Thus, by Kuratowski’s Theorem, Γ2(L1 × L2) is

not planar. Therefore, if Γ2(L1 × L2) is planar, then |L1| ≤ 4 or |L2| ≤ 4. Now,

we have the following cases:

Case 1. Suppose that |L1| = 3. If |SL2

i | ≥ 2, for all 1 ≤ i ≤ 2, then we can

find a subdivision of K5 as in Figure 2, where yi ∈ SL2

i \ {ti}, for all 1 ≤ i ≤ 2,

and so Γ2(L1 × L2) is not planar.

(m1,1)

(1,t1)

(1,y1)(1,t2)

(1,y2)

(m1,t2)(m1,y1)

Figure 2

If |SL2

i | = 1 and |SL2

j | ≥ 2, for some 1 ≤ i 
= j ≤ 2, then we can find a

subdivision of K5 as in Figure 3, where yj ∈ SL2

j \ {tj}, for some 1 ≤ i 
= j ≤ 2.

Hence Γ2(L1 × L2) is not planar.

Now, if |SL2

i | = 1 , for all 1 ≤ i ≤ 2, then Γ2(L1×L2) is pictured in Figure 4,

and so Γ2(L1 × L2) is planar.
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(1,t1)

(0,1)

(m1,1)(1,y2)

(1,t2)

(1,0)(0,t1)

Figure 3

(1,t1)

(1,0)

(0,1)

(1,t2)

(m1,1)

{1} × SL2
12

(0,t1)

(m1,t1)

(0,t2)

(m1,t2)

Figure 4

(x,1)

(1,t1)

(m1,1)

(1,0) (1,t2)

(0,1)

Figure 5
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Case 2. Suppose that |L1| = 4 . In this situation one can find a copy of K3,3

as in Figure 5, where x ∈ L \ {0, 1,m1}, and so Γ2(L1 × L2) is not planar.

Case 3. Suppose that |L2| = 4 and |L1| = 3. In this situation Γ2(L1 ×L2) is

pictured in Figure 6, and hence Γ2(L1 × L2) is planar.

(1,t1)

(m1,1)

(1,t2)

(0,1)
(m1,t2)

(0,t2)

(m1,t1)

(0,t1)
(1,1)

Figure 6

Thus we have the following theorem.

Theorem 3.3. Suppose that |C(L1)| + |C(L2)| = 3 such that |C(L1)| = 1

and |C(L2)| = 2. Then Γ2(L1 × L2) is planar if and only if one of the following

conditions holds.

(i) |L1| = 3 and |SL2

i | = 1, for all 1 ≤ i ≤ 2.

(ii) |L2| = 4 and |L1| = 3.

Finally assume that |C(L1)|+ |C(L2)| = 4. Now, we have the following cases:

Case 1. Suppose that |C(L1)| = 1 and |C(L2)| = 3. Then we can find a

subdivision of K5 as in Figure 7. So Γ2(L1 × L2) is not planar.

(1,t1)

(1,t2)

(1,t3)(0,1)

(m1,1)

(1,0)

Figure 7
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Case 2. Assume that |C(L1)| = 2 = |C(L2)|. In this situation we can find a

subdivision of K3,3 as in Figure 8, and so Γ2(L1 × L2) is not planar.

(1,t2)

(m1,t1)

(m2,1)

(m1,t2) (m1,1)

(1,t1)

(m2,t2)(m2,t1)

Figure 8

Now we have the following theorem from the above discussion.

Theorem 3.4. Suppose that |C(L1)| + |C(L2)| = 4. Then Γ2(L1 × L2) is

not planar.

4. Outerplanarity of Γ2(L) and Γ2(L1 × L2)

An undirected graph is outerplanar if it can be drawn in the plane without

crossing in such a way that all of the vertices belong to the unbounded face of the

drawing. There is a characterization for outerplanar graphs that says a graph is

outerplanar if and only if it does not contain a subdivision of K4 or K2,3.

In the following, we characterize all lattices L such that Γ2(L) is outerplanar.

Lemma 4.1. If Γ2(L) is outerplanar, then |C(L)| ≤ 3.

Proof. Assume to the contrary that |C(L)| ≥ 4. Since the induced sub-

graph of Γ2(L) with vertex-set C(L) is a complete subgraph, one can find a copy

of K4 in Γ2(L), and so Γ2(L) is not outerplanar. Hence we have |C(L)| ≤ 3. �

By Lemma 4.1, we must study the cases that |C(L)| is equal to 2 and 3.

In the following proposition, we state the necessary and sufficient condition for

outerplanarity of Γ2(L), when |C(L)| = 2.

Proposition 4.2. Suppose that |C(L)| = 2. Then Γ2(L) is outerplanar if

and only if |Si| = 1, for some 1 ≤ i ≤ 2, or |Si| ≤ 2, for all 1 ≤ i ≤ 2.

Proof. Since |C(L)| = 2, we have that Γ2(L) is a complete bipartite graph.

Now one can easily see that Γ2(L) is outerplanar if and only if |Si| = 1, for some

1 ≤ i ≤ 2, or |Si| ≤ 2, for all 1 ≤ i ≤ 2. �
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In the sequel of this section, we investigate the outerplanarity of Γ2(L), when

|C(L)| = 3. If | ∪3
i=1 Si| ≥ 5, then one can find a copy of K2,3 in the structure of

Γ2(L), and so Γ2(L) is not outerplanar. Therefore, if Γ2(L) is outerplanar, then

| ∪3
i=1 Si| ≤ 4. Now, we have the following cases:

Case 1. Suppose that | ∪3
i=1 Si| = 3. In this situation Γ2(L) is a unicyclic

graph which is in pictured in Figure 9, and so it is outerplanar.

m2

m1

m3

S13

S23

S12

Figure 9

Case 2. Suppose that | ∪3
i=1 Si| = 4. Assume that |Si| = 2. If |Sjk| ≥ 1, for

some 1 ≤ i 
= j 
= k ≤ 3, then we can find a copy of K2,3 as in Figure 10, where

m′
i ∈ Si \ mi and cjk ∈ Sjk, for some 1 ≤ i 
= j 
= k ≤ 3, and so Γ2(L) is not

outerplanar.

m3 m2

m1 m′
1

c23

Figure 10

Now, if Sjk = ∅, for all 1 ≤ i 
= j 
= k ≤ 3, then Γ2(L) is isomorphic to the

graph which is pictured in Figure 11, and so Γ2(L) is outerplanar.

Theorem 4.3. Suppose that |C(L)| = 3. Then Γ2(L) is outerplanar if and

only if one of the following conditions holds.

(i) | ∪3
i=1 Si| = 3.

(ii) | ∪3
i=1 Si| = 4 and if |Si| = 2, for some 1 ≤ i ≤ 3, then Sjk = ∅, for all

1 ≤ i 
= j 
= k ≤ 3.
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m2

m1

m3

S13

m′
1

S12

Figure 11

In the following, we characterize all lattices L1 and L2 such that Γ2(L1×L2) is

outerplanar. Clearly, if Γ2(L1×L2) is outerplanar, then, by Lemmas 2.7 and 4.1,

|C(L1)| + |C(L2)| ≤ 3. In the next two theorems, we investigate the cases that

|C(L1)|+ |C(L2)| = 2 and |C(L1)|+ |C(L2)| = 3.

Theorem 4.4. Suppose that |C(L1)| + |C(L2)| = 2. Then Γ2(L1 × L2) is

outerplanar if and only if |Li| ≤ 3 or, |Lj | ≤ 4 with |Li| ≤ 2, for some 1 ≤ i 
=
j ≤ 2.

Proof. Since |C(L1)|+ |C(L2)| = 2, one can easily see that Γ2(L1 × L2) ∼=
K|L1|−1,|L2|−1. Therefore, Γ2(L1 × L2) is an outerplanar graph if and only if

|Li| ≤ 3 or, |Lj | ≤ 4 and |Li| ≤ 2, for some 1 ≤ i 
= j ≤ 2. �

Now, suppose that L1 and L2 are lattices such that |C(L1)|=1 and |C(L2)|=2.

If |Li| ≥ 4 and |Lj | ≥ 5, for all 1 ≤ i 
= j ≤ 2, then we can find a copy of K2,3

in the graph Γ2(L1 × L2). Thus Γ2(L1 × L2) is not outerplanar. Therefore, if

Γ2(L1 × L2) is outerplanar, then |L1| = 3, or |L2| = 4 with |L1| ≤ 4. Now, in

the following two cases, we study the outerplanarity of Γ2(L1 × L2) whenever

|L1| = 3, or |L1| ≤ 4 with |L2| = 4.

Case 1. Suppose that |L1| = 3. If |SL2

i | ≥ 2, for some 1 ≤ i ≤ 2, then we can

find a subdivision of K4 as in Figure 12, where yi ∈ SL2

i \{ti}, and so Γ2(L1×L2)

is not outerplanar.

Now, if |SL2

i | = 1, for all 1 ≤ i ≤ 2, then one can find a copy of K2,3 as in

Figure 13, and so Γ2(L1 × L2) is not outerplanar.

Case 2. Suppose that |L2| = 4 and |L1| ≤ 4. If |L1| = 4, then one can find a

copy of K2,3 as in Figure 13, and so Γ2(L1 × L2) is not outerplanar.

If |L1| = 3, then Γ2(L1×L2) is pictured in Figure 14, and so it is outerplanar.
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(1,t2)

(m1,1)

(1,t1)
(m1,t2)

(1,y1)

Figure 12

(1,0) (1,t2)

(m1,1) (0,1)

(1,t1)

Figure 13

(1,t1)

(m1,1)

(1,t2)
(m1,t2) (m1,t1)

Figure 14

Theorem 4.5. Suppose that |C(L1)| + |C(L2)| = 3 such that |C(L1)| = 1

and |C(L2)| = 2. Then Γ2(L1 × L2) is outerplanar if and only if |L2| = 4 and

|L1| = 3.

Let G be a graph with n vertices and q edges. We recall that a chord is any

edge of G joining two nonadjacent vertices in a cycle of G. Let C be a cycle ofG.

We say C is a primitive cycle if it has no chords. Also, a graph G has the primitive

cycle property (PCP ) if any two primitive cycles intersect in at most one edge.

The number frank(G) is called the free rank of G and it is the number of primitive

cycles of G. Also, the number rank(G)=q − n + r is called the cycle rank of G,
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where r is the number of connected components of G. The cycle rank of G can

be expressed as the dimension of the cycle space of G. By [9, Proposition 2.2],

we have rank(G) ≤ frank (G). A graph G is called a ring graph if it satisfies one

of the following equivalent conditions (see [9]).

(i) rank(G)= frank(G),

(ii) G satisfies the PCP and G does not contain a subdivision of K4 as a sub-

graph.

Clearly, every outerplanar graph is a ring graph and every ring graph is a planar

graph.

Now, in view of the proofs of Proposition 4.2 and Theorem 4.3, we have the

following result.

Theorem 4.6. The comaximal graph Γ2(L) is a ring graph if and only if it

is an outerplanar graph.

5. End-regularity of zero-divisor graphs of lattices

Let G and H be graphs. A homomorphism f from G to H is a map from

V (G) to V (H) such that for any a, b ∈ V (G), a is adjacent to b implies that f(a)

is adjacent to f(b). Moreover, if f is bijective and its inverse mapping is also a

homomorphism, then we call f an isomorphism from G to H , and in this case

we say G is isomorphic to H , denoted by G ∼= H . A homomorphism (resp, an

isomorphism) from G to itself is called an endomorphism (resp, automorphism)

of G. An endomorphism f is said to be half-strong if f(a) is adjacent to f(b)

implies that there exist c ∈ f−1(f(a)) and d ∈ f−1(f(b)) such that c is adjacent

to d. By End(G), we denote the set of all the endomorphisms of G. It is well-

known that End(G) is a monoid with respect to the composition of mappings.

Let S be a semigroup. An element a in S is called regular if a = aba for some

b ∈ S and S is called regular if every element in S is regular. Also, a graph G is

called end-regular if End(G) is regular.

Now, we recall the following Lemma from [14].

Lemma 5.1 ([14, Lemma 2.1]). Let G be a graph. If there are pairwise

distinct vertices a, b, c in G satisfying N(c) � N(a) ⊆ N(b), then G is not end-

regular.

Lemma 5.2. Suppose that |C(L)| ≥ 3. If Si...j , Si...j...k 
= ∅, such that

|Si...j | > 1, for some 1 ≤ i < j < k < n, or Si...j , Si...j...k, Si...j...k...t 
= ∅, for some

1 ≤ i < j < k < t < n, then Γ2(L) is not end-regular.
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Proof. First suppose that Si...j , Si...j...k 
= ∅ and |Si...j | > 1, for some 1 ≤
i < j < n. Let a, b ∈ Si...j and c ∈ Si...j...k. Then N(c) � N(a), since mk ∈
N(a) \N(c). Now, we have N(c) � N(a) ⊆ N(b), and so, by Lemma 5.1, Γ2(L) is

not end-regular. If Si...j , Si...j...k, Si...j...k...t 
= ∅, for some 1 ≤ i < j < k < t < n,

then consider the elements a ∈ Si...j , b ∈ Si...j...k and c ∈ Si...j...k...t. Now, we

have N(c) � N(b) ⊆ N(a). Hence Γ2(L) is not end-regular. �

Proposition 5.3. Suppose that |C(L)| = 2. Then Γ2(L) is end-regular.

Proof. Clearly Γ2(L) is a complete bipartite graph. Now, by [23, Theo-

rem 3.4], we have that Γ2(L) is end-regular. �

Lemma 5.4. Suppose that x, y ∈ W (L) \⋂m∈C(L){m}�. Then N(x) ⊆ N(y)

if and only if Zx ⊆ Zy and x ∨ y 
= 1.

Proof. (⇐) It is trivial.

(⇒) If N(x) ⊆ N(y), then Zx ⊆ Zy. Suppose to the contrary that x ∨ y = 1.

Then x is adjacent to y. This means that y ∈ N(x) ⊆ N(y), and so y ∈ N(y),

which is a contradiction. �

Proposition 5.5. Suppose that L = L1 ×L2 × · · · ×Ln. Then we have the

following statements.

(i) If n ≥ 3, then Γ2(L1 × L2 × · · · × Ln) is not end-regular.

(ii) If |C(L1)| = 1 = |C(L2)|, then Γ2(L1 × L2) is end-regular.

Proof. (i) Suppose that C(L1) = {m1,m2, . . . ,mn}, C(L2) = {t1, t2, . . . , ts}
and C(L3) = {v1, v2, . . . , vr}, where n, s, r ≥ 1. Set x := (mi, 1, . . . , 1), y :=

(mi, tj, 1, . . . , 1) and z := (mi, tj, vk, 1, . . . , 1), for some 1 ≤ i ≤ n, 1 ≤ j ≤ s and

1 ≤ k ≤ v. Then N(z) � N(y) � N(x). Now, by Lemmas 5.1 and 5.4, Γ2(L) is

not end-regular.

(ii) Note that in this case, Γ2(L1×L2) is a complete bipartite graph and, by

[23, Theorem 3.4], every complete bipartite graph is end-regular. �

Lemma 5.6. Assume that Γ2(L2) has distinct vertices x and y such that

x, y /∈ C(L2) and N(x) ⊆ N(y). Then Γ2(L1 × L2) is not end-regular.

Proof. Suppose that b ∈ C(L2). Then it follows from the fact that

N((1, x)) � N((1, y)) � N((1, b)). �
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