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On delta Schur-convex mappings

By ANDRZEJ OLBRYS (Katowice)

Abstract. The aim of the present paper is to combine the notions of Schur-convex
and delta-convex mappings in the sense of Vesely and Zajicek. Our main result gives
necessary and sufficient conditions on maps Fj,j = 1,...,n, under which the sum
>-i—1 Flj(x;) is delta Schur-convex.

1. Introduction and terminology

Throughout the whole paper (unless explicity stated) (X, || - ||) and (Y| - ||)
denote real linear Banach spaces and, D C X will be a non-empty open and
convex set. Let us fix some notation and terminology. Recall that a function
f: D — R is said to be convex on D if it satisfies the following inequality

fltz+ (1 —t)y) <tf(x)+ (1 —1)f(y),

for every x,y € D and every t € [0, 1].

Definition 1. A map F' : D — Y is said to be affine, if it satisfies Jensen
equation, i.e., for every z,y € D

F(x;y> _ F(I);F(y)_
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Definition 2. For z,y € R"

k

k
Zwm SZym, k=1,...,n—1
=1

x <y if =1

n n
DT = DY
i=1 i=1
where, for any = (21,...,2,) € R", 2y > --- > 1z}, denote the components

of x in decreasing order. When x < y, x is said to be majorized by y.

This notation and terminology was introduced by HARDY, LITTLEWOOD,
and POLYA [4]. Let us recall that an n x n matrix P = [p;;] is doubly stochastic if

pij =0, fori,j=1,...,n,

and
n n

Sopii=1,4=1,...n > p;=1i=1..n

i=1 j=1
Particularly interesting examples of doubly stochastic matrices are provided by
the permutation matrices. Recall that, matrix II is said to be a permutation
matrix if each row and column has a single unite entry, and all other entries are
zero.

The well-known Hardy, Littlewood and Pdlya theorem says that z < vy, if
and only if, x = yP for some doubly stochastic matrix P. (In general, the matrix
P is not unique.)

Motivated by this concept, we introduce the following natural generalization
of the definition of majorization < on vectors having not necessary real compo-
nents.

Definition 3. Let x = (z1,...,z,) and y = (y1,...,Yyn) be n-tuples of vectors
z;,y; € X,i=1,...,n. We say that x is majorized by y, written = < y, if
(.131,...71'71) = (yla'“vyn)Pa
for some doubly stochastic n x n matrix P.

In 1923 [13] SCHUR has introduced the following class of functions, which in
Schur’s honor are said to be convex in the sense of Schur (or Schur-convex).

Definition 4. A real valued function ¢ defined on a set D™ is said to be
Schur-convex on D™ if
z<y on D" = () < D(y).
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Similarly ® is said to be Schur-concave on D™ if
z<y on D" = ®(z)> P(y).

Of course, @ is Schur-concave if and only if —® is Schur-convex.

A survey of results concerning Schur-convex functions may be found in the
positions [1], [4], [11], [12], [13]. In particular C.T. NG in [8] has given a char-
acterization of functions generating Schur-convex sums. In fact in [8] NG proved
the equivalence of the following four conditions:

Theorem 1 (Ng, [8]). Let D C R™ be a non-empty open and convex set,

and let f : D — R be a function. The following conditions are pairwise equivalent:
(i) >, f(x;) is Schur-convex on D™ for some n > 2,
(ii) >0, f(w;) is Schur-convex on D™ for every n > 2,

(iii) f is convex in the sense of Wright, i.e., it satisfies the following inequality
fz+ 1 =t)y) + f(1 -tz +ty) < f(2)+ f(y), zyeD, tel01],
(iv) f admits the representation
f(@) =w(z)+alx), =zeD,

where a is additive, i.e., a(x +y) = a(z) + a(y), x,y € R™, and w is convex
on D.

Remark 1. The characterization of Wright-convex functions defined on an
algebraically open and convex subset of arbitrary real linear spaces independently
was given by Z. KOMINEK in [6] (see also [5], [7], [9]).

Delta-convex mappings between normed linear spaces provide a generaliza-
tion of functions which are representable as a differences of two convex functions.
An interesting study of the class of delta-convex mappings has been given by
VESELY and L. ZAJICEK in [15]. The definition of delta-convexity reads as fol-
lows:

Definition 5. A map F : D — Y is called delta-convex, if there exists a
continuous and convex functional f : D — R such that f + y* o F' is continuous
and convex for any member y* of the space Y* dual to Y with ||y*|| = 1. If this is
the case, then we say that F'is a delta-convex mapping with a control function f.



316 Andrzej Olbry$

In [15] the authors have given many properties of delta-convexity, in partic-
ular they have proved that if a map F is a delta-convex with control function f,
then the following inequality of Jensen-type holds

itiF(:@») —F(ém)” < itif(xi) _ f(i}tx) )

for all z1,...,2, € D, t1,...,t, €[0,1] such that ¢t; +---+¢, = 1.
Moreover, it turns out that a continuous function F : D — Y is a delta-

convex mapping controlled by a continuous function f : D — R if and only if the
functional inequality

HF(x—;y) B F(x)—;F(y)H < F@) + fy) _f<m-2+y>7 @)

is satisfied for all z,y € D. (Corollary 1.18 in [15])

Remark 2. Note that inequality (1) may obviously be investigated without
any regularity assumption upon F' and f. In the present paper by delta-convex
map we will mean a map F': D — Y, for which there exists a function f : D — R
such that f 4+ y* o F' is convex (not necessary continuous), for any member y* of
the space Y*, dual to Y with ||y*|| = 1. This definition is equivalent to the fact
that a pair (F, f) satisfies the inequality (1).

Below we give a joint generalization of Schur-convexity and delta-convexity.

Definition 6. A map F' : D™ — Y is said to be delta Schur-convex with
control function f: D™ — R, if

1F(y) = F)| < fy) = f(=), 3)

whenever x < y on D™.

2. Results

We begin the study of (3) with the following

Observation 1. Every delta Schur-convex mapping F' : D™ — Y is symmetric
ie.

F(Pz) = F(x),

for every n X n permutation matrices P.
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PrOOF. By assumption
[1F(Sz) — F(z)|| < f(x) = f(Sx),

holds for all € D and every doubly stochastic matrix S. Because an arbitrary
permutation matrix P and its inverse are doubly stochastic, then if F is a delta
Schur-convex we have

|1F(Pz) — F(a)|| < f(z) — f(P),

and

)

|F(Pz) = F(x)|| = |F(P~ Pz) = F(Px)|| < f(Px) — f(),
so F(Pzx) = F(x). O

The following result establishes necessary and sufficient conditions for a given
map to be delta Schur-convex.

Theorem 2. The following conditions are pairwise equivalent:
(i) F is a delta Schur-convex mapping controlled by f,
(ii) for every y* € Y*, ||y*|| = 1, the function y* o F + f is Schur-convex,
(iii) for every y* € Y*, ||ly*|| = 1, the function y* o F' — f is Schur-concave.

PROOF. (i) implies (ii). Assume that
[1E(z) = F(y)ll < fy) = f(2),

whenever z < y on D. Let y* € Y™*, |ly*|| = 1 be arbitrary. From the above
inequality it follows that for = < y,

Y (F(x) = F(y) < fy) — f(2),

or, equivalently,

r<y=y(Fr)+ flz) <y (Fy) + f(y).

(ii) implies (iii). Replace y* by —y* in (ii).
(iii) implies (i). For every y* € Y*, ||ly*|| = 1 and = < y we have

Yy (Fy) — fly) <y*(F(x)) — f(z),

and, consequently,

[1E(y) = F(z)|| = sup{y" (F(y) = F(2)) : [ly"[| = 1} < f(y) = f(2),

which completes the proof. ([l
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Let us observe, that delta Schur-convex mappings provide a generalization of
functions which are representable as a differences of two Schur-convex functions.

Proposition 1. In the case where (Y, ||-||) = (R,|-|) amap F : D" - Risa
delta Schur-convex, if and only if, F' is a difference of two Schur-convex functions.

PROOF. Assume that f: D™ — R is a control function for F. For all z,y €
D™ such that x < y we have

|F(y) — F(z)| < fy) — f(=).

1

bri=5(F+f) and b= (f—F)

It is easy to see that both ¢; and ¢5 are Schur-convex functions, moreover, F =
¢1 — ¢2. Conversely, let F' = ¢1 — ¢, where ¢1, ¢o are Schur-convex. Setting
f := ¢1 + ¢2 we infer that both f — F and f + F are Schur-convex, whence, for
every x,y € D™ we obtain

Put

z<y=I[F(y) - Fz)] < f(y) - f(2),
which finishes the proof. (I

The following result is a consequence of Jensen inequality for delta-convex
mapping (1).

Theorem 3. If F : D — Y is a delta-convex map with a control function
f:D — R then a map H : D™ — Y given by the formula

n

H(xy,...,2p):= ZF(zj),
j=1
is a delta Schur-convex with a control function h(xy,...,x,) := Z?Zl flz;).

PROOF. Assume that x < y. There exists a doubly stochastic matrix P such
that £ = yP. Since

n n
x; = E YiPi,j, Where E pij =1,
i1 =1

it follows from the inequality (1) that

HF(xj) - sz;pi,jF(yi)

<3 pif ) — fay),
=1
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so because 2?21 p;,; = 1 and using the triangle inequality several times we obtain
LA 108 D 9) SYTAUSES 90 )
i=1 j=1 i=1j=1 j=1
ZZPIJ yz ZF:L'] ‘: Z(szj yz ( ))H
j=11i=1 j=1
< Z sz,] yz - ‘ = Z (sz,]f yz - ))

j=1

= ZZPi,jf(yi) - Zf(l“j) = Zf(yz‘) = > fl=y),

i=1j=1 j=1 i=1 j=1

n

which was to be proved. O

In the proof of our next result we will use the following theorem, which is a
particular case of Theorem 4 proved in [10].

Theorem 4. Let F': D — Y and f : D — R satisfy the inequality (2). Then
for an arbitrary point y € D there exist affine maps A, : D — Y anda,: D = R
such that

and, for all x € D
[F(z) = Ay(2)[| < f(z) — ay(z).
Now, we are in position to prove the characterization of delta Schur-convex
sums. The following theorem corresponds to the theorem of NG [8]
Theorem 5. Let F': D — Y and f: D — R be given mappings. Then the
following statements are pairwise equivalent:

(i) i, F(=;) is delta Schur-convex on D™ with control function Y ., f(z;),
for some n > 2,

(ii) %, F(x;) is delta Schur-convex on D™ with control function y ., f(x),
for every n > 2,

(iii) F is delta-convex in the sense of Wright i.e. it satisfies the following inequality

|F(x) + F(y) — F(tz + (1 = t)y) — F((1 = t)z + ty)]|
< f@)+ fly) — fltz+ (1 =t)y) — f((1 =)z + ty),

for all x,y € D, t € [0,1].
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(iv) F admits the representation
F(z)=W(x)+ A(z), xeD,

where W : D — Y is a delta-convex on D and A : X — Y is an additive.

PROOF. Assume that, for some fixed n > 2, the sum 2?21 F(x;) is delta
Schur-convex on D™. Fix x3,x4,...,x, € D arbitrarily and consider two vectors
z = (1,22,23,...,2,) and y := (y1, Y2, T3, ...,2n). Of course z < y if and only
if (x1,22) < (y1,y2), so there exists a ¢ € [0, 1] such that

t 1—-1
1-t¢ t

(z1,72) = (y1,Y2) l ] = (tyr + (1 = t)y2, (1 — t)y1 + tya2).

Then for (x1,x2) < (y1,y2) the inequality

2 2

Y Fla) =Y Fly)

‘ 2 2
Jj=1 Jj=1

<Y fw) =Y f(ag)

Jj=1 Jj=1

implies (iii).
Suppose that F' is a delta Wright-convex with a control function f. In par-
1

ticular if we put A = 5 the inequality (2) holds true. By Theorem 4 there exist

affine maps A: D — Y and @: D — R such that, for all z € D,
[F(z) — A(2)|| < f(x) - a(z).

Without loss of generality we may assume that A and @ are additive maps. (Oth-
erwise we will consider A — A(0) and @ — @(0) instead of A and @ respectively.)
Put

G(z) = F(z) — A(z), and g(z):= f(z) —a(z), =€ D.

Inequality
[G()| < g(x), zeD (4)

implies that for every y* € Y*, |ly*|| = 1 we have
y'(G(x)) <g(z), zeD.

To complete the proof of our implication it is enough to show that, for every
y* € Y™, |ly*|| = 1, the function

D3z —y'(G(2)) + g(2),
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is convex. Obviously the defining function is convex in the sense of Jensen. Fix
x,y € D arbitrary. Since D is open there exists a § > 0 such that tz+(1—t)y € D,
for t € (—d,1+ J). Let us define a function h : (—d,1+ §) — R by the formula
h(t) == y*(Gltz + (1 — t)y)) + g(tz + (1 — t)y).
Of course h is convex in the sense of Jensen, moreover, by (4)
h(t) < 2g(tw + (1 = t)y) = 2[f(tz + (1 - t)y) —altz + (1 - )y)]

=2[f(tz + (1 = t)y) +a((1 - t)z + ty) —a(z) —a(y)]

<2[f(tz 4+ (1 = t)y) + f((1 — )z + ty) —a(x) —a(y)]

< 2[f(z) + f(y) —a(z) —a(y)].
Hence h is bounded from above then by a famous BERNSTEIN-DOETSCH [2] the-
orem continuous and convex. In particular

y (Gte + (1= t)y)) + gtz + (1 = t)y) = h(t)
=h(tl 4+ (1 —)0) < th(1)+ (1 —t)h(0)
= tly*(G(2)) + g(x)] + (1 = Oy"(G(y)) + 9(v)].
This completes the proof of implication (iii) = (iv).

Suppose F' has the representation FF = W 4+ A, where W is a delta-convex
map with control function w and A is additive. On account of Theorem 3 and by

additivity of A for an arbitrary n > 2 we obtain (because Y 7, z; = >7, yj)

Do W) = 3 W ) + 30 Alwy) — D Al;)

n

> F) - Y. Flay)

j=1
n n n n
=[St - S wten| < S ut) - 3 ute.
=1 =1 i=1 =1
This proves implication (iv) = (ii).
The implication (ii) = (i) is trivial. O

In the proof of our main result we use the following

Lemma 1. Let a map H : D™ — Y be of the form
n
H(xl,...,l‘n):ZFj(l‘j), (5)
j=1

where F; : D =Y, for j =1,...,n. Then H is symmetric, if and only if, there
exist a map F': D — Y and a constants Cy,...,C, €Y such that

Fj(z;)=F(z;)+Cj, z; €D, j=1,...,n.
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PRrROOF. The proof of sufficiency is obvious. Assume that H is symmetric.

It means that
H(xp1), s Tom)) = H(x1,. .., 20),
for all z1,...,z, € D and all o € II(n), where II(n) denote the set of all permu-
tations of the integers {1,...,n}. Fix4,j € {1,...,n}. Let 2; =z, z; = y and
xp=zforall k€ {1,...,n}\ {i,j}. Consider a permutation o € II(n) such that
o(i) =j, 0(j) =14, and o(k) = k for k € {1,...,n}\ {i,5}. By symmetry of H
we have
Fi(zi) + Fj(x;) = Fi(x;) + Fj(xi),

or, equivalently,

for all z,y € D. Put
Cij = Fi(x) — Fj(z).
Let F':= Fy, Cj :=Cj;, for j =1,...,n. We obtain a representation
Fi(x)=F(z)+C;, j=1,...,n.

Our main result reads as follows

Theorem 6. Assume that we are given maps F; : D—=Y and f; : D =R,
for j =1,...,n. Then Z?:1 Fj(x;) is a delta Schur-convex with a control func-
tion 7, fi(x;), if and only if, there exist constants C1,...,Cy, € Y, additive
mapping A : X — Y and a delta-convex map W : D — Y such that

Fi(z)=A(z)+ W(z)+C;, j=1,...,n (6)

PROOF. Suppose that a map >>;_, Fj(x;) is a delta Schur-convex. On ac-
count of Observation 1 it is symmetric, consequently, by Lemma 1 there exist a
map F : D — Y and constants Cy,...,C, €Y such that

Fi(z)=F(z)+C;, j=1,...,n.
It is not hard to check that a sum Z?Zl F(z;) is a delta Schur-convex, then by
Theorem 5 a map F' has the form
F(z) = A(x)+ W(x), xeD,

where A: X — Y is an additive and W : D — Y a delta-convex.
Conversely, each map of the form (5) admitting a representation (6) is a delta
Schur-convex. 0

Remark 3. Observe, that substituting F' := 0 in our theorems we obtain the
results concerning classical Schur-convexity.
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