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Geometry of H-paracontact metric manifolds

By GIOVANNI CALVARUSO (Lecce) and DOMENICO PERRONE (Lecce)

Abstract. We introduce and study H-paracontact metric manifolds, that is, para-

contact metric manifolds whose Reeb vector field ξ is harmonic. We prove that they

are characterized by the condition that ξ is a Ricci eigenvector. We then investigate

how harmonicity of the Reeb vector field ξ of a paracontact metric manifold is related

to some other relevant geometric properties, like infinitesimal harmonic transformations

and paracontact Ricci solitons.

1. Introduction

In parallel with contact and complex structures in the Riemannian case, para-

contact metric structures were introduced in [19] in semi-Riemannian settings, as

a natural odd-dimensional counterpart to para-Hermitian structures. Up to re-

cently, the study of paracontact metric manifolds mainly concerned the special

case of para-Sasakian manifolds.

A systematic study of paracontact metric manifolds started with the paper

[30], were the Levi–Civita connection, the curvature and a canonical connection

(analogous to the Tanaka–Webster connection of the contact metric case) of a

paracontact metric manifold have been described. The technical apparatus intro-

duced in [30] is essential for further investigations of paracontact metric geometry.

Since then, paracontact metric manifolds have been studied under several differ-

ent points of view. The case when the Reeb vector field satisfies a nullity condition

was studied in [14]. Conformal paracontact curvature, and its applications, were

Mathematics Subject Classification: 53D10, 53C50, 53C43, 53C25.
Key words and phrases: paracontact metric structures, Reeb vector field, Ricci tensor, harmonic

vector fields, infinitesimal harmonic transformations, Ricci solitons.
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investigated in [20]. In [7] the first author studied three-dimensional homogeneous

paracontact metric manifolds, while a large class of paracontact metric structures

on the unit tangent sphere bundle was described and studied in [9].

Because of the recent studies of harmonicity conditions in semi-Riemannian

geometry, it is a natural problem to investigate when the Reeb vector field of a

paracontact metric manifold is a harmonic vector field. Given a (smooth, oriented,

connected) semi-Riemannian manifold (M, g) and a unit vector field V on M ,

the energy of V is the energy of the corresponding smooth map V : (M, g) →
(T1M, gs), where (T1M, gs) is the unit tangent bundle of (M, g), equipped with the

Sasaki metric. V is said to be a harmonic vector field if V : (M, g) → (T1M, gs) is

a critical point for the energy functional restricted to maps defined by unit vector

fields. We may refer to the recent monograph [17] and references therein for an

overview on harmonic vector fields.

The second author [24] proved that the Reeb vector field ξ of a contact

Riemannian manifold is harmonic if and only if ξ is a Ricci eigenvector. This led

to define H-contact Riemannian manifolds as contact metric manifolds, whose

Reeb vector field is harmonic. Since then, H-contact Riemannian manifolds have

been intensively studied and their relations to other contact geometry properties

are now well understood (see, for example, [3, Section 10.3.1], [15], [17, Chapter 4],

[25] and references therein)

In this paper we introduce the corresponding notion of H-paracontact (met-

ric) manifolds, that is, paracontact metric manifolds whose Reeb vector field is

harmonic. We prove that a paracontact metric manifold is H-paracontact if and

only if the Reeb vector field is a Ricci eigenvector. This result is not a direct adap-

tation of its contact Riemannian analogue, because of the deep differences arising

between Riemannian and semi-Riemannian settings. In fact, the results proved in

[24] use in an essential way the fact that in the Riemannian case, a self-adjoint op-

erator admits an orthonormal basis of eigenvectors, while this property does not

hold in semi-Riemannian settings. We then investigate the relationship between

H-paracontact manifolds and some relevant geometric properties, like the Reeb

vector field being an infinitesimal harmonic transformation or the paracontact

metric structure being a paracontact Ricci soliton. Under these points of view,

the Riemannian case presents some strong rigidity results (see [26] and references

therein), which do not directly extend to general semi-Riemannian settings. This

makes interesting to study contact semi-Riemannian structures, whose Reeb vec-

tor field is an infinitesimal harmonic transformation or determines a Ricci soliton.

The paper is organized in the following way. In Section 2 we report some
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basic information about paracontact metric manifolds and harmonicity proper-

ties of vector fields. The characterization of H-paracontact metric manifolds in

terms of the Ricci operator is proved in Section 3, where we also prove that the

notion of H-paracontact manifold is invariant under D-homothetic deformations,

as described in (3.9). In Section 4 we prove that several classes of paracon-

tact metric manifolds (para-Sasakian and K-paracontact manifolds, paracontact

(κ, µ)-spaces, three-dimensional homogeneous paracontact metric manifolds) are

H-paracontact, so showing that the class of H-paracontact metric manifolds is

rather large. The relationship between H-paracontact metric manifolds and para-

contact metric manifolds, whose Reeb vector field is 1-harmonic (equivalently, an

infinitesimal harmonic transformation) or whose vector field determines a Ricci

soliton, are then investigated in Section 5. Differently from the contact Riemann-

ian case, the class of paracontact metric structures, whose Reeb vector field is

an infinitesimal harmonic transformation, is strictly larger than the one of K-

paracontact structures.

2. Preliminaries

2.1. Paracontact metric manifolds. The aim of this Subsection is to report

some basic facts about paracontact metric manifolds. All manifolds are assumed

to be connected and smooth. We may refer to [19], [30] and references therein for

more information about paracontact metric geometry.

A (2n + 1)-dimensional manifold M is said to be a contact manifold if it

admits a global 1-form η, such that η ∧ (dη)n ̸= 0. Given such a form η, there

exists a unique vector field ξ, called the characteristic vector field or the Reeb

vector field, such that η(ξ) = 1 and dη(ξ, ·) = 0. A semi-Riemannian metric g is

said to be an associated metric if there exists a tensor φ of type (1, 1) such that

η = g(ξ, ·), dη(·, ·) = g(·, φ·), φ2 = I − η ⊗ ξ.

Then, (φ, ξ, η, g) (more briefly, (η, g)) is called a paracontact metric structure, and

(M,φ, ξ, η, g) a paracontact metric manifold.

As shown in [30], any almost paracontact metric manifold (M2n+1, φ, ξ, η, g)

admits a φ-basis, that is, a local orthonormal basis of the form {ξ, e1, . . . , en, φe1,
. . . , φen, }, where ξ, e1, . . . , en are space-like vector fields and φe1, . . . , φen are

time-like vector fields.

We now report some results on the Levi–Civita connection and curvature of

a paracontact metric manifold [30], which shall be used in the next Section. Let



328 Giovanni Calvaruso and Domenico Perrone

∇ and R respectively denote the Levi–Civita connection and the corresponding

Riemann curvature tensor, taken with the sign convention

RXY = ∇[X,Y ] − [∇X ,∇Y ]

for all smooth vector fields X, Y . Moreover, we shall denote by ϱ the Ricci

tensor of type (0, 2), by Q the corresponding endomorphism field and by r the

scalar curvature. The tensor h = 1
2Lξφ, where L denotes the Lie derivative, is

symmetric and satisfies [30]:

∇ξ = −φ+ φh, ∇ξφ = 0, hφ = −φh, hξ = 0, trh = trhφ = 0 (2.1)

and

(∇φXφ)φY − (∇Xφ)Y = 2g(X,Y )ξ − η(Y )
(
X − hX + η(X)ξ

)
. (2.2)

In the above equation (2.1) and throughout the paper, if not explicitly stated

otherwise, by tr = trg we mean the trace with respect to the metric tensor g. The

Ricci curvature of any paracontact metric manifold (M2n+1, η, g) satisfies

ϱ(ξ, ξ) = −2n+ trh2. (2.3)

A paracontact metric manifold (M,η, g) is said to be

• η-Einstein if its Ricci operator Q is of the form

Q = aI + bη ⊗ ξ, (2.4)

where a, b are smooth functions.

• a (κ, µ)-space if its curvature tensor satisfies

R(X,Y )ξ = κ(η(X)Y − η(Y )X) + µ(η(X)hY − η(Y )hX), (2.5)

for all tangent vector fields X,Y , where κ, µ are smooth functions on M .

• K-paracontact if ξ is a Killing vector field, or equivalently, h = 0.

• para-Sasakian if the paracontact structure (ξ, η, φ, g) is normal, that is, sat-

isfies [φ,φ] + 2dη ⊗ ξ = 0. This condition is equivalent to

(∇Xφ)Y = −g(X,Y )ξ + η(Y )X.
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Any para-Sasakian manifold is K-paracontact, and the converse also holds when

n = 1, that is, for three-dimensional spaces. An alternative definition of para-

Sasakian manifolds, in terms of cones over paraKähler manifolds, was given in

[1]. We also recall that any para-Sasakian manifold satisfies

R(X,Y )ξ = −(η(X)Y − η(Y )X), (2.6)

so that it is a (κ, µ)-space with κ = −1. Note that, differently from the con-

tact metric case, condition (2.6) is necessary but not sufficient for a paracontact

metric manifold to be para-Sasakian. This fact was already pointed out in other

papers (see for example [14]). However, the present authors could not find ex-

plicit examples in literature. Example 4.7 describes explicitly a three-dimensional

paracontact metric manifold which satisfies (2.6) but is not para-Sasakian.

2.2. Harmonic vector fields. We now provide some basic information on har-

monic vector fields over a semi-Riemannian manifold. For more details, we refer

to [18], [17, Chapter 8] and [6].

Let (M, g) be an m-dimensional semi-Riemannian manifold, ∇ its Levi–

Civita connection and V a smooth vector field on M . The energy of V is, by

definition, the energy of the corresponding smooth map V : (M, g) → (TM, gs),

where gs is the Sasaki metric (also referred to as the Kaluza–Klein metric in

Mathematical Physics) on the tangent bundle TM of M . If M is compact, then

(V ) =
1

2

∫
M

(trV ∗gs)dv =
m

2
vol(M, g) +

1

2

∫
M

g(∇V,∇V )dv,

while in the non-compact case, one works over relatively compact domains. Note

that the energy of a vector field V , up to a constant, also corresponds to the

total bending of V [29]. By the Euler-Lagrange equation, a vector field V defines

a harmonic map from (M, g) to (TM, gs) if and only if its tension field τ(V ) =

tr(∇dV ) vanishes, that is, when

tr[R(∇·V, V )·] = 0 and ∆̄V = 0.

Here, ∆̄V := − tr∇2V is the socalled rough Laplacian of V . With respect to

any local pseudo-orthonormal frame field {E1, . . . , Em} on (M, g), with εi =

g(Ei, Ei) = ±1 for all indices i = 1, . . . ,m, we have

∆̄V =
∑
i

εi
(
∇∇Ei

EiV −∇Ei∇EiV
)
.
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If g is Riemannian and M is compact, then the parallel vector fields are the only

vector fields defining harmonic maps.

Next, for any real constant r ̸=0, let Xr(M)= {V ∈X(M) : g(V, V )= r} de-

note the set of tangent vector fields of constant length r. A vector field V ∈ Xr(M)

is said to be a harmonic vector field if it is a critical point for the energy func-

tional E|Xr(M), restricted to vector fields of the same length. The Euler-Lagrange

equation of this variational condition yields that V is a harmonic vector field if

and only if

∆̄V is collinear to V. (2.7)

This characterization was first obtained, in the Riemannian case, by G. Wieg-

mink [29] and C. M. Wood [28] (see also [17], Chapter 2). In semi-Riemannian

settings, the same argument applies for vector fields of constant length, if not

light-like [6].

Let T1M denote the unit tangent sphere bundle over M , and gs the metric

induced on T1M by the Sasaki metric of TM . Then, the map V : (M, g) →
(T1M, gs) is harmonic if V is a harmonic vector field and the additional condition

tr[R(∇·V, V )·] = 0 (2.8)

holds. In analogy with the contact metric case [24], we now introduce the following

definition.

Definition 2.1. A paracontact metric manifold (M,φ, ξ, η, g) is said to be

H-paracontact if its Reeb vector field ξ is a harmonic vector field.

We will show in Theorem 3.5 that this notion is also invariant under D-

homothetic deformations of the paracontact metric structure as described in (3.9).

3. Harmonicity of the Reeb vector field of a paracontact manifold

In this Section we shall prove the following characterization of H-paracontact

metric manifolds.

Theorem 3.1. A paracontact metric manifold is H-paracontact if and only

if the Reeb vector field ξ is an eigenvector of the Ricci operator.

The above Theorem 3.1 will be obtained as a consequence of the following

result.
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Theorem 3.2. Let (M,η, ξ, g, φ) be a (2n+1)-dimensional paracontact met-

ric manifold. Then,

∆̄ξ = −4nξ −Qξ = ∥∇ξ∥2ξ − pr| ker η Qξ, (3.1)

where ∥∇ξ∥2 = −(2n+ trh2) and pr| ker η denotes the projection on ker η.

Proof. Let M be a (2n+1)-dimensional paracontact metric manifold and

consider a local pseudo-orthonormal φ-basis {E1, . . . , E2n+1}={e1, . . . , en, φe1, . . . ,
φen, ξ}, with g(ei, ei) = −g(φei, φei) = 1. We shall use the notation g(Ei, Ei) =

εi = ±1, for i = 1, . . . , 2n+ 1. We obtain

∆̄ξ = −
2n+1∑
i=1

εi
(
∇Ei∇Eiξ −∇∇Ei

Eiξ
)

= −
2n+1∑
i=1

εi (∇Ei(−φ+ φh))Ei = tr∇φ− div(φh).

Using formula (2.2), we have

tr∇φ = (∇eiφ)ei − (∇φeiφ)φei + (∇ξφ)ξ = −2nξ (3.2)

and so,

∆̄ξ = −2nξ − div(φh). (3.3)

By equation (2.1), ∇ξ = −φ+ φh. Differentiating, we get

R(X,Y )ξ = (∇Xφ)Y − (∇Y φ)X − (∇Xφh)Y + (∇Y φh)X, (3.4)

from which we deduce that the Ricci curvature ϱ(X, ξ) is given by

ϱ(X, ξ) = trR(X, ·)ξ =
2n∑
i=1

εig((∇Xφ)Ei, Ei)−
2n∑
i=1

εig((∇Ei
φ)X,Ei)

−
2n∑
i=1

εig((∇Xφh)Ei, Ei) +
2n∑
i=1

εig((∇Eiφh)X,Ei). (3.5)

By direct calculation, we find

2n∑
i=1

εig((∇Xφ)Ei, Ei) = 0,

2n∑
i=1

εig((∇Xφh)Ei, Ei) = ∇X tr(φh) = 0,
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2n∑
i=1

εig((∇Eiφh)X,Ei) = g(div(φh), X) (3.6)

and, taking into account tr∇φ = −2nξ,

2n∑
i=1

εig((∇Eiφ)X,Ei) = 2n η(X). (3.7)

We then replace into (3.5) and we obtain

ϱ(X, ξ) = −2nη(X) + g(div(φh), X). (3.8)

On the other hand, ϱ(ξ, ξ) = −2n + trh2 = −4n − ∥∇ξ∥2. So, equations (3.3)

and (3.8) yield

∆̄ξ = −4nξ −Qξ = −(2n+ trh2)ξ − (Qξ)| ker η = ∥∇ξ∥2ξ − (Qξ)| ker η

and this ends the proof. �

Remark 3.3. The contact metric analogues of the above Theorems 3.1 and 3.2

were proved in [24]. The proof of these contact Riemannian results used in an

essential way the fact that the tensor h, being self-adjoint, admits an orthonormal

basis of eigenvectors. The lack of such information in the paracontact metric case

required a completely different approach to the proof of the above Theorem 3.2.

As an immediate consequence of Theorem 3.1 and the definition of η-Einstein

manifolds, we have the following result, which parallels its contact Riemannian

anlogue proved in [24].

Corollary 3.4. η-Einstein paracontact metric manifolds are H-paracontact.

We now prove that any D-homothetic deformation of a H-paracontact metric

structure is again H-paracontact. This fact shows that the harmonicity of the

Reeb vector field is rather natural for paracontact metric manifolds, and permits

to build new examples of H-paracontact metric structures from the known ones.

Given a paracontact metric structure (η, g, ξ, φ), its D-homothetic deforma-

tion, determined by any real constant t ̸= 0, is the new paracontact metric struc-

ture (ηt, gt, ξt, φt), defined by

ηt = tη, ξt = t−1ξ, φ = φ, gt = tg + t(t− 1)η ⊗ η (3.9)

(see [30],[14]). In [14], the relationships between the Levi–Civita connections ∇
and ∇t and curvature tensors R and Rt of g and gt respectively were investigated.
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In particular, by Proposition 3.6 in [14], rewritten for our sign convention of the

curvature, we have

tRt(X,Y )ξt = R(X,Y )ξ + (t− 1)2(η(Y )X − η(X)Y )

+ (t− 1)
(
(∇Xφ)Y − (∇Y φ)X + η(Y )(X − hX)− η(X)(Y−hY )

)
.

When both X,Y belong to ker η, the above equation reduces to

tRt(X,Y )ξt = R(X,Y )ξ + (t− 1)
(
(∇Xφ)Y − (∇Y φ)X

)
. (3.10)

Let now {E1, . . . , E2n+1} = {e1, . . . , en, φe1, . . . , φen, ξ} be a local φ-basis for

(η, g, ξ, φ). Note that ker ηt = ker η and gt = tg on ker η. Therefore,
{

1√
t
e1, . . . ,

1√
t
en,

1√
t
φe1, . . . ,

1√
t
φen, ξt

}
is a local basis of vector fields, pseudo-orthonormal

with respect to gt. We can now calculate the Ricci tensor ϱt(X, ξt), for any vector

field X ∈kerη, by contraction of (3.10). Taking into account equations (3) and

(3.7), we get

ϱt(X, ξt) =
1

t

2n∑
i=1

εig(R(X,Ei)ξ +
t− 1

t

2n∑
i=1

g((∇Xφ)Ei, Ei)

= − t− 1

t

2n∑
i=1

g((∇Eiφ)X,Ei)
1

t
ϱ(X, ξ)− t− 1

t
· 2nη(X) =

1

t
ϱ(X, ξ).

Thus, like in the contact Riemannian case [24], the property “ξ is an eigenvector of

the Ricci operator” is invariant underD-homothetic deformations of a paracontact

metric structure. So, Theorem 3.1 yields the following result.

Theorem 3.5. The class of H-paracontact manifolds is invariant under D-

homothetic deformations.

4. Examples

We shall now investigate the relationships among the class of H-paracontact

spaces and some relevant classes of paracontact metric manifolds.

4.1. K-paracontact and para-Sasakian manifolds. We start considering the

K-paracontact case, for which we shall prove the following.
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Theorem 4.1. The Ricci operator of a K-paracontact metric manifold sat-

isfies

Qξ = −2nξ.

Hence, K-paracontact (in particular, para-Sasakian) manifolds areH-paracontact.

Moreover, the Reeb vector field ξ of any K-paracontact metric manifold (M,η, g)

defines a harmonic map ξ : (M, g) → (T1M, gs).

Proof. It follows from equation (3.4) that the curvature tensor of a K-

paracontact metric manifold satisfies

R(Y, Z, ξ,X) = g((∇Y φ)Z,X)− g((∇Zφ)Y,X). (4.1)

Then, using the first Bianchi identity and (4.1), we get

g(R(Y, Z)ξ,X) = −g(R(Z, ξ)Y,X)− g(R(ξ, Y )Z,X)

= −g((∇Xφ)Y,Z) + g((∇Y φ)X,Z)− g((∇Zφ)X,Y )

+ g((∇Xφ)Z, Y ) = 2g((∇Xφ)Z, Y )− g(R(Y, Z)ξ,X),

that is,

R(ξ,X, Y, Z) = g((∇Xφ)Z, Y ). (4.2)

Let now {e1, . . . , en, φe1, . . . , φen, ξ} be a local pseudo-orthonormal φ-basis, with

g(ei, ei) = −g(φei, φei) = 1. Using the formulae (4.2) and (3.2), we obtain

ϱ(ξ, Y ) =
n∑

i=1

g (R(ξ, ei, Y, ei)−
n∑

i=1

g (R(ξ, φei, Y, φei)

=

n∑
i=1

g((∇eiφ)ei, Y )− g((∇φeiφ)φei, Y ) = g(tr∇φ, Y ) = −2nη(Y ),

that is, Qξ = −2nξ. Hence, (M,η, g) is H-contact. In order to conclude

that ξ : (M, g) → (T1M, gs) is a harmonic map, it then suffices to prove that

tr[R(∇ξ, ξ)·] = 0.

Since M is K-contact, the first equation in (2.1) reduces to ∇ξ = −φ. With

respect to the above local pseudo-orthonormal φ-basis {ei, φei, ξ}, using∇ξ = −φ

and the first Bianchi identity, we obtain

tr[R(∇ξ, ξ)·] = − tr[R(φ·, ξ)·] = −
n∑

i=1

R(ei, φei)ξ.

On the other hand, by equations (3.4) and (2.2) with h = 0, we get

R(ei, φei)ξ =
(
∇eiφ

)
φei −

(
∇φeiφ

)
ei =

(
∇φeiφ

)
φ2ei −

(
∇φeiφ

)
ei = 0.

So, we conclude that tr[R(∇ξ, ξ)·] = 0 and this ends the proof. �
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Consider R2n+2, equipped with the standard paracomplex structure I and

flat metric g of neutral signature. Then, any non-degenerate hypersurface in

(R2n+2, I, g) inherits an integrable paracontact hermitian structure [20]. In par-

ticular, a standard example of para-Sasakian manifold is given by the hyperboloid

HS2n+1 := {(x0, y0, . . . , xn, yn) | x2
0 + · · ·+ x2

n − y20 − . . . y2n = 1},

with the natural para-CR structure induced by its embedding in (R2n+2, I, g). In
this case,

η =

n∑
j=0

(yjdxj − xjdyj), ξ =

n∑
j=0

(
xj

∂

∂yj
+ yj

∂

∂xj

)
,

φ = I|HS2n+1 , g|HS2n+1×HS2n+1

is a para-Sasakian structure. By the above Theorem 4.1, the Reeb vector field ξ

of the canonical para-Sasakian structure of HS2n+1 defines a harmonic map into

its unit tangent sphere bundle.

Remark 4.2. K-contact Riemannian manifolds are characterized by the Ricci

curvature condition Qξ = 2nξ. In fact, for such manifolds, equation Qξ = 2nξ

follows at once from condition h = 0. Conversely, being h self-adjoint, it admits

an orthonormal basis of Ricci eigenvectors, hei = λiei for all indices i. Therefore,

if Qξ = 2nξ, then 0 =trh2 =
∑

i λ
2
i and so, h = 0, that is, the manifold is

K-contact.

The above argument does not extend to the paracontact metric case. As

we proved in the above Theorem 4.1, K-paracontact manifolds satisfy the cor-

responding condition Qξ = −2nξ, but the converse does not hold. In fact, if

Qξ = −2nξ, then by (2.3) we find trh2 = 0. However, since the metric tensor

is not positive definite for a paracontact metric manifold, the tensor h, though

self-adjoint, needs not to be diagonalizable [22]. Consequently, trh2 = 0 does not

imply that a paracontact metric manifold is K-paracontact. Explicit examples of

paracontact metric manifolds with trh2 = 0 (indeed, with h2 = 0) but h ̸= 0 will

be given in the next subsection 4.3

4.2. (κ, µ)-paracontact metric manifolds. We now consider paracontact met-

ric manifolds, whose Reeb vector field satisfies the nullity condition (2.5). By con-

traction of (2.5), it is easily seen that the Ricci operator of a (κ, µ)-paracontact

metric manifold satisfiesQξ = 2nκξ (see also [14], p. 670). Therefore, Theorem 3.1

implies at once that (κ, µ)-paracontact metric manifolds are H-paracontact.
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Next, the following formula holds for (κ, µ)-paracontact metric manifolds

with κ ̸= −1 (see [14], pp. 682 and 690, rewritten here for our sign convention on

the curvature tensor):

R(X,Y )hZ − hR(X,Y )Z =
(
κ(η(Y )g(hX,Z)− η(X)g(hY,Z))

+ µ(κ+ 1)(η(Y )g(X,Z)− η(X)g(Y,Z))
)
ξ + κ

(
g(Y, φZ)φhX − g(X,φZ)φhY

+ g(Z,φhY )φX − g(Z,φhX)φY
)
+ η(Z)

(
η(Y )hX − η(X)hY

)
+ µ

(
(κ+ 1)η(Z)(η(Y )X − η(X)Y )

)
+ 2µg(X,φY )φhZ, (4.3)

for all tangent vector fields X, Y , Z. Let now (M,φ, ξ, η, g) denote any (κ, µ)-

paracontact metric manifold with κ ̸= −1, and consider a pseudo-orthonormal

φ-basis {ξ, e1, . . . , en, φe1, . . . , φen}. Using the first equation in (2.1) and the

first Bianchi identity, we find

− tr[R(∇. ξ, ξ)·] = −
n∑

i=1

R(−φei + φhei, ξ)ei +
n∑

i=1

R(−ei − hei, ξ)φei

=
n∑

i=1

R(ξ, ei)φhei +
n∑

i=1

R(ξ, φei)hei = −
n∑

i=1

R(ξ, ei)hφei +
n∑

i=1

R(ξ, φei)hφ
2ei.

On the other hand, by (4.3) we have

R(ξ, Ej)hφEj = hR(ξ, Ej)φEj + κg(hEj , φEj)ξ,

for any Ej ∈ {e1, . . . , en, φe1, . . . , φen}. Therefore, we conclude that

− tr[R(∇. ξ, ξ)·]

=

n∑
i=1

(
− hR(ξ, ei)φei − κg(hei, φei)ξ + hR(ξ, φei)ei + κg(hφei, φ

2ei)ξ
)

=
n∑

i=1

(
− hR(ξ, ei)φei − κg(hei, φei)ξ + hR(ξ, φei)ei + κg(hei, φei)ξ

)
= −

n∑
i=1

h
(
R(ξ, ei)φei −R(ξ, φei)ei

)
= −

n∑
i=1

h
(
R(ei, φei)ξ

)
= 0,

by the (κ, µ)-nullity condition. Therefore, we proved the following result.

Theorem 4.3. (κ,µ)-paracontact metric manifolds areH-paracontact. More-

over, whenever κ ̸= −1, the Reeb vector field of a paracontact (κ, µ)-space also

defines a harmonic map into its unit tangent sphere bundle.
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(κ, µ)-contact Riemannian manifolds are H-contact [24]. On the other hand,

paracontact (κ, µ)-spaces show some peculiar features, which do not have a con-

tact Riemannian counterpart. In fact, Sasakian manifolds can be characterized

as (κ, µ)-contact metric manifolds with κ = 1. Instead, para-Sasakian manifolds

are (κ, µ)-paracontact metric manifolds with κ = −1, but not conversely. It is in-

teresting to investigate non-para-Sasakian paracontact (κ, µ)-spaces with κ = −1

[14], also in order to decide whether their Reeb vector field defines a harmonic

map into the unit tangent sphere bundle.

4.3. Three-dimensional homogeneous paracontact metric manifolds. In

[7], the first author obtained the complete classification of three-dimensional ho-

mogeneous paracontact metric manifolds. The classification result is the follow-

ing.

Theorem 4.4 ([7]). A simply connected complete homogeneous paracontact

metric three-manifold is isometric to a Lie group G with a left-invariant paracon-

tact metric structure (φ, ξ, η, g). More precisely, one of the following cases occurs:

• If G is unimodular, then the Lie algebra of G is one of the following:

(1) g2 : [ξ, e] = −γe+ βφe, [ξ, φe] = βe+ γφe, [e, φe] = 2ξ, with γ ̸= 0.

In this case, G is either the identity component of O(1, 2), or S̃L(2,R).
(2) g3 : [ξ, e] = −γφe, [ξ, φe] = −βe, [e, φe] = 2ξ.

In this case, G is

(2a) the identity component of O(1, 2) or S̃L(2,R) if either β, γ > 0 or

β, γ < 0;

(2b) Ẽ(2) if either β > 0 = γ or β = 0 > γ;

(2c) E(1, 1) if either β < 0 = γ or β = 0 < γ;

(2d) either SO(3) or SU(2) if β > 0 and γ < 0;

(2e) the Heisenberg group H3 if β = γ = 0.

(3) g4 : [ξ, e] = −e+ (2ε− β)φe, [ξ, φe] = −βe+ φe, [e, φe] = 2ξ, with ε = ±1.

In this case, G is

(3a) the identity component of O(1, 2) or S̃L(2,R) if β ̸= ε;

(3b) Ẽ(2) if β = ε = 1;

(3c) E(1, 1) if β = ε = −1.

• If G is non-unimodular, then the Lie algebra of G is one of the following:

(4) g5, g6 : [ξ, e] = [ξ, φe] = 0, [e, φe] = 2ξ + δe, with δ ̸= 0.

(5) g7 : [ξ, e] = −[ξ, φe] = −β(e+ φe), [e, φe] = 2ξ + δ(e+ φe), with δ ̸= 0.
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Notations g2 − g7 for Lie algebras listed in Theorem 4.4 refer to the classifi-

cation of all three-dimensional Lorentzian Lie groups, obtained in [4].

In the symmetric case, such a paracontact homogeneous three-manifold is

either flat or of constant sectional curvature −1. These cases are included in the

classification given in Theorem 4.4 above. In fact, in case (2a) with β = γ = 2,

unimodular Lie groups O(1, 2) or S̃L(2,R) have constant sectional curvature −1,

while in case (2b) with β = 2, the unimodular Lie group Ẽ(2) is flat.

Tensor h = (1/2)Lξφ of all examples listed in Theorem 4.4 can be easily

deduced from the above Lie brackets. Moreover, the curvature and the Ricci ten-

sor of any left-invariant Lorentzian structure over a three-dimensional Lie group

was completely described in [5]. In particular, describing the Ricci operator with

respect to the pseudo-orthonormal basis {e1, e2, e3} = {ξ, e, φe}, we get:

For case (1):

he = γφe,

hφe = −γe,
Q =

−2− 2γ2 0 0

0 2− 2β γ(2− 2β)

0 −γ(2− 2β) 2− 2β

 . (4.4)

For case (2):


he = −1

2
(β − γ)e,

hφe =
1

2
(β − γ)φe,

Q =

−2 + 1
2 (β − γ)2 0 0

0 1
2 ((2− γ)2 − β2) 0

0 0 1
2 ((2− β)2 − γ2)

 . (4.5)

For case (3):

he = εe+ φe,

hφe = −e− εφe,
Q =

−2 0 0

0 4 + 2η(2− β)− 2β 2(1 + η − β)

0 −2(1 + η − β) −2β + 2ηβ

 (4.6)

For case (4):

h = 0, Q =

−2 0 0

0 δ2 + 2 0

0 0 δ2 + 2

 (4.7)
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For case (5):

he = β(e+ φe),

hφe = −β(e+ φe),
Q =

−2 0 0

0 2− 2β 2β

0 −2β 2 + 2β

 (4.8)

Thus, in all the above cases, ξ = e1 is a Ricci eigenvector. Hence, by Theorem 3.1,

ξ is harmonic. Indeed, we can prove the following stronger result.

Theorem 4.5. The Reeb vector field of any three-dimensional homogeneous

paracontact metric manifold defines a harmonic map into the unit tangent sphere

bundle. In particular, all three-dimensional homogeneous paracontact metric

manifolds are H-paracontact.

Proof. We already concluded by (4.4)–(4.8) that ξ = e1 is a Ricci eigen-

vector. So, all the above examples are H-paracontact, and it suffices to check

the additional condition tr[R(∇·ξ, ξ)·] = 0. Note that in case (4), h = 0 and the

conclusion follows from Theorem 4.1.

Consider a three-dimensional paracontact metric manifold (M,φ, ξ, η, g) and

a local φ-basis {ξ, e, φe}. Taking into account hφ = −φh and the first equation

in (2.1), one has

tr[R(∇·ξ, ξ)·] = R(∇eξ, ξ)e−R(∇φeξ, ξ)φe

= R(ξ, φe)e−R(ξ, φhe)e−R(ξ, e)φe−R(ξ, he)φe. (4.9)

The curvature tensor of three-dimensional left-invariant paracontact metric struc-

tures listed in Theorem 4.4 can be deduced either by direct calculation, or by

comparison with the more general formulae obtained in [5] for the curvature of

three-dimensional Lorentzian Lie groups.

For case (1), we find

R(ξ, e)e = −(2 + γ2)ξ, R(ξ, e)φe = 2γ(1 + β)ξ,

R(ξ, φe)φe = (2 + γ2)ξ, R(ξ, φe)e = 2γ(1 + β)ξ.

Then, taking into account the description of h given in (4.4), from (4.9) we get

tr[R(∇·ξ, ξ)·] = R(ξ, φe)e− γR(ξ, e)e−R(ξ, e)φe− γR(ξ, φe)φe

= 2γ(1 + β)ξ + γ(2 + γ2)ξ − 2γ(1 + β)ξ − γ(2 + γ2)ξ = 0.
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The calculations for the remaining cases are similar to the above one. It suffices

to apply (4.9), using the description of tensor h given in equations (4.5), (4.6)

and (4.8), and the following curvature equations:

For case (2): R(ξ, e)e =
1

4
(4β − β2 − 4 + 3γ2 − 4γ − 2βγ)ξ, R(ξ, e)φe = 0,

R(ξ, φe)φe =
1

4
(4− 4γ + γ2 − 3β2 + 4β + 2βγ)ξ, R(ξ, φe)e = 0.

For case (3): R(ξ, e)e = (1 + 2ε− 2εβ)ξ, R(ξ, e)φe = 2(1 + ε− β)ξ,

R(ξ, φe)φe = (3 + 2ε− 2εβ)ξ, R(ξ, φe)e = 2(1 + ε− β)ξ.

For case (5): R(ξ, e)e = −(1 + 2β)ξ, R(ξ, e)φe = 2βξ,

R(ξ, φe)φe = (1− 2β)ξ, R(ξ, φe)e = 2βξ.

In all the above cases, a straightforward calculation yields tr[R(∇·ξ, ξ)·] = 0. So,

ξ defines a harmonic map into the unit tangent sphere bundle. �

Remark 4.6. The above Theorem 4.5 formally agrees on the similar re-

sult valid for three-dimensional homogeneous contact Riemannian manifolds [23].

However, the paracontact metric case provides many more examples of harmonic

maps than its contact Riemannian counterpart, since the classification of homo-

geneous paracontact metric three-manifolds is much richer.

We end this section by pointing out the following example, which obviously

does not have any contact Riemannian analogue.

Example 4.7. A nonSasakian paracontact metric manifold satisfy-

ing (2.6).

Consider the three-dimensional left-invariant paracontact metric structure listed

in case (3a) of Theorem 4.4 in the special case when β = ε+ 1, that is,

[ξ, e] = −e+ (ε− 1)φe, [ξ, φe] = −(ε+ 1)e+ φe, [e, φe] = 2ξ, with ε = ±1.

We already proved in equation (4.6) that he = εe + φe and hφe = −e − εφe.

Therefore, h ̸= 0 and so, this paracontact metric structure is not para-Sasakian.

On the other hand, calculating the curvature tensor (or equivalently, using the

formulas proved in [5] for the curvature), we easily get

R(e, φe)ξ = 0,

R(ξ, e)ξ = −(2εβ − 1− 2ε)e− 2(1 + ε− β)φe = −e = −η(ξ)e,

R(ξ, φe)ξ = 2(1 + ε− β)e− (3 + 2ε− 2εβ)φe = −φe = −η(ξ)φe,
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from which it follows at once that equation (2.6) holds, since R and η are tensors.

Thus, this paracontact metric manifold is an explicit example of a paracontact

non-para-Sasakian metric manifold, satisfying (2.6).

5. Paracontact infinitesimal harmonic transformations

and Ricci solitons

Let (Mn, g) be a semi-Riemannian manifold and f : x 7→ x′ a point transfor-

mation in (M, g). If ∇(x) denotes the Levi–Civita connection at x and ∇′(x) is

obtained bringing back ∇(x′) to x by f−1 [27], the Lie difference at x is defined

as ∇′(x)−∇(x). The map f is said to be harmonic if tr(∇′(x)−∇(x)) = 0.

Consider now a vector field V on M and the local one-parameter group of

infinitesimal point transformations ft generated by V . The Lie derivative LV ∇
then corresponds to ∇′(x)−∇(x), where ∇′(x) = f∗

t (∇(x′)), and V generates a

group of harmonic transformations if and only if

tr(LV ∇) = 0.

In this case, V is said to be an infinitesimal harmonic transformation [21].

Infinitesimal harmonic transformations also occur as critical points for a suit-

able energy functional. In fact, if gc denotes the complete lift metric of g to TM ,

which is of neutral signature (n, n), a vector field V on M defines a harmonic

section V : (M, g) → (TM, gc) if and only if V is an infinitesimal harmonic trans-

formation [21]. For this reason, infinitesimal harmonic transformations are also

called 1-harmonic vector fields, because this harmonicity property is equivalent

to the vanishing of the linear part of the tension field of the local one-parameter

group of infinitesimal point transformations [16]. A vector field V is an infinitesi-

mal harmonic transformation if and only if ∆̄V = QV (see for example [10]), [12]).

We now consider a paracontact metric manifold (M,φ, ξ, η, g). By Theo-

rem 3.2 and equation ϱ(ξ, ξ) = −2n+ trh2, we get

∆̄ξ = Qξ ⇐⇒ Qξ = −2nξ ⇐⇒ trh2 = 0 and Qξ is collinear to ξ.

Thus, we have the following result.

Theorem 5.1. Let (M,η, ξ, g, φ) be a paracontact metric manifold. Then,

the following assertions are equivalent:

1) Qξ = −2nξ;
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2) ξ is an infinitesimal harmonic transformation (equivalently, 1-harmonic);

3) M is H-paracontact and trh2 = 0.

Note that the Reeb vector field of a contact Riemannian manifold is an

infinitesimal harmonic transformation if and only if it is a Killing vector field [26].

Remark 5.2. In general, a harmonic vector field needs not to be 1-harmonic,

nor conversely. This fact may be easily seen, for example, comparing the classifi-

cations of harmonic and 1-harmonic left-invariant vector fields over three-dimen-

sional Lorentzian Lie algebras, given respectively in [6] and [12].

However, the above Theorem 5.1 yields that if the Reeb vector field of a

paracontact metric manifold is 1-harmonic, then it is harmonic, while the converse

does not hold, because of the additional condition trh2 = 0.

We already proved in Corollary 3.4 that any paracontact (κ, µ)-space is H-

paracontact. On the other hand, for a paracontact (κ, µ)-space one has h2 =

(k+ 1)φ2 (see for example [14]), from which it easily follows that trh2 = 0 if and

only if k = −1. Hence, by the above Theorem 5.1, we have the following

Corollary 5.3. The Reeb vector field of a paracontact (κ, µ)-space is an

infinitesimal harmonic transformation if and only if κ = −1. Whenever κ ̸= −1,

the Reeb vector field of a paracontact (κ, µ)-space is harmonic but not 1-harmonic.

Next, using the description of tensor h given in equations (4.4)–(4.8), we

can easily deduce trh2 for all three-dimensional left-invariant paracontact metric

structures classified in Theorem 4.4. Taking into account Theorems 5.1 and 4.5,

we then get the following result.

Corollary 5.4. The Reeb vector field of a three-dimensional homogeneous

paracontact metric manifold is an infinitesimal harmonic transformation if and

only if the manifold is isometric to one of the following cases, as classified in

Theorem 4.4:

• case (2) with β = γ;

• case (3);

• case (4);

• case (5).

The above Corollary 5.4 is compatible with the results about left-invariant

Killing and 1-harmonic vector fields on three-dimensional Lorentzian Lie groups

obtained in [12] (see, in particular, Lemma 1, Theorem 6, Lemma 11 and Theo-

rem 20 in [12]).
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Remark 5.5. In the contact Riemannian case, the Reeb vector field is an infin-

itesimal harmonic transformation if and only if the contact Riemannian structure

is K-contact [26].

Again by the description of tensor h given in the previous Section, it is easily

seen that h = 0 (and so, the three-dimensional left-invariant paracontact metric

structure is para-Sasakian, see Theorem 2.2 in [7]) if and only if we are either

in case (2) with β = γ, in case (3), or in case (5) with β = 0. This corrects

Theorem 4.3 in [7], as case (a) is not para-Sasakian.

Comparing this classification with the above Corollary 5.4, we see that in the

following cases

• case (3);

• case (5) with β ̸= 0,

ξ is an infinitesimal harmonic deformation, although the paracontact metric struc-

ture is notK-paracontact. Thus, the class of paracontact metric structures, whose

Reeb vector field is an infinitesimal harmonic transformation, is strictly larger

than the one of K-paracontact structures.

We can also exhibit a five-dimensional example of a paracontact, not K-

paracontact metric manifold, whose characteristic vector field ξ is an infinitesimal

harmonic transformation. Consider the simply connected Lie group, whose Lie

algebra g = Span{ξ,X1, X2, Y1, Y2} is described by

[X1, X2] = 2X2, [X1, Y1] = 2ξ, [X2, Y1] = −2Y2,

[X2, Y2] = 2(Y1 + ξ), [ξ,X1] = −2Y1, [ξ,X2] = −2Y2,

equipped with the left-invariant paracontact metric structure determined by the

following conditions:

φξ = 0, φXi = Xi, φYi = −Yi, η(Xi) = η(Yi) = 0, η(ξ) = 1

and
g(Xi, Xj) = g(Yi, Yj) = 0, g(Xi, Yj) = δij ,

for all i, j = 1, 2 (see [13, Example 4.8]). As proved in [13], this paracontact

metric manifold is a paracontact (κ, µ)-space, with κ = −1 and µ = 2. Hence, by

Theorem 4.3, it is H-paracontact. Moreover, h2 =0, although hX1 = − Y1 ̸=0.

Therefore, this paracontact metric manifold is not K-paracontact, but by Theo-

rem 5.1 its Reeb vector field is an infinitesimal harmonic transformation.

We also emphasize the fact that both in the above three-dimensional exam-

ples and in this five-dimensional example, with ξ being an infinitesimal harmonic

transformation, the tensor h is two-step nilpotent.
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The recent paper [27] showed that the vector field V determining a Rie-

mannian Ricci soliton is necessarily an infinitesimal harmonic transformation.

The same argument also applies to the semi-Riemannian case. A Ricci soliton is

a semi-Riemannian manifold (M, g), admitting a vector field V and a real con-

stant λ, such that

ϱ+
1

2
LV g = λg. (5.1)

A Ricci soliton is said to be shrinking, steady or expanding, according to whether

λ > 0, λ = 0 or λ < 0, respectively. An Einstein manifold, together with a

Killing vector field, is a trivial solution of equation (5.1). Ricci solitons have been

intensively studied in recent years, particularly because of their relationship with

the Ricci flow. Examples and more details on Ricci solitons in semi-Riemannian

settings may be found in [2], [8] and references therein.

In analogy to the contact metric case, by a paracontact (metric) Ricci soli-

ton we shall mean a paracontact metric manifold (M,φ, ξ, η, g), such that equa-

tion (5.1) holds for V = ξ. In this case, we necessarily have

Qξ = λξ.

In fact, if V = ξ, then equation (5.1) yields

0 = ϱ(ξ,X) +
1

2

(
Lξg

)
(ξ,X)− λg(ξ,X)

= g(Qξ,X) +
1

2
g(∇ξξ,X) +

1

2
g(∇Xξ, ξ)− λg(ξ,X)

= g(Qξ,X)− λg(ξ,X),

for any vector field X, taking into account the fact that ξ is unit and geodesic (as

it easily follows from (2.1)). On the other hand, if (M,φ, ξ, η, g) is a paracontact

Ricci soliton, then in particular ξ is an infinitesimal harmonic transformation.

Hence, Theorem 5.1 yields that M is H-paracontact and Qξ = −2nξ. Thus,

λ = −2n and we have the following result.

Theorem 5.6. A paracontact Ricci soliton is H-paracontact, and is neces-

sarily expanding.

In the contact Riemannian case, ξ is an infinitesimal harmonic transformation

only when it is Killing. As a consequence, a contact Riemannian Ricci soliton

is necessarily trivial, that is, an Einstein K-contact metric manifold [26]. The

above Theorem 5.6 specifies that pseudo-Riemannian paracontact Ricci solitons
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must be found among H-paracontact manifolds. On the one hand, this does not

exclude the existence of nontrivial paracontact Ricci solitons, on the other hand,

we could not find examples of nontrivial paracontact Ricci solitons. This leads to

state the following

Open Question: Do there exist nontrivial paracontact Ricci solitons?
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