On generalized metric spaces and their associated Finsler spaces II. g-Landsberg spaces of scalar curvature K

By TOSHIO SAKAGUCHI (Yokosuka), HIDEO IZUMI (Fujisawa) and MAMORU YOSHIDA (Fujisawa)

Dedicated to Professor Lajos Tamássy on his 70th birthday

The present paper is the continuation of "On generalized metric spaces and their associated Finsler spaces I. Fundamental relations" (Publ. Math., Debrecen, Vol. 45 (1994), 187-203). So we follow the notation and terminology of the previous paper.

In $\S 5$ we introduce the notion of g - C-reducible condition and obtain [A] In a g - C-reducible M_{n} space there exists a scalar τ such that
$C_{h j}-\frac{F}{n+1} T_{h j}=\tau h_{h j}$ (Theorem 5.9).
[B] In a g - C-reducible and g-Landsberg space M_{n}, for $n>3$ the Douglas tensor $D_{h}{ }^{i}{ }_{j k}$ vanishes (Theorem 5.13).
[C] In a g - C-reducible and g-Landsberg space M_{n}, for $n>3$ if the scalar G vanishes, then the space is a g-Berwald space (Theorem 5.17).

In $\S 6$ we consider a space M_{n} of scalar curvature K and obtain
[D] A g-Landsberg space of scalar curvature K is g - C-reducible (Theorem 6.8).
[E] A g-Landsberg space M_{n} of scalar curvature K is for $n>3$ projectively flat (Theorem 6.9).
[F] In a g-Landsberg space of scalar curvature K, the curvature tensor $S_{h}{ }^{i}{ }_{j k}$ has the form $\quad S_{h i j k}=F^{-2} S\left(h_{h j} h_{i k}-h_{h k} h_{i j}\right)$, where S is a constant (Theorem 6.11).

The purpose of $\S 7$ is to prove
[G] The Finsler space associated with a g-Landsberg space of scalar curvature K is semi- C-reducible (Theorem 7.1).
$[\mathbf{H}]$ If the associated Finsler space of a g-Landsberg space of scalar curvature K is $S 3$-like, then the space is an $R c c M_{n}$ space (Theorem 7.7).

§5. A g-Landsberg space, g - C-reducible condition and a g-Berwald space

In this section we refer to some special M_{n} spaces.

5.1. A g-Landsberg space.

Definition. If the tensor $P^{i}{ }_{j k}$ vanishes, then the space M_{n} is called a g-Landsberg space.

Theorem 5.1. ([3], Theorems 4.6, 4.7 and 4.8). A space M_{n} is a g Landsberg space, if and only if any one of the following conditions holds:
(a) $P^{i}{ }_{j k}=0$,
(b) $D_{j}{ }^{i}{ }_{k}=0$,
(c) $P_{h}{ }^{i}{ }_{j k}=0$,
(d) $C_{j}{ }^{i}{ }_{k / 0}=0$.

Remark. In a g-Landsberg space, the connection $B \Gamma(G)$ is h-metrical, that is, $g_{i j / / k}=g_{i j / k}=0$ from (1.12)(a). However $g_{i j / / k}=0$ does not mean that the space is a g-Landsberg space (cf. (1.12)(b)).

From the Bianchi identity ([3],(2.18)(b))

$$
P_{j}{ }^{i}{ }_{k l}+C_{j}{ }^{i}{ }_{l / k}-C_{j}{ }^{i}{ }_{r} P^{r}{ }_{k l}-j \mid k=0,
$$

we have the following
Lemma 5.2. In a g-Landsberg space we have the following relations:
(a) $C_{j i l / k}-j \mid k=0$,
(b) $C_{j l / k}-j \mid k=0$,
(c) $C_{j / k}-j \mid k=0$,
(d) $C_{j k / 0}=0, \quad C_{j / 0}=0$.

Remark. The condition (a) is equivalent to the condition $P^{i}{ }_{j k}=0$.
Using (1.16) and (1.17) we get
Lemma 5.3. In a g-Landsberg space we have
(a) $\quad E_{h}{ }^{i}{ }_{j k}=0, \quad H_{h}{ }^{i}{ }_{j k}=K_{h}{ }^{i}{ }_{j k}, \quad H^{i}{ }_{j k}=R^{i}{ }_{j k}$,
(b) $H_{h i j k}+H_{i h j k}+H^{r}{ }_{j k} g_{h i(r)}=0$,
(c) $F_{h}{ }^{i}{ }_{j k}=G_{h}{ }^{i}{ }_{j k}=C_{h}{ }^{i}{ }_{j / k}, \quad G_{j k}:=G_{i}{ }^{i}{ }_{j k}=C_{j / k}$,
(d) $\quad G_{h i j k}+G_{i h j k}=g_{h i(k) / j}, \quad G_{h}{ }^{0}{ }_{j k}=C_{h j / k}$.

From the Bianchi identity ([3],(2.20)(c))

$$
-S_{h}{ }^{i}{ }_{k l / j}=P_{h}{ }^{i}{ }_{j k /(l)}+P_{h}{ }^{i}{ }_{r k} C_{j}{ }^{r}{ }_{l}+S_{h}{ }^{i}{ }_{l r} P^{r}{ }_{j k}-k \mid l,
$$

we obtain the following

Lemma 5.4. In a g-Landsberg space we have $S_{h}{ }^{i}{ }_{j k / l}=0$.
Definition. A generalized metric space M_{n} whose associated Finsler space $F_{n}^{*}(g)$ is a Landsberg space $\left(P^{* i}{ }_{j k}=0\right)$ is called an $L M_{n}$ space (abbreviation).

From (2.12)(b) and Proposition 2.3 we infer
Theorem 5.5. A g-Landsberg space is an $L M_{n}$ space if and only if the condition $C_{i j / k}=0$ holds.

5.2. g - C-reducible condition ([33]).

Definition. A generalized metric space M_{n} is called g - C-reducible if the following condition holds:

$$
\begin{equation*}
C_{h i k}=F^{-1} l_{i} C_{h k}+\frac{1}{n+1}\left(C_{h} h_{i k}+C_{i} h_{h k}+C_{k} h_{h i}\right) . \tag{5.3}
\end{equation*}
$$

Proposition 5.6. The g-C-reducible condition is characterized by

$$
\begin{equation*}
g_{h i(k)}=F^{-1}\left(l_{i} C_{h k}+l_{h} C_{i k}\right)+\frac{2}{n+1}\left(C_{h} h_{i k}+C_{i} h_{h k}+C_{k} h_{h i}\right) . \tag{5.4}
\end{equation*}
$$

Proof. As $g_{h i(k)}=C_{h i k}+C_{i h k}$, (5.3) gives (5.4). Conversely, if we put $U_{h i k}:=C_{h i k}-\left\{F^{-1} l_{i} C_{h k}+\frac{1}{n+1}\left(C_{h} h_{i k}+C_{i} h_{h k}+C_{k} h_{h i}\right)\right\}=U_{k i h}$, the condition (5.4) can be rewritten $U_{h i k}+U_{i h k}=0$. Then we see

$$
\left(U_{h i k}+U_{i h k}\right)+\left(U_{i k h}+U_{k i h}\right)-\left(U_{k h i}+U_{h k i}\right)=2 U_{h i k}=0 .
$$

Hence this gives (5.3).
Lemma 5.7. In a g - C-reducible M_{n} space we have

$$
\begin{align*}
\text { (a) } C_{h j k}-j \mid k & =F^{-1} l_{j} C_{h k}-j \mid k \\
\text { (b) } \quad C_{h j(k)}-j \mid k & =-C_{h j k}-j \mid k \\
& =-F^{-1} l_{j} C_{h k}-j \mid k \quad(\text { cf. }(1.7)(d)), \tag{5.5}\\
\text { (c) } \quad g_{h j(k)}-j \mid k & =F^{-1} l_{j} C_{h k}-j \mid k .
\end{align*}
$$

We shall give the following
Lemma 5.8. In a g - C-reducible M_{n} space we have

$$
\begin{equation*}
F \mathrm{p} \cdot C_{h i j(k)}-j\left|k=F^{-1} h_{i k}^{*} C_{h j}+\frac{1}{n+1}\left(T_{i k} h_{h j}-T_{h j} h_{i k}\right)-j\right| k \tag{5.6}
\end{equation*}
$$

where $T_{i k}:=F \mathrm{p} \cdot C_{i /(k)}$.
Proof. Using the following calculations:
$F \mathrm{p} \cdot F_{(k)}=F \mathrm{p} \cdot l_{k}=F h_{k}^{r} l_{r}=0$,
$F \mathrm{p} \cdot l_{i(k)}=h^{*}{ }_{i k}=C_{i k}+h_{i k}$,
$F \mathrm{p} \cdot C_{i(k)}=F \mathrm{p} \cdot\left(C_{i /(k)}+C_{i}{ }^{r}{ }_{k} C_{r}\right)=T_{i k}+\frac{F}{n+1}\left(C^{2} h_{i k}+2 C_{i} C_{k}\right)$,
$C_{j(k)}-j\left|k=(\log \sqrt{g})_{(j)(k)}-j\right| k=0, \quad g:=\operatorname{det}\left(g_{i j}\right)$,
$F \mathrm{p} \cdot h_{h i(k)}=F \mathrm{p} \cdot g_{h i(k)}=\frac{2 F}{n+1}\left(C_{h} h_{i k}+C_{i} h_{h k}+C_{k} h_{h i}\right)$,
$F \mathrm{p} \cdot h_{h j(k)}-j \mid k=0, \quad C^{2}:=C^{i} C_{i}$,
and after some further calculations, we obtain (5.6) from (5.3).
As the identity: $g_{h i(j)(k)}-j\left|k=\left(C_{h i j(k)}+C_{i h j(k)}\right)-j\right| k=0$ holds, we see from (5.6)
$F^{2} \mathrm{p} \cdot g_{h i(j)(k)}-j\left|k=h_{i k}\left(C_{h j}-\frac{2 F}{n+1} T_{h j}\right)-h_{h j}\left(C_{i k}-\frac{2 F}{n+1} T_{i k}\right)-j\right| k=0$.
Transvecting the above equation with $h^{i k}$, we have

$$
(n-1)\left(C_{h j}-\frac{2 F}{n+1} T_{h j}\right)-\left(C_{i}^{i}-\frac{2 F}{n+1} T_{i}^{i}\right) h_{h j}=0 .
$$

Hence we have
Theorem 5.9. In a g - C-reducible M_{n} space there exists a scalar τ such that

$$
\begin{equation*}
C_{h j}-\frac{2 F}{n+1} T_{h j}=\tau h_{h j}, \quad \tau:=\frac{1}{n-1}\left(C^{i}{ }_{i}-\frac{2 F}{n+1} T^{i}{ }_{i}\right) . \tag{5.7}
\end{equation*}
$$

To find the curvature tensor $S_{h}{ }^{i}{ }_{j k}$, we give the relation

$$
\begin{aligned}
S_{h i j k} & :=g_{i r} S_{h}{ }^{r}{ }_{j k}=g_{i r}\left(C_{h}{ }^{r}{ }_{j(k)}+C_{h}{ }^{m}{ }_{j} C_{m}{ }^{r}{ }_{k}\right)-j \mid k \quad(\mathrm{cf.}[3],(2.12)(c)) \\
& =C_{h i j(k)}-g_{i r(k)} C_{h}{ }^{r}{ }_{j}+C_{h}{ }^{r}{ }_{j} C_{r i k}-j \mid k \\
& =C_{h i j(k)}-C_{h}{ }^{r}{ }_{j} C_{i r k}-j \mid k .
\end{aligned}
$$

As the tensor $S_{h i j k}$ is indicatric, we see

$$
\begin{aligned}
F^{2} S_{h i j k}= & F^{2} \mathrm{p} \cdot\left(C_{h i j(k)}-C_{h}{ }^{r} C_{i r k}\right)-j \mid k \\
= & h_{i k} C_{h j}+\frac{F}{n+1}\left(T_{i k} h_{h j}-T_{h j} h_{i k}\right) \\
& \left.-\frac{F^{2}}{(n+1)^{2}}\left(C^{2} h_{h j} h_{i k}+C_{i} C_{k} h_{h j}+C_{h} C_{j} h_{i k}\right)-j \right\rvert\, k .
\end{aligned}
$$

Substituting $\frac{F}{n+1} T_{i k}=\frac{1}{2}\left(C_{i k}-\tau h_{i k}\right)$, we have
Proposition 5.10. In a g - C-reducible M_{n} space, the curvature tensor $S_{h}{ }^{i}{ }_{j k}$ has the form

$$
\begin{align*}
& \text { (a) } \left.S_{h i j k}=\frac{F^{-2}}{2}\left(M_{h j} h_{i k}+M_{i k} h_{h j}\right)-j \right\rvert\, k \\
& \text { (b) } M_{h j}:=C_{h j}-\frac{F^{2}}{(n+1)^{2}}\left(C^{2} h_{h j}+2 C_{h} C_{j}\right) \tag{5.8}
\end{align*}
$$

5.3. A g - C-reducible and g-Landsberg space.

Let us consider the case that a space M_{n} satisfies the conditions $P^{i}{ }_{j k}=0$ and (5.3). Substituting (5.3) into (5.1)(a), we have
$C_{h i j / k}-j\left|k=F^{-1} l_{i} C_{h j / k}+\frac{1}{n+1}\left(C_{h / k} h_{i j}+C_{i / k} h_{h j}+C_{j / k} h_{h i}\right)-j\right| k=0$.
In virtue of $(5.1)(b)$ and (c), we get

$$
C_{h / k} h_{i j}+C_{i / k} h_{h j}-C_{h / j} h_{i k}-C_{i / j} h_{h k}=0 .
$$

Transvecting the above equation with $h^{i k}$, we obtain
$-(n-1) C_{h / j}+C^{i}{ }_{/ i} h_{h j}=0, \quad$ or $\quad-(n-1) G_{h j}+G_{i}^{i} h_{h j}=0 \quad(c f . \quad(5.2)(c))$.
Hence we have from (5.2)(c)
Proposition 5.11. In a g - C-reducible and g-Landsberg space, we have

$$
\begin{equation*}
G_{h j}=C_{h / j}=G h_{h j}, \quad G:=\frac{G_{i}^{i}}{n-1} . \tag{5.9}
\end{equation*}
$$

From $S_{h}{ }^{i}{ }_{j k / l}=0$ and (5.8), we see

$$
M_{h j / l} h_{i k}+M_{i k / l} h_{h j}-M_{h k / l} h_{i j}-M_{i j / l} h_{h k}=0
$$

Transvecting the above equation with $h^{i k}$, we get

$$
(n-3) M_{h j / l}+M_{i / l}^{i} h_{h j}=0 .
$$

Moreover, transvecting the above equation with $h^{h j}$, we get $2(n-2) M^{i}{ }_{i / l}=$ 0 and hence we obtain $(n-3) M_{h j / l}=0$. On the other hand, for $n>3$ (5.8) (b) and (5.9) lead us to

$$
M_{h j / k}=C_{h j / k}-\frac{2 F^{2} G}{(n+1)^{2}}\left(C_{h} h_{j k}+C_{j} h_{h k}+C_{k} h_{h j}\right)=0
$$

Proposition 5.12. In a g - C-reducible and g-Landsberg space M_{n}, for $n>3$ we have

$$
\begin{align*}
& \text { (a) } C_{h j / k}=\frac{2 F^{2} G}{(n+1)^{2}}\left(C_{h} h_{j k}+C_{j} h_{h k}+C_{k} h_{h j}\right), \\
& C^{i}{ }_{i / k}=\frac{2 F^{2} G C_{k}}{n+1} \tag{5.10}\\
& \text { (b) } G_{h}{ }^{i}{ }_{j k}=C_{h}{ }^{i}{ }_{j / k}=\frac{G}{(n+1)^{2}}\left\{2 F l^{i}\left(C_{h} h_{j k}+C_{j} h_{h k}+C_{k} h_{h j}\right)\right. \\
&\left.\quad+(n+1)\left(h_{h}^{i} h_{j k}+h_{j}^{i} h_{k h}+h_{k}^{i} h_{h j}\right)\right\} .
\end{align*}
$$

On the other hand, from $(2.12)(b)$ and $(2.5)(a)$ we see

$$
\begin{equation*}
P^{*}{ }_{h j k}:=g^{*}{ }_{h r} P_{j k}^{* r}=-g^{*}{ }_{h r} A_{j}{ }^{r}{ }_{k}=-\frac{1}{2} C_{h j / k} . \tag{5.11}
\end{equation*}
$$

Hence from the definition of the tensor $D^{*}{ }_{h}{ }^{i}{ }_{j k}($ cf. (6.3)(b)) we have

$$
\begin{aligned}
D^{*}{ }_{h}{ }_{j}{ }_{j k} & =G_{h}{ }^{i}{ }_{j k}+2 F^{-1} l^{i} P^{*}{ }_{h j k}-\frac{1}{n+1}\left(h_{h}^{i} G_{j k}+h_{j}^{i} G_{k h}+h_{k}^{i} G_{h j}\right) \\
& =C_{h}{ }^{i}{ }_{j / k}-F^{-1} l^{i} C_{h j / k}-\frac{G}{n+1}\left(h_{h}^{i} h_{j k}+h_{j}^{i} h_{k h}+h_{k}^{i} h_{h j}\right)=0 .
\end{aligned}
$$

From Proposition 6.7 in $\S 6$ we obtain
Theorem 5.13. In a g-C-reducible and g-Landsberg space M_{n}, for $n>3$ the Douglas tensor $D_{h}{ }^{i}{ }_{j k}$ vanishes.

Remark. In a Finsler geometry $\left(C_{i j}=0\right)$ it is known ([23],Theorem 1) that a C-reducible Landsberg space is a Berwald space ($G_{h}{ }^{i}{ }_{j k}=0$). This fact implies $D_{h}{ }^{i}{ }_{j k}=0$.

5.4. A g-Berwald space.

Definition. If the connection parameters $F_{j}{ }^{i}{ }_{k}$ of $C \Gamma(N)$ are independent of y^{i}, that is, $F_{j}{ }^{i}{ }_{k l}=0$, then the space is called a g-Berwald space (an affinely connected space).

Theorem 5.14. ([3], Lemma 4.4, Theorem 4.5). A space M_{n} is a g-Berwald space if any one of the following conditions holds:
(a) $F_{j}{ }^{i}{ }_{k l}=0$,
(b) $C_{j}{ }^{i}{ }_{k / l}=0$,
(c) $g_{i j(k) / l}=0$.

Definition. A generalized metric space M_{n} whose associated Finsler space $F_{n}^{*}(g)$ is a Berwald space $\left({ }^{*} \Gamma_{j}{ }^{i} k l=G_{j}{ }^{i}{ }_{k l}=0\right)$ is called a $B M_{n}$ space (abbreviation).

Remark. In a g-Berwald space, we have
(a) $P^{i}{ }_{j k}=0 \quad(c f .(1.7)(b))$,
(b) $\quad G_{j}{ }^{i}{ }_{k l}=0 \quad(\mathrm{cf}.(1.14)(c))$.

Hence we see that a g-Berwald space is a g-Landsberg space from (a) and a $B M_{n}$ space from (b).

From (2.16)(c) we see
Theorem 5.15. $A B M_{n}$ space is a g-Berwald space if the condition $C_{i j / k}=0$ holds.

Recently S. Bácsó, F. Ilosvay and B. Kis proved the following theorem ([16],Theorem 1): If a Landsberg space $\left(P^{* i}{ }_{j k}=0\right)$ satisfies the condition $D_{h}{ }^{i}{ }_{j k}=0$, then the space is a Berwald space $\left(G_{h}{ }^{i}{ }_{j k}=0\right)$. Hence we have

Theorem 5.16. If an $L M_{n}$ space satisfies the condition $D_{h}{ }^{i}{ }_{j k}=0$, then the space is a $B M_{n}$ space.

From (5.10)(b) and Theorem 5.14, we have
Theorem 5.17. In a g-C-reducible and g-Landsberg space M_{n}, for $n>3$ if the scalar G vanishes, then the space is a g-Berwald space.

§6. A generalized metric space of scalar curvature K

As the geodesics in $F_{n}^{*}(g)$ are geodesics in M_{n}, the notion of a space of scalar curvature is contained in the geometry of M_{n}. In this section we shall refer to this interesting property about which many results are known in Finsler geometry.

Definition. A space $M_{n}(n>2)$ whose associated Finsler space $F_{n}^{*}(g)$ is of scalar curvature $K(K \neq 0)$ is called a generalized metric space of scalar curvature K and called an $M_{n} s c$ space (abbreviation). If the scalar K is constant, we call the space a generalized metric space of constant curvature K and call it an $M_{n} c c$ space.

From the above definition an $M_{n} s c$ space is characterized by

$$
\begin{equation*}
\text { (a) } H^{i}{ }_{k}=F^{2} K h_{k}^{i} \tag{6.1}
\end{equation*}
$$

From (1.10) we have

$$
\begin{align*}
\text { (b) } \quad H_{j k}^{i}= & \left.F\left(K l_{j}+\frac{1}{3} K_{j}\right) h_{k}^{i}-j \right\rvert\, k, \\
\text { (c) } \quad H_{h}{ }^{i}{ }_{j k}= & K g^{*}{ }_{h j} \delta_{k}^{i}+\frac{1}{3}\left\{h^{*}{ }_{h j} l^{i} K_{k}+h_{h}^{i} l_{j} K_{k}\right. \\
& \left.+h_{k}^{i}\left(K_{h j}+l_{h} K_{j}+2 K_{h} l_{j}\right)\right\}-j \mid k, \tag{6.1}\\
\text { (d) } \quad H_{j}= & F\left\{(n-1) K l_{j}+\frac{n-2}{3} K_{j}\right\}, \\
\text { (e) } \quad H_{h j}= & (n-1) K g^{*}{ }_{h j} \\
& +\frac{1}{3}\left\{(n-2)\left(K_{h j}+l_{h} K_{j}\right)+(2 n-1) K_{h} l_{j}\right\},
\end{align*}
$$

where $K_{j}:=F K_{(j)}, K_{h j}:=F \mathrm{p} \cdot K_{j(h)}=F K_{j(h)}+K_{h} l_{j}=K_{j h}$.

6.1. An $M_{n} c c$ space.

It is well known (e.g. [29],[25]) that in a Finsler space of scalar curvature K, the scalar K is constant if it independent of y.

From Proposition 1.2 the following is evident.
Lemma 6.1. An $M_{n} s c$ space is an $M_{n} c c$ space if $K_{j}=0$ or $K_{h j}=0$ holds.

Moreover we know the following
Theorem 6.2. A generalized metric space M_{n} reduces to one of constant curvature K if and only if the tensors $H_{h}{ }^{i}{ }_{j k}, H^{i}{ }_{j k}$ and $H^{i}{ }_{k}$ have any one of the following forms:
(a) $\quad H^{i}{ }_{j k}=K\left(y_{j} \delta_{k}^{i}-j \mid k\right)$
(cf. [29],p. 133),
(b) $\quad H_{h}{ }^{i}{ }_{j k}=A_{h j} \delta_{k}^{i}-A_{j k} \delta_{h}^{i}-j \mid k$
(cf. [35]),
(c) $\quad H_{h}{ }^{i}{ }_{j k}=\frac{1}{n+1}\left(\delta_{k}^{i} H_{j(h)}-\delta_{h}^{i} H_{j k}-j \mid k\right)$
(d) $\quad H^{i}{ }_{k}=\frac{1}{n-1}\left(H_{0} \delta_{k}^{i}-H_{k} y^{i}\right)$
(cf. [18],Theorem 2),
(cf. [36],[37]),
where $A_{h j}:=\frac{1}{n^{2}-1}\left(n H_{h j}+H_{j h}\right)$.

Theorem 6.3. (e.g. [10]). A generalized metric space of scalar curvature K reduces to one of constant curvature K if and only if any one of the following conditions holds:
(a) $\quad K_{/ 0}=0, \quad(b) \quad K_{/ / j}=K_{/ j}-F^{-1} P^{h}{ }_{j} K_{h}=0 \quad(c f .[26]$, Theorem 1),
(c) $H_{h j}=H_{j h} \quad$ or $\quad H_{i}{ }^{i}{ }_{j k}=0 \quad$ or $\mathrm{p} \cdot H^{i}{ }_{j k}=0$,
(d) $\quad G_{h j / / k}-j \mid k=0 \quad$ or $\quad H_{h j(k)}-j \mid k=0 \quad$ (cf. [18],Theorem 1),
(e) $\mathrm{p} \cdot G_{h}{ }^{i}{ }_{j k / / 0}=0$.

Theorem 6.4. ([30], Theorem 4.3). If a generalized metric space of scalar curvature K satisfies the condition

$$
\begin{aligned}
& F_{h}{ }^{i}{ }_{j k}:=H_{h}{ }^{i}{ }_{j k}-\left(g_{h j} L^{i}{ }_{k}+L_{h j} \delta^{i}{ }_{k}-h_{h}^{i} L_{j k}-j \mid k\right)=0 \quad \text { (cf. [21]), } \\
& L_{h j}:=\frac{1}{(n-1)(n-2)}\left\{(n-1) H_{h j}-\frac{1}{2} g^{i k} H_{i k} g_{h j}+l^{i} l_{j}\left(H_{i h}-H_{h i}\right)\right\},
\end{aligned}
$$

then the space is one of constant curvature K.

6.2. Projective(geodesic) change in M_{n}.

It is well known that in a metric space, a path(autoparallel curve) is coincident with the geodesic (extremal curve). From Finsler geometry, we know the following results:

Theorem 6.5. ([35],[25]). A generalized metric space M_{n} is projectively flat if the Weyl tensor $W^{i}{ }_{j k}$ and the Douglas tensor $D_{h}{ }^{i}{ }_{j k}$ vanish, where
(a) $\quad W^{i}{ }_{j k}:=H^{i}{ }_{j k}+\frac{1}{n+1}\left\{\left.H_{j k} y^{i}+\frac{1}{n-1}\left(n H_{k}+H_{k 0}\right) \delta_{j}^{i}-j \right\rvert\, k\right\}$,
(b) $\quad D_{h}{ }^{i}{ }_{j k}:=G_{h}{ }^{i}{ }_{j k}-\frac{1}{n+1}\left(l^{i} G_{h j k}+h_{h}^{i} G_{j k}+h_{j}^{i} G_{k h}+h_{k}^{i} G_{h j}\right)$,
where $G_{h j k}:=F \mathrm{p} \cdot G_{j k(h)}=F G_{j k(h)}+l_{j} G_{k h}+l_{k} G_{h j}+l_{h} G_{j k}$.
Theorem 6.6. ([34],[25]). A generalized metric space $M_{n}(n>2)$ is one of scalar curvature K if and only if the condition $W^{i}{ }_{j k}=0$ holds.

We shall show

Proposition 6.7. The following relations hold:
(a) $W^{i}{ }_{j k}=0$ is equivalent to $W^{* i}{ }_{j k}=0$, where

$$
\begin{aligned}
& W^{* i}{ }_{j k}:=H^{i}{ }_{j k}-\frac{1}{n-2}\left\{\left(H_{j}-F^{-1} H l_{j}\right) h_{k}^{i}-j \mid k\right\}, \\
& H:=\frac{1}{n-1} H^{i}{ }_{i},
\end{aligned}
$$

(b) $D_{h}{ }^{i}{ }_{j k}=0$ is equivalent to $\mathrm{p} \cdot D_{h}{ }^{i}{ }_{j k}=: D^{*}{ }_{h}{ }^{i}{ }_{j k}=0$, where

$$
\begin{aligned}
D^{*}{ }_{h}{ }^{j}{ }_{j k}=G_{h}{ }^{i}{ }_{j k} & +2 F^{-1} l^{i} P^{*}{ }_{h j k} \\
& -\frac{1}{n+1}\left(h_{h}^{i} G_{j k}+h_{j}^{i} G_{k h}+h_{k}^{i} G_{h j}\right) .
\end{aligned}
$$

Proof. For (a), from (6.1)(a) and (d) we see

$$
\begin{equation*}
H_{j}=(n-2) F L_{j}+F^{-1} H l_{j}, \quad L_{j}:=K l_{j}+\frac{1}{3} K_{j} . \tag{6.4}
\end{equation*}
$$

Hence eliminating L_{j} in $(6.1)(b)$, we have

$$
H_{j k}^{i}=\frac{1}{n-2}\left\{\left(H_{j}-F^{-1} H l_{j}\right) h_{k}^{i}-j \mid k\right\} .
$$

For (b), see [10], Theorem 4.4.

6.3. A g-Landsberg space of scalar curvature K.

Now we shall refer to a g-Landsberg space of scalar curvature K.
First, substituting (6.1)(b) and (c) into (5.2)(b) and after some arrangement, we obtain

$$
\begin{align*}
& 3 K\left(C_{h j} g_{i k}+C_{i j} g_{h k}+F l_{j} g_{h i(k)}\right)+K_{h j} h_{i k}+K_{i j} h_{h k}+F K_{j} g_{h i(k)} \tag{6.5}\\
& \quad+\left(l_{i} C_{h j}+l_{h} C_{i j}\right) K_{k}+2 l_{j}\left(K_{h} h_{i k}+K_{i} h_{h k}+K_{k} h_{h i}\right)-j \mid k=0 .
\end{align*}
$$

Transvecting (6.5) with l^{j}, we get

$$
\begin{equation*}
3 K\left\{F g_{h i(k)}-\left(l_{h} C_{i k}+l_{i} C_{h k}\right)\right\}+2\left(K_{h} h_{i k}+K_{i} h_{h k}+K_{k} h_{h i}\right)=0 \tag{6.6}
\end{equation*}
$$

Moreover, on transvecting (6.6) with $h^{h i}$, we find

$$
\begin{equation*}
3 F K C_{k}+(n+1) K_{k}=0, \quad \text { or } \quad K_{k}=-\frac{3 F K}{n+1} C_{k} . \tag{6.7}
\end{equation*}
$$

Using (6.7), we can eliminate K_{k} in (6.6). As $K \neq 0$, we have

$$
F g_{h i(k)}-\left(l_{h} C_{i k}+l_{i} C_{h k}\right)-\frac{2 F}{n+1}\left(C_{h} h_{i k}+C_{i} h_{h k}+C_{k} h_{h i}\right)=0 .
$$

With Proposition 5.6 and Theorem 5.9 in mind, the above equation gives the following

Theorem 6.8. A g-Landsberg space of scalar curvature K is g - C reducible and there exists a scalar τ such that $C_{h j}-\frac{2 F}{n+1} T_{h j}=\tau h_{h j}$.

From Theorems 5.13, 6.5 and 6.6, we have
Theorem 6.9. A g-Landsberg space M_{n} of scalar curvature K is for $n>3$ projectively flat.

Next, operating $F \mathrm{p} \cdot \dot{\partial}_{i}$ to (6.7), we have

$$
3 F\left[K_{i} C_{k}+K\left\{T_{i k}+\frac{F}{n+1}\left(C^{2} h_{i k}+2 C_{i} C_{k}\right)\right\}\right]+(n+1) K_{i k}=0
$$

Moreover, substituting (6.7) into the above equation, we obtain

$$
\begin{equation*}
K_{i k}=-3 K\left\{\frac{F}{n+1} T_{i k}+\frac{F^{2}}{(n+1)^{2}}\left(C^{2} h_{i k}-C_{i} C_{k}\right)\right\} \tag{6.8}
\end{equation*}
$$

Operating p- to (6.5), we get

$$
\begin{gathered}
3 K\left(C_{h j} h_{i k}-C_{i k} h_{h j}\right)+K_{h j} h_{i k}-K_{i k} h_{h j} \\
\left.+\frac{2 F}{n+1} K_{j}\left(C_{h} h_{i k}+C_{i} h_{h k}+C_{k} h_{h i}\right)-j \right\rvert\, k=0 .
\end{gathered}
$$

Substituting K_{k} in (6.7) and $K_{i k}$ in (6.8) into the above equation, we have $(K \neq 0)$

$$
\begin{aligned}
\left(C_{h j}\right. & \left.-\frac{F}{n+1} T_{h j}-\frac{F^{2}}{(n+1)^{2}} C_{h} C_{j}\right) h_{i k} \\
& \left.-\left(C_{i k}-\frac{F}{n+1} T_{i k}-\frac{F^{2}}{(n+1)^{2}} C_{i} C_{k}\right) h_{h j}-j \right\rvert\, k=0
\end{aligned}
$$

On the other hand, we know $\frac{F}{n+1} T_{h j}=\frac{1}{2}\left(C_{h j}-\tau h_{h j}\right)$. Then the above equation leads us to

$$
\left.\left(C_{h j}-\frac{2 F^{2}}{(n+1)^{2}} C_{h} C_{j}\right) h_{i k}-\left(C_{i k}-\frac{2 F^{2}}{(n+1)^{2}} C_{i} C_{k}\right) h_{h j}-j \right\rvert\, k=0
$$

Lastly transvecting the above equation with $h^{i k}$, we obtain

$$
(n-1)\left(C_{h j}-\frac{2 F^{2}}{(n+1)^{2}} C_{h} C_{j}\right)-\left(C_{i}^{i}-\frac{2 F^{2} C^{2}}{(n+1)^{2}}\right) h_{h j}=0
$$

Thus we have

Theorem 6.10. In a g-Landsberg space of scalar curvature K, there exists a scalar β such that

$$
\begin{equation*}
C_{h j}-\frac{2 F^{2}}{(n+1)^{2}} C_{h} C_{j}=\beta h_{h j}, \quad \beta:=\frac{1}{n-1}\left(C_{i}^{i}-\frac{2 F^{2} C^{2}}{(n+1)^{2}}\right) . \tag{6.9}
\end{equation*}
$$

Theorem 6.11. In a g-Landsberg space of scalar curvature K, the curvature tensor $S_{h}{ }^{i}{ }_{j k}$ has the form

$$
\begin{gather*}
S_{h i j k}=F^{-2} S\left(h_{h j} h_{i k}-h_{h k} h_{i j}\right) \quad \text { (called S3-type, cf. [27]), } \\
S:=\beta-\frac{F^{2} C^{2}}{(n+1)^{2}}=\frac{1}{n^{2}-1}\left\{(n+1) C^{i}{ }_{i}-F^{2} C^{2}\right\}, \tag{6.10}
\end{gather*}
$$

where S is a constant.
Proof. In view of (5.8) and (6.9), we see

$$
M_{h j}=C_{h j}-\frac{F^{2}}{(n+1)^{2}}\left(C^{2} h_{h j}+2 C_{h} C_{j}\right)=\left(\beta-\frac{F^{2} C^{2}}{(n+1)^{2}}\right) h_{h j}
$$

Putting $M_{h j}=: S h_{h j}$ we have $S=\beta-\frac{F^{2} C^{2}}{(n+1)^{2}}$, or exactly

$$
S=\frac{1}{n-1}\left(C_{i}^{i}-\frac{2 F^{2} C^{2}}{(n+1)^{2}}\right)-\frac{F^{2} C^{2}}{(n+1)^{2}}=\frac{1}{n^{2}-1}\left\{(n+1) C_{i}^{i}-F^{2} C^{2}\right\}
$$

On the other hand, we see

$$
S_{/ k}=\frac{1}{n^{2}-1}\left\{(n+1) C_{i / k}^{i}-2 F^{2} C^{i} C_{i / k}\right\} .
$$

Substituting (5.10)(a) and (5.9), we obtain

$$
S_{/ k}=\frac{1}{n^{2}-1}\left(2 F^{2} G C_{k}-2 F^{2} G C_{k}\right)=0 .
$$

Accordingly, by means of the Ricci identity, we see from $(6.1)(b)$

$$
\left.S_{/ j / k}-S_{/ k / j}=0=-H^{r}{ }_{j k} S_{(r)}=-F\left(K l_{j}+\frac{1}{3} K_{j}\right) S_{(k)}-j \right\rvert\, k,
$$

and transvecting the above equation with y^{j}, we have $S_{(k)}=0$. Therefore $S_{/ k}=0$ means that the scalar S is a constant.

Theorem 3.3, evidently implies the following
Theorem 6.12. A g-Berwald space of scalar curvature K is an $R c c M_{n}$ space, which satisfies $C_{i}=0$ and $C_{h i j}=F^{-1} l_{i} C_{h j}$.

§7. Semi-C-reducibility

In this section we refer to the tensor $C_{h j}$ which vanishes in a Finsler geometry. The purpose of this section is to prove the following

Theorem 7.1. The Finsler space associated with a g-Landsberg space of scalar curvature K is semi-C-reducible, that is,

$$
\begin{align*}
C^{*}{ }_{h j k}= & \frac{p}{n+1}\left(C^{*}{ }_{h} h^{*}{ }_{j k}+C^{*}{ }_{j} h^{*}{ }_{h k}+C^{*}{ }_{k} h^{*}{ }_{h j}\right) \tag{7.1}\\
& +\frac{q}{\left(C^{*}\right)^{2}} C^{*}{ }_{h} C^{*}{ }_{j} C^{*}{ }_{k}, \quad\left(C^{*}\right)^{2}:=g^{* i j} C^{*}{ }_{i} C^{*}{ }_{j},
\end{align*}
$$

where $p+q=1, \quad p \neq 0, \quad q \neq 0$.
Definition. A Finsler space that satisfies the condition (7.1) (without asterisk mark *) is called semi-C-reducible.

Examples. There are many semi- C-reducible Finsler spaces: e.g.
$\left(1^{\circ}\right)$ A Finsler space with (α, β)-metric is semi- C-reducible ([24],[28]).
$\left(2^{\circ}\right)$ If an $R 3$-like Finsler space satisfies the condition $\mathrm{p} \cdot P^{i}{ }_{j k / l}-k \mid l=0$, then the space is semi-C-reducible or satisfies $\quad F^{-1} P_{h i j / 0}+F K C_{h i j}=0$, where K is some scalar ([20],Proposition 5.5).
$\left(3^{\circ}\right)$ If an $R 3$-like Finsler space satisfies the condition ${ }^{*} P^{i}{ }_{j k}=0$, then the space is semi- C-reducible or $S 3$-like ([38],Theorem 4.3).
$\left(4^{\circ}\right)$ If a Finsler space with property \mathcal{H} satisfies the condition ${ }^{*} P^{i}{ }_{j k}=0$ or $\mathrm{p} \cdot P^{i}{ }_{j k / l}-k \mid l=0$, then the space is semi- C-reducible under some condition ([31],Theorems 4.2 and 4.4).

See Appendix.

7.1. Tensors $m_{i}, m_{h j}$ and $m_{h j k}$.

First, in a g-Landsberg space of scalar curvature K, we recall the following relations:

$$
\begin{align*}
& 3 C^{*}{ }_{i j k}=C_{i j k}+C_{j k i}+C_{k i j}+\frac{1}{2}\left(C_{i j(k)}+C_{j k(i)}+C_{k i(j)}\right), \tag{3.1}\\
& C_{h i k}=F^{-1} l_{i} C_{h k}+\frac{1}{n+1}\left(C_{h} h_{i k}+C_{i} h_{h k}+C_{k} h_{h i}\right), \tag{5.3}\\
& C_{h j}-\frac{2 F}{n+1} T_{h j}=\tau h_{h j}, \tag{5.7}\\
& C_{h j}-\frac{2 F^{2}}{(n+1)^{2}} C_{h} C_{j}=\beta h_{h j} \tag{6.9}\\
& S=\beta-\frac{F^{2} C^{2}}{(n+1)^{2}} \quad(S: \text { constant }) . \tag{6.10}
\end{align*}
$$

To save the complicated calculations we introduce new notations:

$$
m_{i}:=\frac{F}{n+1} C_{i}, \quad m_{h j}:=F \mathrm{p} \cdot m_{h /(j)}=\frac{F}{n+1} T_{h j}
$$

then we see that the above equations are expressed by

$$
\begin{align*}
& \text { (a) } C_{h j}=2 m_{h} m_{j}+\beta h_{h j}, \quad \text { (b) } \quad C_{h j}=2 m_{h j}+\tau h_{h j}, \\
& \text { (c) } m_{h j}=m_{h} m_{j}+\frac{\beta-\tau}{2} h_{h j}, \\
& \text { (d) } S=\beta-m^{2}, \quad m^{2}:=m^{i} m_{i}, \tag{7.2}\\
& \text { (e) } m_{h j k}:=F \mathrm{p} \cdot C_{h j k}=m_{h} h_{j k}+m_{j} h_{h k}+m_{k} h_{h j} .
\end{align*}
$$

7.2. Metric tensors in $F_{n}^{*}(g)$.

We see

$$
\begin{align*}
& g^{*}{ }_{h j}=g_{h j}+C_{h j}=g_{h j}+2 m_{h} m_{j}+\beta h_{h j}, \\
& h^{*}{ }_{h j}=(1+\beta) h_{h j}+2 m_{h} m_{j} . \tag{7.3}
\end{align*}
$$

We set $g^{* h k}=g^{h k}+A m^{h} m^{k}+B h^{h k}$ with unknown coefficients A and B, and substituting (7.3) into the definition $g^{* h k} g^{*}{ }_{h j}=\delta_{j}^{k}$, we obtain

$$
\begin{gather*}
B+\beta+B \beta=0, \quad B=-\frac{\beta}{1+\beta}, \quad 1+B=\frac{1}{1+\beta} \\
A\left(1+\beta+2 m^{2}\right)+2(1+B)=0 \tag{7.4}\\
A=-\frac{2}{a(1+\beta)}, \quad a:=1+\beta+2 m^{2}
\end{gather*}
$$

Hence we have
Lemma 7.2. In a g-Landsberg space of scalar curvature K we have

$$
\begin{align*}
g^{* h k} & =g^{h k}-\frac{2}{a(1+\beta)} m^{h} m^{k}-\frac{\beta}{1+\beta} h^{h k}, \tag{7.5}\\
h^{* h k} & =\frac{1}{1+\beta}\left(h^{h k}-\frac{2}{a} m^{h} m^{k}\right) .
\end{align*}
$$

Remark. The scalar β cannot satisfy $1+\beta=0$. In fact, if $1+\beta=0$ holds in (7.3), we have $h^{*}{ }_{h j}=2 m_{h} m_{j}$. The last equation means that the rank of the matrix $\left(h^{*}{ }_{h j}\right)$ must be 1 . As the rank of the matrix $\left(h^{*}{ }_{h j}\right)$ is $n-1$, the relation $1+\beta=0$ cannot hold for $n>2$. Moreover, the last equation of (7.4) is rewritten as $A a(1+\beta)=-2$. Accordingly we see that the scalar a cannot vanish.
7.3. Tensor $C^{*}{ }_{h j k}$ in $F_{n}^{*}(g)$.

Let us carry out the following calculation:

$$
\begin{aligned}
m_{i k} & =F \mathrm{p} \cdot\left(m_{i(k)}-C_{i}^{r}{ }_{k} m_{r}\right)=F \mathrm{p} \cdot m_{i(k)}-m_{i r k} m^{r} \\
& =F \mathrm{p} \cdot m_{i(k)}-\left(m^{2} h_{i k}+2 m_{i} m_{k}\right) .
\end{aligned}
$$

From (7.2)(c) we have

$$
F \mathrm{p} \cdot m_{i(k)}=3 m_{i} m_{k}+\frac{2 m^{2}+\beta-\tau}{2} h_{i k} .
$$

From $(7.2)(d)$ and (c), we see

$$
\begin{aligned}
& \beta_{k}:=F \mathrm{p} \cdot \beta_{(k)}=F \mathrm{p} \cdot\left(S+m^{2}\right)_{/(k)}=2 m^{i} F \mathrm{p} \cdot m_{i /(k)} \\
& \quad=2 m^{i} m_{i k}=\left(2 m^{2}+\beta-\tau\right) m_{k}, \\
& F \mathrm{p} \cdot h_{h j(k)}=F \mathrm{p} \cdot g_{h j(k)}=2 m_{h j k} .
\end{aligned}
$$

Using (7.2)(a) and the above, we shall carry out the following calculation:

$$
\begin{aligned}
F \mathrm{p} \cdot C_{h j(k)} & =2\left(F \mathrm{p} \cdot m_{h(k)} m_{j}+m_{h} F \mathrm{p} \cdot m_{j(k)}\right)+\beta_{k} h_{h j}+\beta F \mathrm{p} \cdot h_{h j(k)} \\
& =12 m_{h} m_{j} m_{k}+\left(2 m^{2}+3 \beta-\tau\right) m_{h j k}
\end{aligned}
$$

As the term $F \mathrm{p} \cdot C_{h j(k)}$ is symmetric in the indices $h, j, k,(3.1)$ gives

$$
F C^{*}{ }_{h j k}=m_{h j k}+\frac{1}{2} F \mathrm{p} \cdot C_{h j(k)} .
$$

Hence we have
Lemma 7.3. In a g-Landsberg space of scalar curvature K we have

$$
\begin{equation*}
F C^{*}{ }_{h j k}=6 m_{h} m_{j} m_{k}+b m_{h j k}, \quad b:=\frac{2 m^{2}+3 \beta-\tau+2}{2} . \tag{7.6}
\end{equation*}
$$

Remark. If $b=0$ holds, then the space $F_{n}^{*}(g)$ is called $C 2$-like. Hence we assume $b \neq 0$.

7.4. Torsion vectors in $F_{n}^{*}(g)$.

Using (7.5) and (7.6) we see

$$
F C^{*}{ }_{j}=F h^{* h k} C^{*}{ }_{h j k}=\frac{1}{1+\beta}\left\{6 m^{2}+(n+1) b-\frac{6 m^{2}\left(2 m^{2}+b\right)}{a}\right\} m_{j} .
$$

Here, let us put

$$
F C^{*}{ }_{j}=\frac{D}{1+\beta} m_{j}, \quad D:=(n+1) b+\frac{6 m^{2}(1+\beta-b)}{a} .
$$

Moreover from (7.5) and $a-2 m^{2}=1+\beta$, we find

$$
F C^{* k}=F h^{* h k} C^{*}{ }_{h}=\frac{D}{(1+\beta)^{2}}\left(1-\frac{2 m^{2}}{a}\right) m^{k}=\frac{D}{a(1+\beta)} m^{k}
$$

Hence we have
Lemma 7.4. In a g-Landsberg space of scalar curvature K we have

$$
\begin{gather*}
F C_{j}^{*}=\frac{D}{1+\beta} m_{j}, \quad F C^{* k}=\frac{D}{a(1+\beta)} m^{k} \\
F^{2}\left(C^{*}\right)^{2}=\frac{D^{2} m^{2}}{a(1+\beta)^{2}} \tag{7.7}
\end{gather*}
$$

Remark. From (7.7) we see that if the scalar D vanishes, then $C^{*}{ }_{j}=$ 0 , which leads to $C^{*}{ }_{h j k}=0$ by Deicke's Theorem. Hence we assume $D \neq 0$. When the vector m_{i} vanishes, we see $C_{h j k}=F^{-1} l_{j} C_{h k}$ and $C^{*}{ }_{h j k}=0$, that is, the space considered reduces to an $R c c M_{n}$ space.
7.5. Proof of Theorem 7.1. From (7.3) and (7.7), we see

$$
h_{h j}=\frac{1}{1+\beta}\left(h^{*}{ }_{h j}-2 m_{h} m_{j}\right)=\frac{1}{1+\beta}\left(h^{*}{ }_{h j}-\frac{2 m^{2}}{a\left(C^{*}\right)^{2}} C^{*}{ }_{h} C^{*}{ }_{j}\right)
$$

and

$$
\begin{aligned}
& m_{k} h_{h j}=\frac{F}{D}\left(C^{*}{ }_{k} h^{*}{ }_{h j}-\frac{2 m^{2}}{a\left(C^{*}\right)^{2}} C^{*}{ }_{h} C^{*}{ }_{j} C^{*}{ }_{k}\right), \\
& m_{h} m_{j} m_{k}=\frac{F(1+\beta) m^{2}}{D a\left(C^{*}\right)^{2}} C^{*}{ }_{h} C^{*}{ }_{j} C_{k}^{*} .
\end{aligned}
$$

Hence (7.2)(e) gives

$$
m_{h j k}=\frac{F}{D}\left(C^{*}{ }_{h} h^{*}{ }_{j k}+C^{*}{ }_{j} h^{*}{ }_{h k}+C^{*}{ }_{k} h^{*}{ }_{h j}-\frac{6 m^{2}}{a\left(C^{*}\right)^{2}} C^{*}{ }_{h} C^{*}{ }_{j} C^{*}{ }_{k}\right) .
$$

Finally (7.6) is rewritten

$$
C^{*}{ }_{h j k}=\frac{b}{D}\left(C^{*}{ }_{h} h^{*}{ }_{j k}+C^{*}{ }_{j} h^{*}{ }_{h k}+C^{*}{ }_{k} h^{*}{ }_{h j}\right)+\frac{6 m^{2}(1+\beta-b)}{D a\left(C^{*}\right)^{2}} C^{*}{ }_{h} C^{*}{ }_{j} C^{*}{ }_{k},
$$

and we have

$$
p=\frac{(n+1) b}{D}, \quad q=\frac{6 m^{2}(1+\beta-b)}{D a}, \quad p+q=1 .
$$

Thus the proof is complete.

Remark. This theorem means that if a g-Landsberg space of scalar curvature K satisfies $m_{j}=0\left(C_{j}=0\right)$, then the space reduces to an $R c c M_{n}$ space.
(6.7) tells us the following

Theorem 7.5. A g-Landsberg space of constant curvature K is an $R c c M_{n}$ space.

Moreover, from (5.9) we see $G_{h j / / k}=G_{h j / k}=G_{/ k} h_{h j}$. From the condition (d) of Theorem 6.3 , we have

Theorem 7.6. If the scalar G is constant, then the g-Landsberg space of scalar curvature K is an $R c c M_{n}$ space.
M. Matsumoto and C. Shibata showed ([24],(1.8)) that the curvature tensor $S_{h}{ }^{i}{ }_{j k}$ of a semi- C-reducible Finsler space is expressed by (without asterisk mark *)

$$
\begin{align*}
& \text { (a) } \left.S_{h i j k}=\frac{F^{-2}}{2}\left(M_{h j} h_{i k}+M_{i k} h_{h j}\right)-j \right\rvert\, k, \\
& \text { (b) } M_{h j}:=-\frac{p^{2} F^{2} C^{2}}{(n+1)^{2}} h_{h j}-\frac{2 p F^{2}}{(n+1)^{2}}(n q+1) C_{h} C_{j} . \tag{7.8}
\end{align*}
$$

Remark. A Finsler space with the tensor $S_{h i j k}$ of $(7.8)(a)$ is called $S 4$-like. If the condition $n q+1=0$ holds, then the tensor $S_{h i j k}$ has the form (6.10) and the space is called $S 3$-like.

In a g-Landsberg space of scalar curvature K, the condition $n q+1=0$ reduces to

$$
\begin{equation*}
a b+6 m^{2}(1+\beta-b)=0 \tag{7.9}
\end{equation*}
$$

and after some rearrangement we have

$$
\begin{equation*}
3 \beta^{2}-(14 S+3 \tau+11) \beta+8 S^{2}+2(2 \tau+3) S+\tau-2=0 \tag{7.10}
\end{equation*}
$$

where the scalars β, τ and the constant S exist exactly.
However, with (5.9) and (7.2)(d) in mind we have

$$
\begin{equation*}
\beta_{/ k}=\left(S+m^{2}\right)_{/ k}=2 m^{i} m_{i / k}=\frac{2 F G}{n+1} m_{k}, \quad \beta_{/ 0}=0 \tag{7.11}
\end{equation*}
$$

Now, differentiating (7.10) by x^{k} we find

$$
(4 S-3 \beta+1) \tau_{/ k}=(14 S+3 \tau-6 \beta+11) \beta_{/ k}
$$

Hence from (7.11) we see $(4 S-3 \beta+1) \tau_{/ 0}=0$. Put $4 S-3 \beta+1=a-6 m^{2}=0$, then the condition (7.9) can be rewritten as $a(1+\beta)=0$, which cannot hold. Thus, from (5.7) and (5.10) (a) we obtain

$$
\tau_{/ 0}=\frac{1}{n-1}\left(C^{i}{ }_{i / 0}-\frac{2 F}{n+1} T_{i / 0}^{i}\right)=-\frac{2 F}{n^{2}-1} T_{i / 0}^{i}=0 .
$$

On the other hand, by means of the Ricci identity we find

$$
C_{i / k /(j)}-C_{i /(j) / k}=-P_{i}{ }^{h}{ }_{k j} C_{h}-C_{k}{ }^{h}{ }_{j} C_{i / h}-P_{k j}^{h} C_{i /(h)}=-C_{k}{ }^{h}{ }_{j} C_{i / h} .
$$

Transvecting the above equation with y^{k} we have $C_{i /(j) / 0}=-C_{i / j}=$ $-G h_{i j}$. From $T_{i j / k}=F C_{i /(j) / k}+l_{i} C_{j / k}+l_{j} C_{i / k}$ we obtain

$$
0=T_{i / 0}^{i}=F g^{i j} C_{i /(j) / 0}=-(n-1) F G .
$$

Thus we have $G=0$. Hence we have from Theorem 7.6
Theorem 7.7. If the associated Finsler space of a g-Landsberg space of scalar curvature K is $S 3$-like, then the space is an $R c c M_{n}$ space.

7.6. Appendix.

In the cases of $\left(2^{\circ}\right),\left(3^{\circ}\right)$ and $\left(4^{\circ}\right)$, the original condition is expressed by (e.g. [20],(5.12),(5.19))
(a) $(n-1) C_{k} C_{h i j}+h_{i j}\left(C_{h}{ }^{r}{ }_{k} C_{r}-C_{h} C_{k}\right)$

$$
+h_{h j}\left(C_{i}{ }^{r}{ }_{k} C_{r}-C_{i} C_{k}\right)-j \mid k=0 \quad\left({ }^{*} C \text {-reducible }\right),
$$

$$
\begin{align*}
(n-2) C^{2} & C^{2} C^{2} C_{h i j}+\left(A-C^{2} C^{2}\right) C^{2}\left(C_{h} h_{i j}+C_{i} h_{h j}+C_{j} h_{h i}\right) \tag{b}\\
& +\left\{3 C^{2} C^{2}-(n+1) A\right\} C_{h} C_{i} C_{j}=0 \\
A:= & C_{h i j} C^{h} C^{i} C^{j} \quad(\text { semi-* } C \text {-reducible }) .
\end{align*}
$$

It has been proved that (a) and (b) are equivalent to the semi- C-reducible condition ([32], Proposition 1.1). As $C_{h i j}$ satisfies $A=c C^{2} C^{2}$ with some scalar c, we find
$(n-2) C^{2} C_{h i j}+(c-1) C^{2}\left(C_{h} h_{i j}+C_{i} h_{h j}+C_{j} h_{h i}\right)+\{3-(n+1) c\} C_{h} C_{i} C_{j}=0$.
Accordingly the scalar p is not arbitrary and the scalar c decides some property. However as $p \neq 0$ and $q \neq 0$, we see that $c \neq 1$ and $c \neq \frac{3}{n+1}$.

Definition. A Finsler space is called
(1) a Finsler space with (α, β)-metric if the Finsler metric is given by $F(x, y)=L(\alpha, \beta)$, where L is p-homogeneous of degree 1 in the two variables $\alpha(x, y):=\sqrt{a_{i j}(x) y^{i} y^{j}}$ and $\beta(x, y):=b_{i}(x) y^{i}$.
(2) a Finsler space with property \mathcal{H}, if the condition $\mathcal{H}^{i}{ }_{j k}=0$ holds ([22],(2.3), [31]), where

$$
\mathcal{H}^{i}{ }_{j k}:=Z^{i}{ }_{j k}-\frac{1}{n-2}\left(Z_{j} h_{k}^{i}-Z_{k} h_{j}^{i}\right), \quad Z^{i}{ }_{j k}:=\mathrm{p} \cdot H^{i}{ }_{j k}, \quad Z_{j}:=Z^{i}{ }_{j i} .
$$

(3) \quad a ${ }^{*} P$-Finsler space, if the condition ${ }^{*} P^{i}{ }_{j k}:=P^{i}{ }_{j k}-\lambda C_{j}{ }^{i}{ }_{k}=0$ holds (called a ${ }^{*} P$-condition, cf. [19]).
(4) a Finsler space with $F_{h}{ }^{i}{ }_{j k}=0$, if the condition $F_{h}{ }^{i}{ }_{j k}=0$ holds ([30]).
(5) an R3-like Finsler space, if the condition $C_{h i j k}=0$ (the formally Weyl conformal curvature tensor vanishes as in Riemannian geometry) holds ([20], [38]), where

$$
C_{h i j k}:=R_{h i j k}-\left(L_{h j} g_{i k}+g_{h j} L_{i k}-j \mid k\right), \quad L_{h j}:=\frac{1}{n-2}\left(R_{h}{ }^{i}{ }_{j i}-r g_{h j}\right) .
$$

Remark. Three special Finsler spaces: a Finsler space of scalar curvature K, an $R 3$-like Finsler space and a Finsler space with $F_{h}{ }^{i}{ }_{j k}=0$, have the property \mathcal{H} ([22], Theorems 2.4, 2.5 and 2.6).

Acknowledgements. The authors wish to express their hearty thanks to Professor Dr. M. Matsumoto for his valuable advices.

References

[16] S. BÁcsó, F. Ilosvay and B. Kis, Landsberg spaces with common geodesics, Publ. Math., Debrecen 42 (1993), 139-144.
[17] L. Berwald, Ueber Finslersche und Cartansche Geometrie, IV. Projektivkrümmung allgemeiner affiner Räume und Finslersche Räume skalarer Krümmung, Ann. of Math. 48 (1947), 755-781.
[18] M.Fukui and T. Yamada, On Finsler spaces of constant curvature, Tensor, N. S. 38 (1982), 129-134.
[19] H. Izumi, On *P-Finsler spaces, I, Memoirs of the Defense Academy, Japan 16 (1976), 133-138.
[20] H. Izumi and T. N. Srivastava, On R3-like Finsler spaces, Tensor, N. S. 32 (1978), 339-349.
[21] H. Izumi, Conformal transformations of Finsler spaces. II. An h-conformally flat Finsler space, Tensor, N. S. 34 (1980), 337-359.
[22] H. Izumi and M.Yoshida, Remarks on Finsler spaces of perpendicular scalar curvature and the property \mathcal{H}, Tensor, N. S. 40 (1983), 215-220.
[23] M. Matsumoto, On C-reducible Finsler spaces, Tensor, N. S. 24 (1972), 29-37.
[24] M. Matsumoto and C. Shibata, On semi- C-reducibility, T-tensor $=0$ and $S 4$-likeness of Finsler spaces, J. Math. Kyoto Univ. 19 (1979), 301-314.
[25] M. Matsumoto, Projective changes of Finsler metrics and projectively flat Finsler spaces, Tensor, N. S. 34 (1980), 303-315.
[26] M. Matsumoto and L. Tamássy, Scalar and gradient vector fields of Finsler spaces and holonomy groups of nonlinear connections, Demonstratio Mathematica 13 (1980), 551-564.
[27] M. Matsumoto, Foundations of Finsler geometry and special Finsler spaces, Kaiseisha Press, Japan, 1986.
[28] M. Matsumoto, Theory of Finsler spaces with (α, β)-metric, Reports on Mathematical Physics 31 (1992), 43-83.
[29] H. Rund, The differential geometry of Finsler spaces, Springer-Verlag, 1959.
[30] T. Sakaguchi, On Finsler spaces with $F_{h}{ }^{i}{ }_{j k}=0$, Tensor, N. S. 34 (1980), 327-336.
[31] T. Sakaguchi, On Finsler spaces with property \mathcal{H}, Tensor, N. S. 45 (1987), 261-273.
[32] T. Sakaguchi, On semi- C-reducible and ${ }^{*} P$-Finsler spaces, Memoirs of the $N a$ tional Defense Academy, Japan 29 (1989), 11-23.
[33] T.Sakaguchi, On g - C-reducible generalized metric spaces, Memoirs of the $N a$ tional Defense Academy, Japan 32 (1992), 11-17.
[34] Z. I. Szabó, Ein Finslerscher Raum ist gerade dann von skalarer Krümmung, wenn seine Weylsche Projektivkrümmung verschwindet, Acta Sci. Math. Szeged 39 (1977), 163-168.
[35] Z. I. Szabó, Finslersche Projektivgeometrie. II, Über Finslersche Projektivbündel mit Weylscher Projektivkrümmung null, Acta Math. Acad. Sci. Hungaricae 35 (1980), 97-108.
[36] X. Wei, On Finsler spaces of constant curvature, Tensor, N. S. 44 (1987), 148-156.
[37] X. Wei, The projective connection and some properties of a Finsler space, Tensor, N. S. 45 (1987), 170-174.
[38] M. Yoshida, On an R3-like Finsler space and its special cases, Tensor, N. S. 34 (1980), 157-166.

```
TOSHIO SAKAGUCHI
DEPARTMENT OF MATHEMATICS,
THE NATIONAL DEFENSE ACADEMY,
YOKOSUKA 239, JAPAN
HIDEO IZUMI
FUJISAWA 2505-165,
FUJISAWA 251, JAPAN
MAMORU YOSHIDA
DEPARTMENT OF MATHEMATICS,
SHONAN INSTITUTE OF TECHNOLOGY,
FUJISAWA 251, JAPAN
```

