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On generalized metric spaces and their
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Dedicated to Professor Lajos Tamássy on his 70th birthday

The present paper is the continuation of “On generalized metric spaces
and their associated Finsler spaces I. Fundamental relations” (Publ. Math.,
Debrecen, Vol. 45 (1994), 187–203). So we follow the notation and termi-
nology of the previous paper.

In §5 we introduce the notion of g-C-reducible condition and obtain
[A] In a g-C-reducible Mn space there exists a scalar τ such that

Chj − F

n + 1
Thj = τhhj (Theorem 5.9).

[B] In a g-C-reducible and g-Landsberg space Mn, for n > 3 the Douglas
tensor Dh

i
jk vanishes (Theorem 5.13).

[C] In a g-C-reducible and g-Landsberg space Mn, for n > 3 if the scalar
G vanishes, then the space is a g-Berwald space (Theorem 5.17).

In §6 we consider a space Mn of scalar curvature K and obtain
[D] A g-Landsberg space of scalar curvature K is g-C-reducible (Theo-
rem 6.8).
[E] A g-Landsberg space Mn of scalar curvature K is for n > 3 projec-
tively flat (Theorem 6.9).
[F] In a g-Landsberg space of scalar curvature K, the curvature tensor
Sh

i
jk has the form Shijk = F−2S(hhjhik − hhkhij), where S is a con-

stant (Theorem 6.11).
The purpose of §7 is to prove

[G] The Finsler space associated with a g-Landsberg space of scalar cur-
vature K is semi-C-reducible (Theorem 7.1).
[H] If the associated Finsler space of a g-Landsberg space of scalar cur-
vature K is S3-like, then the space is an RccMn space (Theorem 7.7).
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§5. A g-Landsberg space, g-C-reducible
condition and a g-Berwald space

In this section we refer to some special Mn spaces.

5.1. A g-Landsberg space.

Definition. If the tensor P i
jk vanishes, then the space Mn is called a

g-Landsberg space.

Theorem 5.1. ([3], Theorems 4.6, 4.7 and 4.8). A space Mn is a g-
Landsberg space, if and only if any one of the following conditions holds:

(a) P i
jk = 0, (b) Dj

i
k = 0, (c) Ph

i
jk = 0, (d) Cj

i
k/0 = 0.

Remark. In a g-Landsberg space, the connection BΓ (G) is h-metrical,
that is, gij//k = gij/k = 0 from (1.12)(a). However gij//k = 0 does not mean
that the space is a g-Landsberg space (cf. (1.12)(b)).

From the Bianchi identity ([3],(2.18)(b))

Pj
i
kl + Cj

i
l/k − Cj

i
rP

r
kl − j|k = 0,

we have the following

Lemma 5.2. In a g-Landsberg space we have the following relations:

(5.1)
(a) Cjil/k − j|k = 0, (b) Cjl/k − j|k = 0,

(c) Cj/k − j|k = 0, (d) Cjk/0 = 0, Cj/0 = 0.

Remark. The condition (a) is equivalent to the condition P i
jk = 0.

Using (1.16) and (1.17) we get

Lemma 5.3. In a g-Landsberg space we have

(5.2)

(a) Eh
i
jk = 0, Hh

i
jk = Kh

i
jk, Hi

jk = Ri
jk,

(b) Hhijk + Hihjk + Hr
jkghi(r) = 0,

(c) Fh
i
jk = Gh

i
jk = Ch

i
j/k, Gjk := Gi

i
jk = Cj/k,

(d) Ghijk + Gihjk = ghi(k)/j , Gh
0
jk = Chj/k.

From the Bianchi identity ([3],(2.20)(c))

−Sh
i
kl/j = Ph

i
jk/(l) + Ph

i
rkCj

r
l + Sh

i
lrP

r
jk − k|l,

we obtain the following
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Lemma 5.4. In a g-Landsberg space we have Sh
i
jk/l = 0.

Definition. A generalized metric space Mn whose associated Finsler
space F ∗n(g) is a Landsberg space (P ∗ijk = 0) is called an LMn space
(abbreviation).

From (2.12)(b) and Proposition 2.3 we infer

Theorem 5.5. A g-Landsberg space is an LMn space if and only if
the condition Cij/k = 0 holds.

5.2. g-C-reducible condition ([33]).

Definition. A generalized metric space Mn is called g-C-reducible if
the following condition holds:

(5.3) Chik = F−1liChk +
1

n + 1
(Chhik + Cihhk + Ckhhi).

Proposition 5.6. The g-C-reducible condition is characterized by

(5.4) ghi(k) = F−1(liChk + lhCik) +
2

n + 1
(Chhik + Cihhk + Ckhhi).

Proof. As ghi(k) = Chik + Cihk, (5.3) gives (5.4). Conversely, if we
put Uhik := Chik−{F−1liChk + 1

n+1 (Chhik +Cihhk +Ckhhi)} = Ukih, the
condition (5.4) can be rewritten Uhik + Uihk = 0. Then we see

(Uhik + Uihk) + (Uikh + Ukih)− (Ukhi + Uhki) = 2Uhik = 0.

Hence this gives (5.3). ¤

Lemma 5.7. In a g-C-reducible Mn space we have

(5.5)

(a) Chjk − j|k = F−1ljChk − j|k,

(b) Chj(k) − j|k = −Chjk − j|k
= −F−1ljChk − j|k (cf. (1.7)(d)),

(c) ghj(k) − j|k = F−1ljChk − j|k.

We shall give the following

Lemma 5.8. In a g-C-reducible Mn space we have

(5.6) Fp · Chij(k) − j|k = F−1h∗ikChj +
1

n + 1
(Tikhhj − Thjhik)− j|k,
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where Tik := Fp · Ci/(k).

Proof. Using the following calculations:

Fp · F(k) = Fp · lk = Fhr
klr = 0,

Fp · li(k) = h∗ik = Cik + hik,

Fp · Ci(k) = Fp · (Ci/(k) + Ci
r
kCr) = Tik +

F

n + 1
(C2hik + 2CiCk),

Cj(k) − j|k = (log
√

g)(j)(k) − j|k = 0, g := det(gij),

Fp · hhi(k) = Fp · ghi(k) =
2F

n + 1
(Chhik + Cihhk + Ckhhi),

Fp · hhj(k) − j|k = 0, C2 := CiCi,

and after some further calculations, we obtain (5.6) from (5.3). ¤
As the identity: ghi(j)(k) − j|k = (Chij(k) + Cihj(k)) − j|k = 0 holds,

we see from (5.6)

F 2p ·ghi(j)(k)−j|k = hik(Chj− 2F

n + 1
Thj)−hhj(Cik− 2F

n + 1
Tik)−j|k = 0.

Transvecting the above equation with hik, we have

(n− 1)(Chj − 2F

n + 1
Thj)− (Ci

i − 2F

n + 1
T i

i)hhj = 0.

Hence we have

Theorem 5.9. In a g-C-reducible Mn space there exists a scalar τ
such that

(5.7) Chj − 2F

n + 1
Thj = τhhj , τ :=

1
n− 1

(Ci
i − 2F

n + 1
T i

i).

To find the curvature tensor Sh
i
jk, we give the relation

Shijk := girSh
r
jk = gir(Ch

r
j(k) + Ch

m
jCm

r
k)− j|k (cf. [3],(2.12)(c))

= Chij(k) − gir(k)Ch
r
j + Ch

r
jCrik − j|k

= Chij(k) − Ch
r
jCirk − j|k.

As the tensor Shijk is indicatric, we see

F 2Shijk = F 2p · (Chij(k) − Ch
r
jCirk)− j|k

= hikChj +
F

n + 1
(Tikhhj − Thjhik)

− F 2

(n + 1)2
(C2hhjhik + CiCkhhj + ChCjhik)− j|k.
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Substituting
F

n + 1
Tik =

1
2
(Cik − τhik), we have

Proposition 5.10. In a g-C-reducible Mn space, the curvature tensor
Sh

i
jk has the form

(5.8)
(a) Shijk =

F−2

2
(Mhjhik + Mikhhj)− j|k,

(b) Mhj := Chj − F 2

(n + 1)2
(C2hhj + 2ChCj).

5.3. A g-C-reducible and g-Landsberg space.

Let us consider the case that a space Mn satisfies the conditions
P i

jk = 0 and (5.3). Substituting (5.3) into (5.1)(a), we have

Chij/k−j|k = F−1liChj/k +
1

n + 1
(Ch/khij +Ci/khhj +Cj/khhi)−j|k = 0.

In virtue of (5.1)(b) and (c), we get

Ch/khij + Ci/khhj − Ch/jhik − Ci/jhhk = 0.

Transvecting the above equation with hik, we obtain

−(n−1)Ch/j+Ci
/ihhj = 0, or −(n−1)Ghj+Gi

ihhj = 0 (cf. (5.2)(c)).

Hence we have from (5.2)(c)

Proposition 5.11. In a g-C-reducible and g-Landsberg space, we have

(5.9) Ghj = Ch/j = Ghhj , G :=
Gi

i

n− 1
.

From Sh
i
jk/l = 0 and (5.8), we see

Mhj/lhik + Mik/lhhj −Mhk/lhij −Mij/lhhk = 0.

Transvecting the above equation with hik, we get

(n− 3)Mhj/l + M i
i/lhhj = 0.

Moreover, transvecting the above equation with hhj , we get 2(n−2)M i
i/l =

0 and hence we obtain (n − 3)Mhj/l = 0. On the other hand, for n > 3
(5.8)(b) and (5.9) lead us to

Mhj/k = Chj/k −
2F 2G

(n + 1)2
(Chhjk + Cjhhk + Ckhhj) = 0.
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Proposition 5.12. In a g-C-reducible and g-Landsberg space Mn, for
n > 3 we have

(5.10)

(a) Chj/k =
2F 2G

(n + 1)2
(Chhjk + Cjhhk + Ckhhj),

Ci
i/k =

2F 2GCk

n + 1
,

(b) Gh
i
jk = Ch

i
j/k =

G

(n + 1)2
{2Fli(Chhjk + Cjhhk + Ckhhj)

+ (n + 1)(hi
hhjk + hi

jhkh + hi
khhj)}.

On the other hand, from (2.12)(b) and (2.5)(a) we see

(5.11) P ∗hjk := g∗hrP
∗r

jk = −g∗hrAj
r
k = −1

2
Chj/k.

Hence from the definition of the tensor D∗
h

i
jk (cf. (6.3)(b)) we have

D∗
h

i
jk = Gh

i
jk + 2F−1liP ∗hjk − 1

n + 1
(hi

hGjk + hi
jGkh + hi

kGhj)

= Ch
i
j/k − F−1liChj/k −

G

n + 1
(hi

hhjk + hi
jhkh + hi

khhj) = 0.

From Proposition 6.7 in §6 we obtain

Theorem 5.13. In a g-C-reducible and g-Landsberg space Mn, for
n > 3 the Douglas tensor Dh

i
jk vanishes.

Remark. In a Finsler geometry (Cij = 0) it is known ([23],Theorem 1)
that a C-reducible Landsberg space is a Berwald space (Gh

i
jk = 0). This

fact implies Dh
i
jk = 0.

5.4. A g-Berwald space.

Definition. If the connection parameters Fj
i
k of CΓ (N) are indepen-

dent of yi, that is, Fj
i
kl = 0, then the space is called a g-Berwald space

(an affinely connected space).

Theorem 5.14. ([3], Lemma 4.4, Theorem 4.5). A space Mn is a
g-Berwald space if any one of the following conditions holds:

(a) Fj
i
kl = 0, (b) Cj

i
k/l = 0, (c) gij(k)/l = 0.

Definition. A generalized metric space Mn whose associated Finsler
space F ∗n(g) is a Berwald space (∗Γj

i
kl = Gj

i
kl = 0) is called a BMn space

(abbreviation).
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Remark. In a g-Berwald space, we have

(a) P i
jk = 0 (cf. (1.7)(b)), (b) Gj

i
kl = 0 (cf. (1.14)(c)).

Hence we see that a g-Berwald space is a g-Landsberg space from (a) and
a BMn space from (b).

From (2.16)(c) we see

Theorem 5.15. A BMn space is a g-Berwald space if the condition

Cij/k = 0 holds.

Recently S. Bácsó, F. Ilosvay and B. Kis proved the following
theorem ([16],Theorem 1): If a Landsberg space (P ∗ijk = 0) satisfies the
condition Dh

i
jk = 0, then the space is a Berwald space (Gh

i
jk = 0). Hence

we have

Theorem 5.16. If an LMn space satisfies the condition Dh
i
jk = 0,

then the space is a BMn space.

From (5.10)(b) and Theorem 5.14, we have

Theorem 5.17. In a g-C-reducible and g-Landsberg space Mn, for

n > 3 if the scalar G vanishes, then the space is a g-Berwald space.

§6. A generalized metric space of scalar curvature K

As the geodesics in F ∗n(g) are geodesics in Mn, the notion of a space
of scalar curvature is contained in the geometry of Mn. In this section
we shall refer to this interesting property about which many results are
known in Finsler geometry.

Definition. A space Mn (n > 2) whose associated Finsler space F ∗n(g)
is of scalar curvature K (K 6= 0) is called a generalized metric space of
scalar curvature K and called an Mnsc space (abbreviation). If the scalar
K is constant, we call the space a generalized metric space of constant
curvature K and call it an Mncc space.

From the above definition an Mnsc space is characterized by

(6.1) (a) Hi
k = F 2Khi

k (cf. [17]).
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From (1.10) we have

(6.1)

(b) Hi
jk = F (Klj +

1
3
Kj)hi

k − j|k,

(c) Hh
i
jk = Kg∗hjδ

i
k +

1
3
{h∗hj l

iKk + hi
hljKk

+ hi
k(Khj + lhKj + 2Khlj)} − j|k,

(d) Hj = F{(n− 1)Klj +
n− 2

3
Kj},

(e) Hhj = (n− 1)Kg∗hj

+
1
3
{(n− 2)(Khj + lhKj) + (2n− 1)Khlj},

where Kj := FK(j), Khj := Fp ·Kj(h) = FKj(h) + Khlj = Kjh.

6.1. An Mncc space.

It is well known (e.g. [29],[25]) that in a Finsler space of scalar cur-
vature K, the scalar K is constant if it is independent of y.

From Proposition 1.2 the following is evident.

Lemma 6.1. An Mnsc space is an Mncc space if Kj = 0 or Khj = 0
holds.

Moreover we know the following

Theorem 6.2. A generalized metric space Mn reduces to one of con-
stant curvature K if and only if the tensors Hh

i
jk,Hi

jk and Hi
k have any

one of the following forms:

(a) Hi
jk = K(yjδ

i
k − j|k) (cf. [29],p. 133),

(b) Hh
i
jk = Ahjδ

i
k −Ajkδi

h − j|k (cf. [35]),

(c) Hh
i
jk =

1
n + 1

(δi
kHj(h) − δi

hHjk − j|k) (cf. [18],Theorem 2),

(d) Hi
k =

1
n− 1

(H0δ
i
k −Hkyi) (cf. [36],[37]),

where Ahj :=
1

n2 − 1
(nHhj + Hjh).
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Theorem 6.3. (e.g. [10]). A generalized metric space of scalar cur-
vature K reduces to one of constant curvature K if and only if any one of
the following conditions holds:

(a) K/0 = 0, (b) K//j = K/j − F−1Ph
jKh = 0 (cf. [26],Theorem 1),

(c) Hhj = Hjh or Hi
i
jk = 0 or p ·Hi

jk = 0,

(d) Ghj//k − j|k = 0 or Hhj(k) − j|k = 0 (cf. [18],Theorem 1),

(e) p ·Gh
i
jk//0 = 0.

Theorem 6.4. ([30], Theorem 4.3). If a generalized metric space of
scalar curvature K satisfies the condition

Fh
i
jk := Hh

i
jk − (ghjL

i
k + Lhjδ

i
k − hi

hLjk − j|k) = 0 (cf. [21]),

Lhj :=
1

(n− 1)(n− 2)
{(n− 1)Hhj − 1

2
gikHikghj + lilj(Hih −Hhi)},

then the space is one of constant curvature K.

6.2. Projective(geodesic) change in Mn.

It is well known that in a metric space, a path (autoparallel curve) is
coincident with the geodesic (extremal curve). From Finsler geometry, we
know the following results:

Theorem 6.5. ([35],[25]). A generalized metric space Mn is projec-
tively flat if the Weyl tensor W i

jk and the Douglas tensor Dh
i
jk vanish,

where

(6.2)
(a) W i

jk := Hi
jk +

1
n + 1

{Hjkyi +
1

n− 1
(nHk + Hk0)δi

j − j|k},

(b) Dh
i
jk := Gh

i
jk − 1

n + 1
(liGhjk + hi

hGjk + hi
jGkh + hi

kGhj),

where Ghjk := Fp ·Gjk(h) = FGjk(h) + ljGkh + lkGhj + lhGjk.

Theorem 6.6. ([34],[25]). A generalized metric space Mn (n > 2) is
one of scalar curvature K if and only if the condition W i

jk = 0 holds.

We shall show
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Proposition 6.7. The following relations hold:

(6.3)

(a) W i
jk = 0 is equivalent to W ∗i

jk = 0, where

W ∗i
jk := Hi

jk − 1
n− 2

{(Hj − F−1Hlj)hi
k − j|k},

H :=
1

n− 1
Hi

i,

(b) Dh
i
jk = 0 is equivalent to p ·Dh

i
jk =: D∗

h
i
jk = 0, where

D∗
h

i
jk = Gh

i
jk + 2F−1liP ∗hjk

− 1
n + 1

(hi
hGjk + hi

jGkh + hi
kGhj).

Proof. For (a), from (6.1)(a) and (d) we see

(6.4) Hj = (n− 2)FLj + F−1Hlj , Lj := Klj +
1
3
Kj .

Hence eliminating Lj in (6.1)(b), we have

Hi
jk =

1
n− 2

{(Hj − F−1Hlj)hi
k − j|k}.

For (b), see [10], Theorem 4.4. ¤
6.3. A g-Landsberg space of scalar curvature K.

Now we shall refer to a g-Landsberg space of scalar curvature K.
First, substituting (6.1)(b) and (c) into (5.2)(b) and after some ar-

rangement, we obtain

(6.5)
3K(Chjgik + Cijghk + Fljghi(k)) + Khjhik + Kijhhk + FKjghi(k)

+(liChj + lhCij)Kk + 2lj(Khhik + Kihhk + Kkhhi)− j|k = 0.

Transvecting (6.5) with lj , we get

(6.6) 3K{Fghi(k) − (lhCik + liChk)}+ 2(Khhik + Kihhk + Kkhhi) = 0.

Moreover, on transvecting (6.6) with hhi, we find

(6.7) 3FKCk + (n + 1)Kk = 0, or Kk = − 3FK

n + 1
Ck.

Using (6.7), we can eliminate Kk in (6.6). As K 6= 0, we have

Fghi(k) − (lhCik + liChk)− 2F

n + 1
(Chhik + Cihhk + Ckhhi) = 0.

With Proposition 5.6 and Theorem 5.9 in mind, the above equation gives
the following
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Theorem 6.8. A g-Landsberg space of scalar curvature K is g-C-

reducible and there exists a scalar τ such that Chj − 2F

n + 1
Thj = τhhj .

From Theorems 5.13, 6.5 and 6.6, we have

Theorem 6.9. A g-Landsberg space Mn of scalar curvature K is for
n > 3 projectively flat.

Next, operating Fp · ∂̇i to (6.7), we have

3F [KiCk + K{Tik +
F

n + 1
(C2hik + 2CiCk)}] + (n + 1)Kik = 0.

Moreover, substituting (6.7) into the above equation, we obtain

(6.8) Kik = −3K{ F

n + 1
Tik +

F 2

(n + 1)2
(C2hik − CiCk)}.

Operating p· to (6.5), we get

3K(Chjhik − Cikhhj) + Khjhik −Kikhhj

+
2F

n + 1
Kj(Chhik + Cihhk + Ckhhi)− j|k = 0.

Substituting Kk in (6.7) and Kik in (6.8) into the above equation, we have
(K 6= 0)

(Chj − F

n + 1
Thj − F 2

(n + 1)2
ChCj)hik

− (Cik − F

n + 1
Tik − F 2

(n + 1)2
CiCk)hhj − j|k = 0.

On the other hand, we know
F

n + 1
Thj =

1
2
(Chj − τhhj). Then the above

equation leads us to

(Chj − 2F 2

(n + 1)2
ChCj)hik − (Cik − 2F 2

(n + 1)2
CiCk)hhj − j|k = 0.

Lastly transvecting the above equation with hik, we obtain

(n− 1)(Chj − 2F 2

(n + 1)2
ChCj)− (Ci

i − 2F 2C2

(n + 1)2
)hhj = 0.

Thus we have
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Theorem 6.10. In a g-Landsberg space of scalar curvature K, there
exists a scalar β such that

(6.9) Chj − 2F 2

(n + 1)2
ChCj = βhhj , β :=

1
n− 1

(Ci
i − 2F 2C2

(n + 1)2
).

Theorem 6.11. In a g-Landsberg space of scalar curvature K, the
curvature tensor Sh

i
jk has the form

(6.10)
Shijk = F−2S(hhjhik − hhkhij) (called S3-type, cf. [27]),

S := β − F 2C2

(n + 1)2
=

1
n2 − 1

{(n + 1)Ci
i − F 2C2},

where S is a constant.

Proof. In view of (5.8) and (6.9), we see

Mhj = Chj − F 2

(n + 1)2
(C2hhj + 2ChCj) = (β − F 2C2

(n + 1)2
)hhj .

Putting Mhj =: Shhj we have S = β − F 2C2

(n + 1)2
, or exactly

S =
1

n− 1
(Ci

i − 2F 2C2

(n + 1)2
)− F 2C2

(n + 1)2
=

1
n2 − 1

{(n + 1)Ci
i − F 2C2}.

On the other hand, we see

S/k =
1

n2 − 1
{(n + 1)Ci

i/k − 2F 2CiCi/k}.

Substituting (5.10)(a) and (5.9), we obtain

S/k =
1

n2 − 1
(2F 2GCk − 2F 2GCk) = 0.

Accordingly, by means of the Ricci identity, we see from (6.1)(b)

S/j/k − S/k/j = 0 = −Hr
jkS(r) = −F (Klj +

1
3
Kj)S(k) − j|k,

and transvecting the above equation with yj , we have S(k) = 0. Therefore
S/k = 0 means that the scalar S is a constant. ¤

Theorem 3.3, evidently implies the following

Theorem 6.12. A g-Berwald space of scalar curvature K is an RccMn

space, which satisfies Ci = 0 and Chij = F−1liChj .



On generalized metric spaces . . . 325

§7. Semi-C-reducibility

In this section we refer to the tensor Chj which vanishes in a Finsler
geometry. The purpose of this section is to prove the following

Theorem 7.1. The Finsler space associated with a g-Landsberg space
of scalar curvature K is semi-C-reducible, that is,

(7.1)
C∗hjk =

p

n + 1
(C∗hh∗jk + C∗jh

∗
hk + C∗kh∗hj)

+
q

(C∗)2
C∗hC∗jC

∗
k, (C∗)2 := g∗ijC∗iC

∗
j ,

where p + q = 1, p 6= 0, q 6= 0.

Definition. A Finsler space that satisfies the condition (7.1) (without
asterisk mark ∗) is called semi-C-reducible.

Examples. There are many semi-C-reducible Finsler spaces: e.g.
(1◦) A Finsler space with (α, β)-metric is semi-C-reducible ([24],[28]).
(2◦) If an R3-like Finsler space satisfies the condition p ·P i

jk/l−k|l = 0,
then the space is semi-C-reducible or satisfies F−1Phij/0 +FKChij = 0,
where K is some scalar ([20],Proposition 5.5).
(3◦) If an R3-like Finsler space satisfies the condition ∗P i

jk = 0, then
the space is semi-C-reducible or S3-like ([38],Theorem 4.3).
(4◦) If a Finsler space with property H satisfies the condition ∗P i

jk = 0
or p · P i

jk/l − k|l = 0, then the space is semi-C-reducible under some
condition ([31],Theorems 4.2 and 4.4).

See Appendix.

7.1. Tensors mi, mhj and mhjk.

First, in a g-Landsberg space of scalar curvature K, we recall the
following relations:

3C∗ijk =Cijk+Cjki+Ckij +
1
2
(Cij(k)+Cjk(i)+Cki(j)),(3.1)

Chik = F−1liChk +
1

n + 1
(Chhik + Cihhk + Ckhhi),(5.3)

Chj − 2F

n + 1
Thj = τhhj ,(5.7)

Chj − 2F 2

(n + 1)2
ChCj = βhhj ,(6.9)

S = β − F 2C2

(n+1)2
(S: constant).(6.10)
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To save the complicated calculations we introduce new notations:

mi :=
F

n + 1
Ci, mhj := Fp ·mh/(j) =

F

n + 1
Thj ,

then we see that the above equations are expressed by

(7.2)

(a) Chj = 2mhmj + βhhj , (b) Chj = 2mhj + τhhj ,

(c) mhj = mhmj +
β − τ

2
hhj ,

(d) S = β −m2, m2 := mimi,

(e) mhjk := Fp · Chjk = mhhjk + mjhhk + mkhhj .

7.2. Metric tensors in F ∗n(g).

We see

(7.3)
g∗hj = ghj + Chj = ghj + 2mhmj + βhhj ,

h∗hj = (1 + β)hhj + 2mhmj .

We set g∗hk = ghk +Amhmk +Bhhk with unknown coefficients A and
B, and substituting (7.3) into the definition g∗hkg∗hj = δk

j , we obtain

(7.4)

B + β + Bβ = 0, B = − β

1 + β
, 1 + B =

1
1 + β

,

A(1 + β + 2m2) + 2(1 + B) = 0,

A = − 2
a(1 + β)

, a := 1 + β + 2m2.

Hence we have

Lemma 7.2. In a g-Landsberg space of scalar curvature K we have

(7.5)
g∗hk = ghk − 2

a(1 + β)
mhmk − β

1 + β
hhk,

h∗hk =
1

1 + β
(hhk − 2

a
mhmk).

Remark. The scalar β cannot satisfy 1 + β = 0. In fact, if 1 + β = 0
holds in (7.3), we have h∗hj = 2mhmj . The last equation means that the
rank of the matrix (h∗hj) must be 1. As the rank of the matrix (h∗hj) is
n − 1, the relation 1 + β = 0 cannot hold for n > 2. Moreover, the last
equation of (7.4) is rewritten as Aa(1 + β) = −2. Accordingly we see that
the scalar a cannot vanish.
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7.3. Tensor C∗hjk in F ∗n(g).

Let us carry out the following calculation:

mik = Fp · (mi(k) − Ci
r
kmr) = Fp ·mi(k) −mirkmr

= Fp ·mi(k) − (m2hik + 2mimk).

From (7.2)(c) we have

Fp ·mi(k) = 3mimk +
2m2 + β − τ

2
hik.

From (7.2)(d) and (c), we see

βk := Fp · β(k) = Fp · (S + m2)/(k) = 2miFp ·mi/(k)

= 2mimik = (2m2 + β − τ)mk,

Fp · hhj(k) = Fp · ghj(k) = 2mhjk.

Using (7.2)(a) and the above, we shall carry out the following calculation:

Fp · Chj(k) = 2(Fp ·mh(k)mj + mhFp ·mj(k)) + βkhhj + βFp · hhj(k)

= 12mhmjmk + (2m2 + 3β − τ)mhjk.

As the term Fp · Chj(k) is symmetric in the indices h, j, k, (3.1) gives

FC∗hjk = mhjk +
1
2
Fp · Chj(k).

Hence we have

Lemma 7.3. In a g-Landsberg space of scalar curvature K we have

(7.6) FC∗hjk = 6mhmjmk + bmhjk, b :=
2m2 + 3β − τ + 2

2
.

Remark. If b = 0 holds, then the space F ∗n(g) is called C2-like. Hence
we assume b 6= 0.

7.4. Torsion vectors in F ∗n(g).

Using (7.5) and (7.6) we see

FC∗j = Fh∗hkC∗hjk =
1

1 + β
{6m2 + (n + 1)b− 6m2(2m2 + b)

a
}mj .

Here, let us put

FC∗j =
D

1 + β
mj , D := (n + 1)b +

6m2(1 + β − b)
a

.
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Moreover from (7.5) and a− 2m2 = 1 + β, we find

FC∗k = Fh∗hkC∗h =
D

(1 + β)2
(1− 2m2

a
)mk =

D

a(1 + β)
mk.

Hence we have

Lemma 7.4. In a g-Landsberg space of scalar curvature K we have

(7.7)
FC∗j =

D

1 + β
mj , FC∗k =

D

a(1 + β)
mk,

F 2(C∗)2 =
D2m2

a(1 + β)2
.

Remark. From (7.7) we see that if the scalar D vanishes, then C∗j =
0, which leads to C∗hjk = 0 by Deicke’s Theorem. Hence we assume D 6= 0.
When the vector mi vanishes, we see Chjk = F−1ljChk and C∗hjk = 0,
that is, the space considered reduces to an RccMn space.

7.5. Proof of Theorem 7.1. From (7.3) and (7.7), we see

hhj =
1

1 + β
(h∗hj − 2mhmj) =

1
1 + β

(h∗hj − 2m2

a(C∗)2
C∗hC∗j)

and

mkhhj =
F

D
(C∗kh∗hj − 2m2

a(C∗)2
C∗hC∗jC

∗
k),

mhmjmk =
F (1 + β)m2

Da(C∗)2
C∗hC∗jC

∗
k.

Hence (7.2)(e) gives

mhjk =
F

D
(C∗hh∗jk + C∗jh

∗
hk + C∗kh∗hj − 6m2

a(C∗)2
C∗hC∗jC

∗
k).

Finally (7.6) is rewritten

C∗hjk =
b

D
(C∗hh∗jk +C∗jh

∗
hk +C∗kh∗hj)+

6m2(1 + β − b)
Da(C∗)2

C∗hC∗jC
∗
k,

and we have

p =
(n + 1)b

D
, q =

6m2(1 + β − b)
Da

, p + q = 1.

Thus the proof is complete. ¤
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Remark. This theorem means that if a g-Landsberg space of scalar
curvature K satisfies mj = 0 (Cj = 0), then the space reduces to an
RccMn space.

(6.7) tells us the following

Theorem 7.5. A g-Landsberg space of constant curvature K is an
RccMn space.

Moreover, from (5.9) we see Ghj//k = Ghj/k = G/khhj . From the
condition (d) of Theorem 6.3, we have

Theorem 7.6. If the scalar G is constant, then the g-Landsberg space
of scalar curvature K is an RccMn space.

M. Matsumoto and C. Shibata showed ([24],(1.8)) that the cur-
vature tensor Sh

i
jk of a semi-C-reducible Finsler space is expressed by

(without asterisk mark ∗)

(7.8)
(a) Shijk =

F−2

2
(Mhjhik + Mikhhj)− j|k,

(b) Mhj := − p2F 2C2

(n + 1)2
hhj − 2pF 2

(n + 1)2
(nq + 1)ChCj .

Remark. A Finsler space with the tensor Shijk of (7.8)(a) is called
S4-like. If the condition nq + 1 = 0 holds, then the tensor Shijk has the
form (6.10) and the space is called S3-like.

In a g-Landsberg space of scalar curvature K, the condition nq+1 = 0
reduces to

(7.9) ab + 6m2(1 + β − b) = 0,

and after some rearrangement we have

(7.10) 3β2 − (14S + 3τ + 11)β + 8S2 + 2(2τ + 3)S + τ − 2 = 0,

where the scalars β , τ and the constant S exist exactly.
However, with (5.9) and (7.2)(d) in mind we have

(7.11) β/k = (S + m2)/k = 2mimi/k =
2FG

n + 1
mk, β/0 = 0.

Now, differentiating (7.10) by xk we find

(4S − 3β + 1)τ/k = (14S + 3τ − 6β + 11)β/k.
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Hence from (7.11) we see (4S−3β+1)τ/0 = 0. Put 4S−3β+1=a−6m2=0,
then the condition (7.9) can be rewritten as a(1 + β) = 0, which cannot
hold. Thus, from (5.7) and (5.10)(a) we obtain

τ/0 =
1

n− 1
(Ci

i/0 −
2F

n + 1
T i

i/0) = − 2F

n2 − 1
T i

i/0 = 0.

On the other hand, by means of the Ricci identity we find

Ci/k/(j) − Ci/(j)/k = −Pi
h

kjCh − Ck
h

jCi/h − Ph
kjCi/(h) = −Ck

h
jCi/h.

Transvecting the above equation with yk we have Ci/(j)/0 = −Ci/j =
−Ghij . From Tij/k = FCi/(j)/k + liCj/k + ljCi/k we obtain

0 = T i
i/0 = FgijCi/(j)/0 = −(n− 1)FG.

Thus we have G = 0. Hence we have from Theorem 7.6

Theorem 7.7. If the associated Finsler space of a g-Landsberg space
of scalar curvature K is S3-like, then the space is an RccMn space.

7.6. Appendix.

In the cases of (2◦), (3◦) and (4◦), the original condition is expressed
by (e.g. [20],(5.12),(5.19))

(a) (n− 1)CkChij + hij(Ch
r
kCr − ChCk)

+ hhj(Ci
r
kCr − CiCk)− j|k = 0 (∗C-reducible),

(b) (n− 2)C2C2C2Chij + (A− C2C2)C2(Chhij + Cihhj + Cjhhi)

+ {3C2C2 − (n + 1)A}ChCiCj = 0,

A := ChijC
hCiCj (semi-∗C-reducible).

It has been proved that (a) and (b) are equivalent to the semi-C-reducible
condition ([32], Proposition 1.1). As Chij satisfies A = cC2C2 with some
scalar c, we find

(n−2)C2Chij+(c−1)C2(Chhij+Cihhj+Cjhhi)+{3−(n+1)c}ChCiCj = 0.

Accordingly the scalar p is not arbitrary and the scalar c decides some

property. However as p 6= 0 and q 6= 0, we see that c 6= 1 and c 6= 3
n + 1

.

Definition. A Finsler space is called
(1) a Finsler space with (α, β)-metric if the Finsler metric is given

by F (x, y) = L(α, β), where L is p-homogeneous of degree 1 in the two
variables α(x, y) :=

√
aij(x)yiyj and β(x, y) := bi(x)yi.
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(2) a Finsler space with property H, if the condition Hi
jk = 0 holds

([22],(2.3),[31]), where

Hi
jk := Zi

jk − 1
n− 2

(Zjh
i
k − Zkhi

j), Zi
jk := p ·Hi

jk, Zj := Zi
ji.

(3) a ∗P -Finsler space, if the condition ∗P i
jk := P i

jk−λCj
i
k = 0 holds

(called a ∗P -condition, cf. [19]).
(4) a Finsler space with Fh

i
jk = 0, if the condition Fh

i
jk = 0 holds ([30]).

(5) an R3-like Finsler space, if the condition Chijk = 0 (the formally
Weyl conformal curvature tensor vanishes as in Riemannian geometry)
holds ([20], [38]), where

Chijk := Rhijk − (Lhjgik + ghjLik − j|k), Lhj :=
1

n− 2
(Rh

i
ji − rghj).

Remark. Three special Finsler spaces: a Finsler space of scalar curva-
ture K, an R3-like Finsler space and a Finsler space with Fh

i
jk = 0, have

the property H ([22],Theorems 2.4, 2.5 and 2.6).
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