
Publ. Math. Debrecen

86/3-4 (2015), 347–362

DOI: 10.5486/PMD.2015.6085

Groups in which some primary subgroups
are weakly s-supplemented

By BAOJUN LI (Chengdu)

Abstract. A subgroup H of a group G is called weakly s-supplemented in G

if there is a subgroup T such that G = HT and H ∩ T ≤ HsG, where HsG is the

subgroup of H generated by all those subgroups of H which are s-permutable in G. The

influence of primary weakly s-supplemented subgroups on the structure of finite groups

is investigated. An open question promoted by Skiba is studied and some known results

are generalized.

1. Introduction

All groups considered in this paper are finite. The notions and notations not

introduced are standard and the reader is referred to [1], [2], [3] if necessary.

A subgroup H of a group G is said to be a permutable subgroup (cf. [1]) of G

or a quasinormal subgroup of G (cf. [4]) if H is permutable with all subgroups

of G. The permutability of subgroups plays an important role in the study of the

structure of finite groups and was generalized extensively. Recall that a subgroup

H of a group G is called s-permutable (or s-quasinormal) in G if H permutes

with every Sylow subgroup of G(cf. [5]). Let H be a subgroup of G. HsG denotes

the subgroup of H generated by all those subgroups of H which are s-permutable

in G. In [6], the following definitions are introduced.
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Definition 1.1 ([6]). Let H be a subgroup G. H is called weakly s-supple-

mented in G if there is a subgroup T such that G = HT and H ∩ T ≤ HsG, and

if T is subnormal in G then H is called weakly s-permutable in G.

By using this idea, Skiba [6] proved the following nice result.

Theorem 1.2. Let F be a saturated formation containing all supersolvable

groups and G a group with a normal subgroup E such that G/E ∈ F. Suppose

that every non-cyclic Sylow subgroup P of E has a subgroup D such that 1 <

|D| < |P | and all subgroupsH of P with order |H| = |D| and with order 2|D| (if P
is a non-abelian 2-group and |P : D| > 2) not having a supersolvable supplement

in G are weakly s-permutable in G. Then G ∈ F.

The above theorem generalized many known results. In connection with this,

the following question was proposed by A. Skiba.

Question 1 ([6, Question 6.4]). Let F be a saturated formation containing

all supersolvable groups and G a group with a normal subgroup E such that

G/E ∈ F. Suppose that every non-cyclic Sylow subgroup P of E has a subgroup

D such that 1 < |D| < |P | and all subgroups H of P with order |H| = |D|
and with order 2|D| (if P is a non-abelian 2-group and |P : D| > 2) are weakly

s-supplemented in G. Is then G ∈ F?

We have given an example in [7] to show that the answer of this question is

negative in general. But, in the following theorem, we will prove in many case

the question has positive answer.

For convenience, if m = pα is a p-number, let ι(m) denote logpm = α and if

P is a p group we use ι(P ) instead of ι(|P |).

Theorem 1.3. Let F be a saturated formation containing all supersolvable

groups and G a group with a normal subgroup E such that G/E ∈ F. Suppose

that every non-cyclic Sylow subgroup P of E has a subgroup D such that 1 <

|D| < |P | and all subgroups H of P with order |H| = |D| and with order 2|D| (if
P is a non-abelian 2-group and |P : D| > 2 ) having no supersolvable supplement

in G are weakly s-supplemented in G. If one of the following holds:

(i) Φ(P ) ̸= P ′;

(ii) |D| ≤ |P ′|;
(iii) |P ′| < |D| and (ι(P/P ′), ι(|D|/|P ′|)) = 1 or (ι(P ), ι(|P : D|)) = 1;

then G ∈ F
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2. Elementary properties

Lemma 2.1 ([6, Lemma 2.10]). Let G be a group and H ≤ K ≤ G. Then

(i) Suppose that H is normal in G. Then K/H is weakly s-supplemented in

G/H if and only if K is weakly s-supplemented in G.

(ii) If H is weakly s-supplemented in G, then H is weakly s-supplemented in K.

(iii) Suppose that H is normal in G. Then the HE/H is weakly s-supplemented

in G/H for every weakly s-supplemented in G subgroup E satisfying

(|H|, |E|) = 1.

Lemma 2.2 ([8, Lemma 2.8]). Let F be a saturated formation and P be a

normal p-subgroup of G. Then P⊆ZF
∞(G) if and only if P/Φ(P )⊆ZF

∞(G/Φ(P )).

Lemma 2.3 ([6, Lemma 2.7]). If H is s-permutable in a group G and H is

a p-group for some prime p, then Op(G) ≤ NG(H).

Lemma 2.4 ([3, Lemma 3.8.7]). Let G be a p-solvable group. If Op′(G) = 1

and Op(G) ≤ H ≤ G, then Op′(H) = 1

The following Lemma is well known.

Lemma 2.5. Let N be a nilpotent normal subgroup of G. If N ∩Φ(G) = 1

then N ≤Soc(G), that is, N = N1 × N2 × · · · × Nr, where N1, N2, . . . , Nr are

minimal normal subgroups of G.

Lemma 2.6 ([9]). Let G be a nonabelian simple group and H a subgroup

of G. If |G : H| = pa, where p is a prime. Then one of the following holds:

(i) G = An, H ∼= An−1, where n = pa;

(ii) G = PSLn(q), |G : H| = (qn − 1)/(q − 1) = pa;

(iii) G = PSLn(11), H ∼= A5;

(iv) G = M23 and H ∼= M22 or G = M11 and H ∼= M10;

(v) G = PSU4(2),the index of H in G is 27.

Lemma 2.7. Let G be a group, p the minimal prime divisor of the order

of G and P a Sylow p-subgroup of G. If every maximal subgroup of P having

no supersolvable supplement in G is weakly s-supplemented in G then G is p-

nilpotent.

Proof. It can be obtained directly from [7, Theorem C]. �

Lemma 2.8 ([2, III, 5.2 and IV, 5.4]). Suppose that p is a prime and G is

a minimal non-p-nilpotent group. Then
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(i) G has a normal Sylow p-subgroup P and G = PQ, where Q is a non-normal

cyclic q-subgroup for some prime q ̸= p.

(ii) P/Φ(P ) is a minimal normal subgroup of G/Φ(P ).

(iii) If P is abelian or p > 2, then exp(P ) = p.

(iv) If P is non-abelian and p = 2, then exp(P ) = 4.

Lemma 2.9. Let G be a group, p the minimal prime divisor of the order of

G and P a Sylow p-subgroup of G. If every subgroup of P of order p or 4(when

P is a non abelian 2-group) having no supersolvable supplement in G is weakly

s-supplemented in G then G is p-nilpotent.

Proof. By Lemma 2.1, one can verify that the hypotheses are subgroups

closed. Thus if G is not p-nilpotent then we can assume that G is a minimal

non-p-nilpotent group, and hence, by Lemma 2.8, G = P o Q, where Q is a

cyclic q-group for some prime q, P/Φ(P ) is a chief factor of G and expP = p

or 4 (when P is a noncyclic 2-group). Let a ∈ P \ Φ(P ) and H = ⟨a⟩. Then

|H| = p or 4 (when P is a nonabelian 2-group). Thus H either has a supersolvable

supplement in G or is weakly s-supplemented in G. Assume |H| = 2. If H has

a complement T in G, then T is p-nilpotent since G is minimal non-p-nilpotent

group. Since |G : T | = |HT : T | = |H| = p, T E G. This induces that G is

p-nilpotent, a contradiction. Thus G is the only supplement of H in G. If H has

a supersolvable supplement in G, then G is supersolvable and so is p-nilpotent

since p is minimal. If H is weakly s-supplemented in G then H is s-permutable in

G and henceHΦ(P )/Φ(P ) is s-permutable in G/Φ(P ). It follows from Lemma 2.3

that HΦ(P )/Φ(P )EG/Φ(P ) and so P/Φ(P ) = HΦ(P )/Φ(P ) is cyclic of order p.

Hence |G : QΦ(P )| = p and so QΦ(P ) E G. This implies that G/Φ(P ) is cyclic

and so is G, a contradiction. If |H| = 4, considering the subgroup HΦ(P )/Φ(P )

in G/Φ(P ), a contradiction can be also obtained by a similar argument. Therefore

the lemma holds. �

3. Proof of Theorem 1.3

Lemma 3.1. Let P be a normal p-subgroup of G with P∩Φ(G) = 1. Assume

that D is a subgroup of P with 1 < D < P . If every subgroup of order |D| of
P having no supersolvable supplement in G is weakly s-supplement in G, then

P = P1 × P2 × · · · × Pr, where P1, P2, . . . , Pr are all minimal normal in G of

same order and ι(D) = mι(Pi), that is, |D| = |Pi|m for some positive integer m,

i = 1, 2, . . . , r.
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Proof. By Lemma 2.5, P = P1 × P2 × · · · × Pr, where P1, P2, . . . , Pr are

all minimal normal in G. Assume that there is a Pi such that |D| < |Pi|. Then

Pi has a proper subgroup H of order |D|. Moreover, by the property of p-groups

we can choose H to be normal in some Sylow p-subgroup Gp of G containing P .

By the hypotheses, H either has a supersolvable supplement in G or is weakly

s-supplement in G. Let T be a supplement of H in G. Then G = HT = PiT

and Pi ∩ T ̸= 1 since H is proper in Pi. As Pi is abelian, Pi ∩ T E PiT = G.

But Pi is minimal normal in G, so Pi ∩ T = Pi and thereby T = G. Thus G

is the only supplement of H in G. If H has a supersolvable supplement in G,

then G is supersolvable and |Pi| = p, which contradicts that |D| < |Pi|. If H is

weakly s-supplement in G then H = H ∩G is s-permutable in G. By Lemma 2.3,

Op(G) ≤ NG(H). It follows that H E G = GpO
p(G). This is nonsense for Pi is

minimal normal in G. Thus |D| ≥ |Pi| for any i.

If |Pi| = |D| for any i, then we can see that the conclusion holds. Assume

|Pi| < |D| for some i. Without loss of generality, we can assume that i = 1.

Clearly P/P1 = P2P1/P1 × · · · × PrP1/P1 and P/P1 ∩ Φ(G/P1) = 1 by [1,

A,(9.11)]. By Lemma 2.1, one can verify that the hypotheses still hold on G/P1.

Thus |P2P1/P1| = · · · = |PrP1/P1| and |D|/|P1| = |P2P1/P1|m1 for some pos-

itive integer m1. It follows that |P2| = · · · = |Pr| and |D|/|P1| = |P2|m1 . In

particularly, |P2| < |D| and the hypotheses also hold on G/P2. If r ≥ 3, then

|P1| = |P3| = · · · = |Pr|. It follows that |P1| = |P2| = |P3| = · · · = |Pr| and
|D| = |P1|m1+1 = |P1|m where m = m1 + 1. If r = 2 then P/P1

∼= P1P2/P1

is minimal normal in G/P1. Since the hypotheses hold on G/P1, we can find a

contradiction as above. Thus the lemma holds. �
Corollary 3.2. Let P be a normal p-subgroup of G with P ∩ Φ(G) = 1.

Assume that D is a subgroup of P with 1 < D < P and every subgroup of order

|D| of P having no supersolvable supplement in G is weakly s-supplement in G.

If (ι(P ), ι(D)) = 1 or (ι(|P : D|), ι(D)) = 1 then P ⊆ ZU
∞(G).

Proof. By Lemma 3.1, P = P1 ×P2 × · · · ×Pr, where P1, P2, . . . , Pr are all

minimal normal inG, and ι(Pi), i = 1, . . . , r, is a common divisor of ι(P ), ι(D) and

ι(|P : D|). Thus if (ι(P ), ι(D)) = 1 or (ι(|P : D|), ι(D)) = 1 then P ⊆ ZU
∞(G). �

Lemma 3.3. Let P be a normal p-subgroup of G and D a subgroup of P

with 1 < D < P . Assume that every subgroup of order |D| or 2|D| (when P is

a nonabelian 2-group) of P having no supersolvable supplement in G is weakly

s-supplement in G. If P ′ < P ∩ Φ(G) or |D| ≤ |P ′|, then P ⊆ ZU
∞(G).

Proof. Assume that the lemma does not hold and choose P to be a counter

example with minimal order. We prove the lemma via the following steps.
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(1) P * Φ(G) and P/P ∩Φ(G) = P1/P ∩Φ(G)×P2/P ∩Φ(G)× · · ·Pr/P ∩
Φ(G), where Pi/P ∩ Φ(G), i = 1, 2, . . . , r, is minimal normal in G/P ∩ Φ(G).

If P ⊆ Φ(G), then for any subgroup H of P , G is the only supplement

of H in G. If there is a subgroup H of order |D| (or 2|D| when P is a non-

abelian 2-group) has a supersolvable supplement in G then G is supersolvable

and P ⊆ ZU
∞(G). Now assume that every such subgroup H has no supersolvable

supplement in G. Then H is weakly s-supplement in G and hence H = H ∩ G

is s-permutable in G. It follows from [10, Lemma 3.1] that P ⊆ ZU
∞(G). This

contradiction shows that P * Φ(G). Clearly, (P/P ∩Φ(G))∩Φ(G/P ∩Φ(G)) = 1.

Hence by Lemma 2.5, P/P∩Φ(G) = P1/P∩Φ(G)×P2/P∩Φ(G)×· · ·Pr/P∩Φ(G),

where Pi/P ∩ Φ(G), i = 1, 2, . . . , r, is minimal normal in G/P ∩ Φ(G).

(2) |D| > p.

Assume that |D| = p. Then the hypotheses hold on Pi for any i ∈ {1, . . . , r}.
If r > 1, then Pi ⊆ ZU

∞(G) for any i and so P ⊆ ZU
∞(G). Assume that r = 1.

Then P/P ∩Φ(G) is a G-chief factor. If P ∩Φ(G) = 1, then P ∩Φ(G) ⊆ ZU
∞(G)

clearly holds. If P ∩ Φ(G) ̸= 1 then the hypotheses hold on P ∩ Φ(G) and hence

P ∩Φ(G) ⊆ ZU
∞(G). Thus P ∩Φ(G) ⊆ ZU

∞(G) always holds. Let H be any cyclic

subgroup of order p or 4 (if P is a nonabelian 2-group). If H(P ∩ Φ(G)) = P

then P/P ∩ Φ(G) ∼= H/H ∩ Φ(G) is cyclic. Since P ∩ Φ(G) ⊆ ZU
∞(G), we see

that P ⊆ ZU
∞(G). Assume that H(P ∩ Φ(G)) < P for any such subgroup H.

Let T be any supplement of H in G. We claim that T = G. If T < G, then

T (P ∩ Φ(G)) < G. Since PT = HT = G and P/P ∩ Φ(G) is an abelian minimal

normal subgroup of G/P ∩ Φ(G), T (P ∩ Φ(G))/P ∩ Φ(G) is a complement of

P/P ∩ Φ(G). But G/(P ∩ Φ(G)) = HT/(P ∩ Φ(G)), so P = H(P ∩ Φ(G)), a

contradiction. Thus our claim holds. Consequently, G is the only supplement of

H in G. Hence H is s-permutable in G if H has no supersolvable supplement in

G by the hypotheses. By [10, Lemma 3.1], P ⊆ ZU
∞(G), a contradiction. Hence

(2) holds.

(3) |P ′| < |D|.
Assume that |D| ≤ |P ′|. Since P ′ ≤ P∩Φ(G) < Pi, |D| < |Pi|, i = 1, 2, . . . , r.

To prove P ⊆ ZU
∞(G), it is sufficient to prove that Pi ⊆ ZU

∞(G) for every i. If P ′
i =

P ′, then |D| ≤ |P ′
i |. If P ′

i < P ′, then P ′
i < Pi ∩ Φ(G) since P ′ ≤ Φ(P ) ≤ Φ(G).

Therefore, the hypotheses still hold on (G,Pi). If Pi < P , then by induction on

|P |, we have that Pi ⊆ ZU
∞(G). Now, assume that Pi = P . Then P/P ∩ Φ(G) is

a chief factor of G.

Suppose that P ′ = P ∩ Φ(G). Then P/P ′ is a chief factor of G. Let H be a

subgroup of order |D| (or 2|D| when P is an nonabelian 2-group) of P . We claim

that G is the only supplement of H in G. Clearly, if H ≤P ′ ≤Φ(G), then HT =G
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if and only if T = G. Assume that H * P ′ and T is a supplement of H in G. If

T < G, then TP ′ is still a proper subgroup of G. Since G = HT = PT , we have

that (P/P ′)(TP ′/P ′) = G/P ′. As P/P ′ is minimal normal in G/P ′ and TP ′/P ′

is a proper subgroup inG/P ′, (P/P ′)∩(TP ′/P ′) = 1 and TP ′/P ′ is a complement

of P/P ′ in G/P ′. But G = HT , so TP ′/P ′ is a supplement of HP ′/P ′ in G/P ′.

This induces thatHP ′/P ′ = P/P ′ and soH = P , a contradiction. Thus our claim

holds. It follows that all subgroups of order |D| (and 2|D| when P is an nonabelian

2-group) in P having no supersolvable supplement in G are s-permutable in G

and hence P ⊆ ZU
∞(G) by [10, Lemma 3.1].

Assume that P ′ < P ∩Φ(G). Then by induction on P , P ∩Φ(G) ⊆ ZU
∞(G).

Let N be a minimal normal subgroup of G contained in P ′ < P ∩ Φ(G). Then

N is of order p. By (2), |D| > p and so the hypotheses still hold on (G/N,P/N)

by Lemma 2.1. Hence P/N ⊆ ZU
∞(G/N). It follows directly from |N | = p that

P ⊆ ZU
∞(G). This contradicts the choice of P and hence |P ′| < |D|.

(4) P ′ = 1 and P is abelian.

Since |D| 
 |P ′| by (3), P ′ < P ∩ Φ(G) by the hypotheses. Then it can be

verified that the hypotheses hold on (G/P ′, P/P ′) by Lemma 2.1. If P ′ ̸= 1, then

P/P ′ ⊆ ZU
∞(G/P ′) by induction. Since P ′ ≤ Φ(P ), It follows from Lemma 2.2

that P ⊆ ZU
∞(G), which contradicts the choice of P . Thus (4) holds.

(5) Let N be a minimal normal subgroup of G contained in P ∩Φ(G). Then

|N | < |D|
If |D| < |N |, then the hypotheses holds on (G,N) and hence N ⊆ ZU

∞(G) by

(1). It follows that |N | = p and |N | ≤ |D|, a contradiction.

Suppose that |N | = |D|. In this case, we claim that N is cyclic. Let L/N be a

chief factor of Gp, where Gp is a Sylow p-subgroup of G. Then |L| = p|N | = p|D|.
Let f = ⟨xp | x ∈ L⟩. Then f ≤ Φ(L) ≤ N . If f = N , then L is cyclic since

L/Φ(L) = L/N is cyclic. It follows that N is cyclic. Assume that f < N . Clearly,

f E Gp and hence there is a maximal subgroup M of N such that f ≤ M and

M E Gp. Choose an element x ∈ L \ N . Then xp ∈ f ≤ M and H = ⟨M, x⟩
is of order p|M | = |N | = |D|. Let T be any supplement of H in G. Since P is

abelian, N ∩ T E PT = HT = G. If N * T then N ∩ T = 1 by the minimality

of N . Thus |NT | = |N ||T | ≥ |HT | = G and thereby, G = NT , which is contrary

to N ⊆ Φ(G). Hence N ⊆ T . Assume that H has a supersolvable supplement T

in G. Then there is a cyclic subgroup R of N such that R E T . Since P is

abelian, R E PT = HT = G. By the minimality of N , we have that N = R

is cyclic. Assume that H has no supersolvable supplement in G. Then H is

weakly s-supplement in G by the hypotheses. It follows that M = H ∩ T ∩N is

s-permutable in G. Since M EGp, M EG = GpO
p(G). Again by the minimality
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of N , we have that M = 1 and so N is cyclic. Thus our claim holds. This implies

that |N | = |D| = p. But |D| > p by (2), a contradiction. Hence |N | < |D| and
(5) holds.

By the hypotheses, we can see that P∩Φ(G) ̸= 1. In the following, N denotes

always a minimal normal subgroup of G contained in P ∩ Φ(G).

(6) N is the unique minimal normal subgroup of G contained in P .

Assume that this does not hold and P contains a minimal normal subgroup

L of G different from N . Since |N | < |D| by (5), by Lemma 2.1, every subgroup

of order |D|/|N | of P/N having no supersolvable supplement in G/N is weakly

s-supplemented in G/N . If P/N ∩ Φ(G/N) ̸= 1 then the hypotheses still hold

on (G/N,P/N) and so P/N ⊆ ZU
∞(G/N). Hence L is of order p and |L| < |D|

since |D| > p by (2). If P/N ∩ Φ(G/N) = 1, then by Lemma 3.1, P/N =

P1/N ×P2/N ×· · ·×Pr/N , where P1/N, P2/N, . . . , Pr/N are all minimal normal

in G/N , |P1/N | = |P2/N | = · · · = |Pr/N | and |D|/|N | = |P1/N |m for some

positive integer m. In particularly, |L| = |P1/N | < |D|. Thus |L| < |D| holds
in both case and hence the hypotheses hold on (G/L,P/L) since, clearly, NL/L

is contained in Φ(G/L). Thus P/L ⊆ ZU
∞(G/L). In particularly, N ∼= NL/L

is cyclic. If P/N ⊆ ZU
∞(G/N), then P ⊆ ZU

∞(G). Also, if L is cyclic, then

P ⊆ ZU
∞(G) since P/L ⊆ ZU

∞(G/L). Assume that L is noncyclic and P/N =

P1/N ×P2/N ×· · ·×Pr/N , where P1/N, P2/N, . . . , Pr/N are all minimal normal

in G/N and |P1/N | = |P2/N | = · · · = |Pr/N |. Since P/L ⊆ ZU
∞(G/L), any G-

chief factor between L and P is cyclic. Thus if r ̸= 1, then by [3, Theorem 1.6.8],

there is some i such that Pi/N ∼= L is noncyclic and Pj/N ∼= Q/L is cyclic for

any j ̸= i, where Q/L is a G-chief factor contained in P . But |Pi/N | = |Pj/N |,
a contradiction. Hence r = 1. This induces that P/N is minimal normal in G/N

and |P/N | = |P1/N | < |D|/|N |, a contradiction. Thus (6) holds.

(7) Φ(P ) = 1.

Assume that Φ(P ) ̸= 1. Then N ⊆ Φ(P ) by (6). If P/N ⊆ ZU
∞(G/N), then

P ⊆ ZU
∞(G) by Lemma 2.5. Suppose that P/N * ZU

∞(G/N). Then Φ(G/N) ∩
P/N = 1 and P/N = P1/N × P2/N × · · · × Pr/N by Lemma 3.1. Moreover,

|P1/N | = |P2/N | = · · · = |Pr/N | and |D|/|N | = |P1/N |m for some positive inte-

germ. Assume expP = p. Then Φ(P )=f1(P )= 1, where f1(P )={ap | a∈P}<P .

This contradicts Φ(P ) ̸= 1. Assume expP > p2. Then exp(P/N) > p and so

Φ(P/N) ̸= 1. This contradicts that Φ(G/N) ∩ P/N = 1. Thus expP = p2. If D

is maximal in P , then p = |P : D| = |P/N : D/N | = |P1/N |r
|P1/N |m . Hence r = m + 1

and |P1/N | = |P2/N | = · · · = |Pr/N | = p. This induces that P/N ⊆ ZU
∞(G/N),

a contradiction. Thus |P : D| ≥ p2. We claim that N is cyclic. Otherwise, there

must be a subgroup H of order |D| such that H ∩ N ̸= 1 since expP = p2 and
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|P : D| ≥ p2. Moreover, we can choose thatH∩NEGp, where Gp is some Sylow p-

subgroup of G. Let T be any supplement of H in G. Then P ∩TEPT = HT = G.

Clearly P ∩ T ̸= 1 so N ⊆ T as N is the only minimal normal subgroup of G

contained in P . If T is supersolvable, then N has a cyclic subgroup R, which is

normal in T . But P is abelian, so R is normal in G and hence N = R is cyclic.

Assume that H is weakly s-supplemented in G. Then N ∩H ≤ T ∩H ≤ HsG and

so H∩N = HsG∩N is s-permutable in G. This induces that Op(G) ⊆ NG(N∩H)

and so N ∩H EG, which contradicts the minimality of N . Thus N is cyclic and

our claim holds.

Since Φ((G/N) ∩ (P/N)) = 1, we have that N = Φ(P ). Let P = ⟨a1⟩ ×
· · · ⟨ak⟩ × ⟨ak+1⟩ × · · · × ⟨an⟩, where |a1| = · · · = |ak| = p2 and |ak+1| = · · · =
|an| = p. Then k = 1 since N = Φ(P ) is of order p. It follows that Ω = Ω1(P ) =

{a | ap = 1} is a maximal subgroup of P . Clearly, Ω∩Φ(G) = P ∩Φ(G) ̸= 1. Note

that D is not maximal in P . Hence |D| < |Ω| and so Ω ⊆ ZU
∞(G) by induction.

But P/Ω is of order p, so P ⊆ ZU
∞(G). This contradiction shows that (7) holds.

The final contradiction

Since Φ(P ) = 1, P is an elementary abelian p-group. In particularly, N is

complemented in P . Assume that N is noncyclic. Then there exists a subgroup

H of order |D| such that 1 < H ∩N < N and H ∩N EGp, where Gp is a Sylow

p-subgroup of G. As above argument, one can find a contradiction. Thus N is

cyclic. Let H1/N be any subgroup of P/N of order |D| and H be a complement

of N in H1. Then H is of order |D|. If H1/N has no supersolvable supplement in

G/N , thenH has no supersolvable supplement in G and so is weakly s-supplement

in G by hypotheses. Let T be any supplement of H in G with H ∩ T ≤ HsG.

Since N ≤ T by above argument, T/N is a supplement of H1/N in G/N and

(H1/N) ∩ (T/N) = (H1 ∩ T )/N = (H ∩ T )N/N ≤ HsGN/N . Hence H1/N is

weakly s-supplemented in G/N . If P/N ∩ Φ(G/N) ̸= 1, then the hypotheses

hold on (G/N,P/N) and so P/N ⊆ ZU
∞(G/N). It follows from |N | = p that

P ⊆ ZU
∞(G). If P/N ∩ Φ(G/N) = 1, then P/N = Q1/N ×Q2/N × · · · ×Qs/N ,

where Qi/N is minimal normal in G, i = 1, · · · , s, |Q1/N | = |Q2/N | = · · · =
|Qs/N | and |D| = |Q1/N |m′

for some integer m′ by Lemma 3.1. But we have

that P/N = P1/N × P2/N × · · · × Pr/N , so |Q1/N | = |P1/N | by [3, Theorem

1.6.8]. Thus |P1/N |m = |D|/p = |P1/N |m′
/p for some integers m and m′. This

implies that m′ = m+1 and |P1/N | = p. Therefore P/N ⊆ ZU
∞(G/N) and then,

P ⊆ ZU
∞(G) since N is cyclic. The final contradiction completes the proof. �

Lemma 3.4. Let G be a group and p the minimal prime divisor of the order

of G. Assume that P is a Sylow p-subgroup of G and D is a nontrivial proper

subgroup of P . If every subgroup of P of order |D| or 2|D| (when P is a nonabelian
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2-group) having no supersolvable supplement in G is weakly s-supplemented in

G, then G is p-solvable and the p-length of G is 1.

Proof. Assume the lemma does not hold and let G be a counter example of

minimal order. Then G is not p-nilpotent. We proceed the proof via the following

steps.

(1) Op′(G) = 1

By Lemma 2.1, it can be verified that the hypotheses still hold on G/Op′(G)

and if Op′(G) ̸= 1 then G/Op′(G) is p-solvable and the p-length is 1. It follows

that G is p-solvable and the p-length of G is 1. So we can assume that Op′(G) = 1.

(2) Let N be a minimal normal subgroup of G. If N is a p-group, then

|N | = |D|.
If |D| < |N |, then N has a proper subgroup H of order |D|. Since N is

minimal normal in G and N is abelian, G is the only supplement of H in G. If H

has a supersolvable supplement in G, then G is supersolvable and so the p-length

of G is 1, which contradicts the choice of G. Assume that every such subgroup

H is weakly s-supplemented in G. Then H is s-permutable in G. Without loss

of generality, we can assume that H is normal in P . Then H E ⟨P,Op(G)⟩ = G,

which contradicts the minimality of N . Thus |N | ≤ |D|.
If |N | < |D|, then the hypotheses still hold on G/N . Therefore, G/N is

p-solvable and the p-length is 1. It follows that G is p-solvable. Assume that G

has another minimal normal subgroup L. Then, similarly, G/L is also p-solvable

and its p-length is 1. This induces that G ∼= G/N ∩ L is p-solvable and the p-

length of it is 1, a contradiction. Thus N is the unique minimal normal subgroup

of G. Since the class of all p-solvable groups with the p-length is 1 is a saturated

formation, we have that N * Φ(G). It follows that G = NoM for some maximal

subgroup M of G and N = Op(G). Clearly, Op′(M) ̸= 1 and |P ∩M | > |D|/|N |.
Let P1 be a subgroup of P ∩M of order p|D|/|N | and M1 = P1Op′(M)N . Then

P1N is a Sylow p-subgroup of M1, and every maximal subgroup H of P1N is of

order |D|. Thus, if H has no supersolvable supplement in M1, then H is weakly

s-supplemented in M1 by Lemma 2.1, and then by Lemma 2.7, M1 is p-nilpotent.

But Op(G) = N ≤ M1, so Op′(M1) = 1 by Lemma 2.4. Thus M1 is a p-group.

This contradiction shows that (2) holds.

(3) Op(G) = 1

Assume that Op(G) ̸= 1. Suppose Φ(G)∩Op(G) ̸= 1 and let N be a minimal

normal subgroup of G contained in Φ(G) ∩ Op(G). By (2), |N | = |D|. If N <

Op(G) then Op(G) ⊆ ZU
∞(G) by Lemma 3.3. Hence N is cyclic and |N | = |D| = p.

It follows from Lemma 2.9 that G is p-nilpotent, a contradiction. Assume N =
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Op(G). Let L/N be a minimal normal subgroup of P/N . Then |L| = p|N | = p|D|
and N is maximal in L. It follows that f1(L) = ⟨xp | x ∈ L⟩ ≤ Φ(L) ≤ N . If

f1(L) = N , then N = Φ(L) and hence L is cyclic. This induces that N is

cyclic and so |D| = |N | = p. In this case, by Lemma 2.9, G is p-nilpotent, a

contradiction. Therefore, f1(L) < N . Let M be a maximal subgroup of N such

that M EP and f1(L) ≤ M . Choose x ∈ L \N . Then H = ⟨M,x⟩ is a subgroup

of order |N | = |D|. Let T be a supplement of H in G. Suppose T < G. Since

N ≤ Φ(G), TN < G. But |G : TN | = |TL : TN | = p |T∩N |
|T∩L| ≤ p, so TN is

maximal in G and |G : NT | = p. Thus NT is normal in G by the minimality of p.

If N is not a Sylow p subgroup of NT , then the hypotheses still hold on NT and

hence NT is p-nilpotent. Since |G : NT | = p and NT E G, G is p-nilpotent. If

N is a Sylow p subgroup of NT , then D is maximal in P and so G is p-nilpotent

by Lemma 2.7. This contradiction shows that G is the only supplement of H in

G. If T is supersolvable, then G = T is p-nilpotent, a contradiction. Assume

that H has no supersolvable supplement in G. Then H is weakly s-supplemented

in G by the hypotheses and consequently, H = H ∩ G is s-permutable in G. It

follows that M = H ∩ N is s-permutable in G and so M E POp(G) = G. By

the minimality of N , we have that M = 1 and N is cyclic of order p. Still by

Lemma 2.9, G is p-nilpotent, a contradiction.

Suppose that Φ(G) ∩ Op(G) = 1. Then Op(G) is abelian. Let N be a

minimal normal subgroup of G contained in Op(G). Then N is of order |D| by
(2) and is complemented in G by Φ(G) ∩ Op(G) = 1. Let G = N oM . Clearly,

Op(M) ⊆ Op(G). If Op(M) ̸= 1, then Op(M) E MOp(G) = G. Let L be a

minimal normal subgroup of G contained in Op(M). Then the order of L is |D|
by (2). If L is a Sylow p-subgroup of M , then Op(G) = NL is a Sylow p-subgroup

of G. This is contrary to the choice of G. Thus the order of a Sylow p-subgroup of

M is greater than |D| and so, the hypotheses hold on M . Therefore, G/N ∼= M is

p-solvable and the p-length of it is 1. By the same argument, we have that G/L is

also p-solvable and the p-length of G/L is 1. Therefore, G ∼= G/L∩N is p-solvable

and the p-length of it is 1, which contradicts the choice of G. Hence Op(M) = 1.

Now assume that Op′(M) ̸= 1. Let x ∈ P ∩ M of order p and P1 = ⟨N, x⟩.
Then |P1| = p|D|. Since NOp′(M) E G, X = Op′(M)P1 = Op′(G)NP1 is a

subgroup of G and every maximal subgroup of P1 is of order |D|. Hence by

Lemma 2.7, X is p-nilpotent and so is NOp′(M). This induces that Op′(M) char

NOp′(M) E G, which contradicts Op′(G) = 1. Thus Op′(M) = Op(M) = 1 and

in particularly, G is not solvable. If p > 2, then G is of odd order and so is

solvable, a contradiction. Hence p = 2. Let R be a minimal subnormal subgroup

of M . Then R is nonabelian and p = 2 is a divisor of |R|. Let G1 = NR. Then
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the hypotheses still hold on G1 since |N | = |D| < |G1p |, where G1p is a Sylow

p-subgroup of G1. If G1 < G, then G1 is p-solvable and so is R, a contradiction.

Hence G = G1 = NR. If the Sylow p-subgroup P is abelian, then P ∩REP and

so (P ∩R)G = (P ∩R)R ≤ R. Since R is simple, we have that R = (P ∩R)G EG

and so G = N × R. But N is minimal normal in G, so N is of order p. Thus G

is p-nilpotent by Lemma 2.9 and |N | = |D|. Assume that P is nonabelian. Then

every subgroup H of order 2|D| = 2|N | having no supersolvable supplement in

G is weakly s-supplemented in G. By Lemma 2.1, it can be verified that every

subgroup of order 2 of G/N having no supersolvable supplement in G/N is weakly

s-supplemented in G/N . Since R ∼= RN/N = G/N , every subgroup of order 2

of R having no supersolvable supplement in R is weakly s-supplemented in R.

Let H be a subgroup of R of order 2 and T a supplement of H in R. If T ̸= R,

then |R : T | = 2 and so T E R, which contradicts that R is simple. Hence

T = R. If R supersolvable then G is solvable, a contradiction. Hence H is weakly

s-supplemented in R. But R is the only supplement of H in R, so H = H ∩ R

is s-permutable in R and hence Op(R) ̸= 1, which contradicts that R is simple.

This contradiction shows that (3) holds.

(4) G is simple.

Let N be a minimal normal subgroup of G. By (1) and (3), N is a nonabelian

pd-group. If |P ∩ N | ≤ |D|, then there is a subgroup P1 of P with N ∩ P < P1

and |P1| = p|D|. Let X = NP1. Then every maximal subgroup of the Sylow

p-subgroup P ∩X of X is of order |D|. By Lemma 2.7, X is p-nilpotent and so is

N , a contradiction. If |P ∩N | > |D|, then the hypotheses hold on N . If N < G,

then N is p-solvable by the choice of G, a contradiction. Hence N = G and G is

simple.

The final contradiction

If p > 2, then G is solvable and so is abelian, a contradiction. Hence p = 2.

Assume that P is abelian and H is a subgroup of P of order |D|. If H is weakly s-

supplemented in G and let T be a supplement of H in G with H∩T ≤ HsG. Then

T ̸= G since H could not be s-permutable in G. Clearly, P ∩T ̸= 1 since D < P .

Hence 1 ̸= (P∩T )G = (P∩T )PT = (P∩T )T ≤ T < G, which contradicts (4). Now

consider that P is nonabelian. Then every subgroup of order |D| or 2|D| having
no supersolvable supplement in G is weakly s-supplemented in G. By Lemma 2.7,

D is not maximal in P and so 2|D| < |P |. If all subgroups of order |D|(or of

order 2|D|) have supersolvable supplements in G, then all maximal subgroups

of P have supersolvable supplements in G. By Lemma 2.7, G is p-nilpotent, a

contradiction. Hence there is a subgroup H1 of order |D| and a subgroup H2 of

order 2|D| are weakly s-supplemented in G. But G is simple, so both H1 and H2
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are complemented in G. Hence there are subgroups T1 and T2 with |G : T1| = |D|
and |G : T2| = 2|D|. In view of Lemma 2.6, such a nonabelian simple group does

not exist and our lemma holds. �

Proof of Theorem 1.3. We first prove that E satisfies Sylow tower prop-

erty (see [11, p5]). In fact, by Lemma 2.1, it can be verified that the hypotheses

still holds on E. If E < G then E ∈ U by induction and hence E satisfies

Sylow tower property in this case. Now assume that E = G. Let p be the

minimal prime divisor of |G| and P a Sylow p-subgroup of G. It follows from

Lemma 3.4 that G is p-solvable and the p-length of G is 1. Thus G/Op′(G)

is p-closed. By Lemma 2.1, every subgroup of G/Op′(G) of order |D| or 2|D|
(when POp′(G)/Op′(G) ∼= P is a nonabelian 2-group) having no supersolvable

supplement in G/Op′(G) is weakly s-supplemented in G/Op′(G). If Φ(P ) ̸=
P ′, then P ′Op′(G)/Op′(G) < Φ(P )Op′(G)/Op′(G) ≤ Φ(G/Op′(G). It follows

from Lemma 3.3 that POp′(G)/Op′(G) ⊆ ZU
∞(G/Op′(G)). Assume that P ′ =

Φ(P ). If |D| ≤ |Φ(P )| then |D| ≤ |P ′|. Again by Lemma 3.3, it holds that

POp′(G)/Op′(G) ⊆ ZU
∞(G/Op′(G)). Assume that |D| > |Φ(P )|. Then (iii) holds

on P and so (ι(P/P ′), ι(|D|/|P ′|)) = 1 or (ι(P ), ι(|P : D|)) = 1. By Corol-

lary 3.2, it can be verified that POp′(G)/P ′Op′(G) ⊆ ZU
∞(G/P ′Op′(G)), and it

follows from Lemma 2.2 that POp′(G)/Op′(G) ⊆ ZU
∞(G/Op′(G)). Since p is the

minimal prime divisor of G, we have that G/Op′(G) is p-nilpotent and hence G is

p′-closed. Since the hypotheses still hold on Op′(G), we have that Op′(G) satisfies

Sylow tower property, and consequently G satisfies Sylow tower property.

Let q be the maximal prime divisor of |E| and Q a Sylow q-subgroup of E.

Then Q char E EG and as above argument, Q ⊆ ZU
∞(G) since (i) or (ii) or (iii)

holds on Q. We can also see that the hypotheses still holds on G/Q. Hence

G/Q ∈ F by induction on the order of G. Since Q ⊆ ZU
∞(G) and U ⊆ F, we

obtain that G ∈ F. Therefore the theorem holds. �

4. Remarks, examples and some corollaries

1. If D is minimal or maximal in P , then (ι(P ), ι(D)) = 1 or (ι(P ), ι(|P :

D|)) = 1 and hence Theorems A and B in [7] are special cases of our results.

2. In Lemma 3.4 the minimality of p is necessary. In fact, if p is not the

minimal prime divisor of the order of |G|, then we have the following counterex-

ample.
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Example 4.1. Let A = Z3oZ2
∼= S3, where Z3 is a cyclic subgroup of order 3,

Z2 a cyclic subgroup of order 2 and S3 is the symmetric group of degree 3. Let

B = A≀Z3, the regular wreath product of A by Z3. Put G=O2(B)= ⟨x | o(x)= 3⟩.
Then G ∼= (Z3×Z3×Z3)oA4, where A4 is the alternative group of degree 4. Let

P be a Sylow 3-subgroup of G. It can be proved that for any maximal subgroup

H of P , H is complemented in G. So every maximal subgroup of P is weakly

s-supplemented in G. But the p-length of G is not 1, where p = 3.

3. Clearly, if a subgroup H is normal, s-permutable or c-normal in G, then

H is weakly s-supplement in G. Hence one can find the following special cases of

Theorem 1.3 in the literature.

Corollary 4.2. ([12]) Let G be a group of odd order. If all subgroups of G

of prime order are normal in G, then G is supersolvable.

Corollary 4.3. ([13]) If the maximal subgroups of the Sylow subgroups of

G are normal in G, then G is supersolvable.

Corollary 4.4 ([14]). If all subgroups of G of prime order or order 4 are

c-normal in G, then G is supersolvable.

Corollary 4.5 ([14]). If the maximal subgroups of the Sylow subgroups of

G are c-normal in G, then G is supersolvable.

Corollary 4.6 ([15]). If the maximal subgroups of the Sylow subgroups of

G not having supersolvable supplement in G are normal in G, then G is super-

solvable.

Corollary 4.7 ([16]). If the maximal subgroups of the Sylow subgroups

of G not having supersolvable supplement in G are c-normal in G, then G is

supersolvable.

Corollary 4.8 ([17]). Let F be a saturated formation containing U. If all

minimal subgroups and all cyclic subgroups with order 4 of GF are c-normal in G,

then G ∈ F.

Corollary 4.9 ([18]). Let F be a saturated formation containing U and G

a group with normal subgroup E such that G/E ∈ F. Assume that a Sylow

2-subgroup of G is abelian. If all minimal subgroups of E are permutable in G,

then G ∈ F.

Corollary 4.10 ([19]). Let G be a solvable group. If all maximal subgroups

of the Sylow subgroups of F (E) are normal in G, then G is supersolvable.
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Corollary 4.11 ([18]). Let F be a saturated formation containing U and G

a group with a solvable normal subgroup E such that G/E ∈ F. If all minimal

subgroups and all cyclic subgroups with order 4 of E are weakly s-permutable

in G, then G ∈ F.
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