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Douglas–Randers manifolds with vanishing stretch tensor

By AKBAR TAYEBI (Qom) and TAYEBEH TABATABAEIFAR (Qom)

Abstract. In this paper, we prove that every Douglas–Randers metric with van-

ishing stretch curvature is a Berwald metric. It results that, a Douglas–Randers metric

is R-quadratic if and only if it is a Berwald metric.

1. Introduction

The class of Randers metrics is among the simplest class of non-Riemannian

Finsler metrics, which arises from many areas in mathematics, physics and biol-

ogy [1]. A Randers metric is of the form F = α + β where α =
√
aij(x)yiyj is

a Riemannian metric, and β = bi(x)y
i is a 1-form on M with ∥β∥α < 1. Ran-

ders metrics were first studied by G. Randers, from the standpoint of general

relativity [16]. These metrics were used in the theory of the electron microscope

by Ingarden, who first named them Randers metrics. Recently, Bao–Robles–

Shen showed that Randers metrics arise naturally from the navigation problem

on a Riemannian manifold under the influence of an external force field [7]. The

least time path from one point to another is a geodesic of a Randers metric.

Randers metrics are computable and have very rich non-Riemannian curvature

properties [9], [10], [18].

The geodesic curves of a Finsler metric F on a smooth manifold M are

determined by the system of sode c̈i + 2Gi(ċ) = 0, where the local functions Gi

are called the spray coefficients. A Finsler metric F is called a Berwald metric,

if the Gi’s are quadratic in y ∈ TxM for any x ∈ M . As a generalization of

Berwald curvature Bácsó–Matsumoto [4] introduced the notion of Douglas
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metrics. They proved that a Randers metric F = α + β has vanishing Douglas

curvature if and only if β is a closed 1-form [4].

There exists another extension of Berwald metrics. Let (M,F ) be a Finsler

manifold. The third order derivative of 1
2F

2
x at y ∈ TxM0 is the Cartan torsion

Cy on TxM [6]. The rate of change of the Cartan torsion along geodesics is said to

be Landsberg curvature. Finsler metrics with vanishing Landsberg curvature are

called Landsberg metrics. Every Berwald metric is a Landsberg metric. In [12],

Matsumoto proved that F = α + β is a Landsberg metric if and only if β is

parallel. In [11], Hashiguchi-Ichijyō showed that for a Randers metric F = α+β,

if β is parallel, then F is a Berwald metric. Thus every Randers metric with

vanishing Landsberg curvature is a Berwald metric.

As a generalization of Landsberg curvature, Berwald introduced the notion

of stretch curvature and denoted it by Σy [8]. He showed that Σ = 0 if and only

if the length of a vector remains unchanged under the parallel displacement along

an infinitesimal parallelogram. Then, this curvature investigated by Matsumoto

in [13].

In [5], Bácsó–Matsumoto proved that a Douglas metric with vanishing

stretch curvature is R-quadratic if and only if its Ē-curvature vanishes. It is

interesting to find some conditions under which Douglas metrics with vanishing

stretch curvature reduce to Berwald metrics. We prove the following:

Theorem 1.1. A Douglas–Randers manifold reduces to a Berwald manifold

if and only if, its stretch tensor vanishes.

According to Bácsó–Ilosvay–Kis [2] and Bácsó–Matsumoto [3], every

Douglas metric with vanishing Landsberg curvature is a Berwald metric . Here

we weaken their condition on the curvature and impose the Randers metric on

the Finsler metric instead.

Throughout this paper, we use the Cartan connection on Finsler manifolds.

The h- and v- covariant derivatives of a Finsler tensor field are denoted by “|”
and “, ”, respectively.

2. Preliminaries

Let M be an n-dimensional C∞ manifold. Denote by TxM the tangent space

at x ∈ M , and by TM = ∪x∈MTxM the tangent bundle of M . A Finsler metric

on M is a function F : TM → [0,∞) which has the following properties: (i) F

is C∞ on TM0 := TM \ {0}; (ii) F is positive-homogeneous of degree 1; (iii) for
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each y ∈ TxM , the quadratic form

gy(u, v) :=
1

2

∂2

∂s∂t

[
F 2(y + su+ tv)

]
|s,t=0, u, v ∈ TxM.

is positive definite.

Let x ∈ M and Fx := F |TxM . To measure the non-Euclidean feature of Fx,

define Cy : TxM ⊗ TxM ⊗ TxM → R by

Cy(u, v, w) :=
1

2

d

dt

[
gy+tw(u, v)

]
|t=0, u, v, w ∈ TxM.

The family C := (Cy)y∈TM0 is called the Cartan torsion. It is well known that

C=0 if and only if F is Riemannian.

For y ∈ TxM0, define mean Cartan torsion Iy : TxM → R by Iy(u) := Ii(y)u
i,

where Ii := gjkCijk. By Deicke’s theorem, F is Riemannian if and only if Iy = 0.

For y ∈ TxM0, define the Matsumoto torsion My : TxM ⊗TxM ⊗TxM → R
by My(u, v, w) := Mijk(y)u

ivjwk where

Mijk := Cijk − 1

n+ 1
{Iihjk + Ijhik + Ikhij},

hij := gij − F−2yiyj is the angular metric. F is called C-reducible if My = 0.

Matsumoto proved that every Randers metric F = α + β satisfies My = 0. The

converse is also true:

Lemma 2.1 ([14]). A Finsler metric F on a manifold of dimension n ≥ 3 is

a Randers metric if and only if My = 0, for all y ∈ TM0.

For y ∈TxM0, define the Landsberg curvature Ly :TxM ⊗TxM ⊗TxM →R
by Ly(u, v, w):=Lijk(y)u

ivjwk where Lijk:=Cijk|sy
s. The family L:=(Ly)y∈TM0

is called the Landsberg curvature. F is called a Landsberg metric if L = 0.

The horizontal covariant derivatives of I along geodesics give rise to the mean

Landsberg curvature Jy(u) := Ji(y)u
i, where Ji := Ii|sy

s. A Finsler metric is said

to be weakly Landsbergian if J = 0.

For y ∈TxM0, define the stretch curvatureΣy :TxM⊗TxM⊗TxM⊗TxM →R
by Σy(u, v, w, z) := Σijkl(y)u

ivjwkzl, where

Σijkl := 2(Lijk|l − Lijl|k). (1)

A Finsler metric is said to be a stretch metric if Σ = 0. Every Landsberg metric

is a stretch metric.
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Given a Finsler manifold (M,F ), a global vector field G is induced by F on

TM0, which in a standard local coordinate system (xi, yi) for TM0 is given by

G = yi ∂
∂xi − 2Gi ∂

∂yi , where Gi are the spray coefficients. G is called the spray

associated to F . For y ∈ TxM0, define By : TxM ⊗ TxM ⊗ TxM → TxM and

Dy : TxM ⊗ TxM ⊗ TxM → TxM by By(u, v, w) := Bi
jkl(y)u

jvkwl ∂
∂xi |x and

Dy(u, v, w) := Di
jkl(y)u

jvkwl ∂
∂xi |x, where

Bi
jkl :=

∂3Gi

∂yj∂yk∂yl
, Di

jkl := Bi
jkl −

∂3

∂yj∂yk∂yl

[
2

n+ 1

∂Gm

∂ym
yi
]
.

The B and D are called the Berwald curvature and Douglas curvature, respec-

tively. F is called a Berwald and Douglas metric if B = 0 andD = 0, respectively.

Example 2.1. A Finsler metric F satisfying Fxk = FFyk is called a Funk

metric. The standard Funk metric on the Euclidean unit ball is defined by

F (x, y) :=

√
|y|2 − (|x|2|y|2 − ⟨x, y⟩2)

1− |x|2
+

⟨x, y⟩
1− |x|2

, y ∈ TxB
n(1) ≃ Rn,

where ⟨ , ⟩ and |.| denote the Euclidean inner product and norm on Rn, respec-

tively. It is easy to see that β is closed 1-form, hence F is a Douglas metric. Since

Gi = 1
2Fyi, then we get Σijkl = F [Cijl|k − Cijk|l], i.e., F is not a stretch metric.

Thus by Theorem 1.1, F is not Berwald metric.

3. Proof of Theorem 1.1

Let F = α+β be a Randers metric on a manifold M , where α =
√

aij(x)yiyj

is a Riemannian metric and β(y) = bi(x)y
i is a 1-form on M . Define bi|j by

bi|jθ
j := dbi − bjθ

j
i , where θi := dxi and θ j

i := Γ̃j
ikdx

k denote the Levi-Civita

connection forms of α. Let

rij :=
1

2
(bi|j + bj|i), sij :=

1

2
(bi|j − bj|i), sij := aihshj , sj := bis

i
j .

In this section, we will prove a generalized version of Theorem 1.1. Indeed, we

prove the following.

Theorem 3.1. Let F = α + β be a Randers metric on a manifold M .

Suppose that F is a stretch metric and the following holds:(
cs0 − 2smsm0

)
α4 +

(
2s20 + 2sm0sm0 − 4smsm0β − cs0β

)
α3 +

(
6βsm0sm0

− 2smsm0β
2 + 6βs20

)
α2 + 6β2sm0sm0α+ 2β3sm0sm0 = 0, (2)

where c is scalar function on M . Then F reduces to a Berwald metric.
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Remark 3.1. According to Bácsó-Matsumoto’s theorem, F = α + β is a

Douglas metric if and only if β is a closed 1-form [4]. It is obvious that any closed

1-form β satisfies (2).

To prove the Theorem 3.1, we need the following.

Lemma 3.2. Let F = α+β be a Randers metric. Then the stretch curvature

of F is given by

Σijkl =
2

n+ 1

[
hikJj|l − hilJj|k + hjkJi|l − hjlJi|k + (Jk|l − Jl|k)hij

]
. (3)

Thus, if the mean Landsberg curvature is horizontally constant along geodesics,

then F has vanishing stretch curvature.

Proof. By Lemma 2.1, F is C-reducible. Taking a horizontal derivation,

C-reducibility implies that

Lijk =
1

n+ 1

{
Jihjk + Jjhik + Jkhij

}
. (4)

By (4), we get

Lijk|l =
1

n+ 1

{
Ji|lhjk + Jj|lhik + Jk|lhij

}
. (5)

From (1) and (5), we obtain (3). �

Remark 3.2. Suppose that F be a stretch metric, i.e., Lijk|l = Lijl|k. Then

we have Lijk|ly
l = 0. This equation is equivalent to that for any linearly parallel

vector fields u, v, w along a geodesic c, the following holds:

d

dt

[
Lċ(u, v, w)

]
= 0.

The geometric meaning of this is that the rate of change of the Landsberg curva-

ture is constant along any Finslerian geodesic.

First, we prove the following.

Lemma 3.3. Let F = α + β be a Randers metric on a manifold M . Then

the mean Landsberg curvature of F satisfies

Jj|0 =
1

α+ β

[
αrj0|0 − α2sj|0 − α2br|0srj − α−1(r00|0 − αs0|0 − αbr|0sr0)yj

]
− α

2(α+ β)2
[
(r00|0 − 2αs0|0 − 2αbr|0sr0)Ij + (r00 − 2αs0)Jj

]
+ sj0|0. (6)
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Proof. Denote by li = α−1yi the normalized supporting element. The

fundamental tensor and angular metric of a Randers metric is written as

gij =
F

α
aij + bibj +

1

α
(biyj + bjyi)−

β

α3
yiyj , (7)

hij =
F

α

(
aij −

yiyj
α2

)
. (8)

The reciprocal tensor gij of gij is given by

gij =
α

F

[
aij − 1

F
(yibj + yjbi) +

b2α+ β

αF 2
yiyj

]
, (9)

where b2 = bib
i and bi = aijbi. Differentiating (7) with respect to yk yields

Cijk =
1

2α

{
Iihjk + Ijhik + Ikhij

}
, (10)

where

Ii = bi − α−2βyi. (11)

To finding the relation between the Cartan connection of α and F , we put the

difference tensor Di
jk = Γi

jk−γi
jk, where γ

i
jk is the Christoffel symbols of α. It

is computed in [13] by Matsumoto. Now, let ∇k be the covariant differentiation

by xk with respect to associated Riemannian connection. Let

bij := ∇jbi =
∂bi
∂xk

− brγ
r
jk, rijk := ∇krij , sijk := ∇ksij . (12)

We recall that the index 0 means contraction by yi. For example r0jk = rijky
i.

In [13], the following are obtained:

Di = 2αsi0 + yi
(
r00 − 2αs0

F

)
,

Di
j = αsij +

1

α

(
sj0y

i + si0yj
)
+

(
δij −

yiyj
α2

)(
r00 − 2αs0

2F

)
+

yi

F

[
rj0 − sj0 − αsj −

1

α

(
s0yj + βsj0

)
−

(
r00 − 2αs0

2F

)
Ij

]
, (13)

where sj = bisij and sij = airsrj . By contracting (13) with bi, we have

biD
i
j =

1

F

[
α2sj + s0yj + βrj0

]
+

α

2F 2

[
r00 − 2αs0

]
Ij (14)
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Plugging bi|j = bij − brD
r

i j in (14) yields

bi|0 =
α

F
rj0 + sj0 −

α2

F
sj −

1

F
s0yj −

α

2F 2

(
r00 − 2αs0

)
Ij , (15)

b0|0 =
α

F

(
r00 − 2αs0

)
. (16)

Since F|0 = 0, by (11), (15) and (16) we have

Jj = bj|0 −
1

α2
b0|0yj

=
α

F

(
rj0 − αsj

)
− 1

αF

(
r00 − αs0

)
yj −

α

2F 2

(
r00 − 2αs0

)
Ij + sj0. (17)

By taking a horizontal derivation of (17) along geodesics, we get (6). �

Now, we are going to consider Randers metrics with vanishing stretch curva-

ture.

Lemma 3.4. Let F = α+β be a Randers metric on a manifold M . Suppose

that F is a stretch metric. Then

r00 = cα2, r0 = cβ, (18)

where c is a function on M .

Proof. Contracting (6) with bj we find

biJi|0 =
α

α+ β
r0|0 + s0|0 −

α2

α+ β
br|0sr −

β

α(α+ β)
(r00|0 − αs0|0 − αbr|0sr0)

− α

2(α+ β)2
[
(r00|0 − 2αs0|0 − 2αbr|0sr0)b

iIi + (r00 − 2αs0)b
iJi

]
, (19)

where

r0|0 = bjrj0|0,

ri0|0 = ri00 − rimD m
0 0 − rm0D

m
i 0,

r00|0 = r000 − 2αsm0r
m
0 − 2r00

α+ β
(r00 − αs0),

biri0|0 = biri00 − 2αrmsm0 − r0
α+β

(r00 − 2αs0)− αsm rm0 −
1

α
(r00s0 + βrm0s

m
0)

− r00
2α2(α+ β)2

[2α(α+ β)(α(r0 − s0)+2βs0)− (r00 − 2αs0)(b
2α2 − β2)]

− r0
2α2(α+ β)

(r0α
2 − βr00)(r00 − 2αs0), (20)
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bisi0|0 = bisi00 − 3αsmsm0 − 3s0
2(α+ β)

(r00 − 2αs0)−
β

α
sm0 sm0. (21)

Substituting (21) in (19) yields

αA+B = 0, (22)
where

A : = 2smsmα6 +
[
8βsmsm − 2sm0sm − 2rm0sm

]
α5

+
[
2b2s20 − 6βsm0 sm − 4βrm0 sm + 2β2smsm + 2r0s0

]
α4

+
[
2βr0s0 − r0r00 − 6β2sm0 sm − 2β2rm0 sm − 2b2r00s0 − r00s0

]
α3

+
[1
2
b2r200 − 4βr00s0 − 2β2s20 − βr00r0 − 2β3smsm0

]
α2

+
[
βr200 − β2r00s0

]
α+

1

2
β2r200, (23)

B : =
[
− 6b2smsm0 − 4rmsm0 − 2rm0s

m − 2b2smsm0 − 6sm0 sm
]
α6

+
[
8b2s20 − 2βsmsm0 + 6r0s0 + 2b2rm0 sm0 + 2b2sm0 sm0 + 6s20

− 12βrmsm0 + 2b2bisi00 + 2b2rm0s
m
0 − 30βsmsm0 − 12b2βsmsm0

+ 2biri00 + 2bisi00 − 2b2βsmsm0 − 6βrm0s
m
]
α5

+
[
2βrm0 sm0 − 6β2rm0s

m + 6βbiri00 + r00s0 − 5r0r00 − 6b2β2smsm0

− 12β2rmsm0 + 6βrm0s
m
0 + β6b2s20 + 2b2βrm0 sm0 + 26βs20 − 48β2smsm0

− 2β2smsm0 + 12βr0s0 + 10βbisi00 + 4b2βrm0s
m
0 − b2r000 − 8b2r00s0

+ 2b2βsm0 sm0 + 4b2βbisi00
]
α4 +

[
6β2biri00 − 30β3smsm0 − 7b2βr00s0

− 4β3rmsm0 + 2β2rm0 sm0 − 13βr00s0 + 24β2s20 + 3b2r200 + 16β2bisi00

− 10βr0r00 − 2β3rm0s
m +2b2β2rm0s

m
0 − 2b2βr000 − 2βr000 +6β2r0s0

+ 2b2β2bisi00 − 6β2sm0 sm0 − 2b2β2sm0 sm0 + 16β2rm0s
m
0

]
α3

+
[
6β3s20 − 20β2r00s0 − 5β2r0r00 − 6β4sm0 sm − 2b2β3sm0 sm0

+ 10β3bisi00 − 5β2r000 + 3b2βr200 + 2β3biri00 + 5βr200 + 14β3rm0s
m
0

− b2β2r000 − 14β3sm0 sm0

]
α2 +

[
2β4bisi00 − 4β3r000 + 4β4rm0s

m
0

− 10β4sm0 sm0 +7β2r200 − 7β3r00s0
]
α− 2β5sm0 sm0 −β4r000 +2β3r200. (24)

By (22), we have A = 0 and B = 0. Since A = 0, it follows that α2 must be a

factor of r00 and then we get (18). �

Proof of Theorem 3.1. Substituting (18) in (23) yields[
4smsm + c2β2

]
α4 +

[
8βsmsm − 6cs0 − 4sm0sm − 4b2cs0

]
α3
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+
[
4b2s0 − 12smsm0β − c2β2 − 12β2cs0 + 4smsmβ2

]
α2

−
[
12β2smsm0 + 2cβ2s0

]
α− 4smsm0β

3 − 4β2s20 = 0. (25)

By (17) and (18), we get

gijJiJj =
1

4F 4

[
(4smsm + b2c2)α6 + (8smsmβ − 4cs0 − 4smsm0

− 4b2cs0 − 4sm0sm)α5 + (4s20 − 12smsm0β − 12cs0β

+ 4smsmβ2 + 4sm0sm0 − 12smsm0β − c2β2 + 4b2s20)α
4

+ (16βsm0sm0 − 4cs0β
2 − 12smsm0β

2 + 16βs20 − 12smsm0β
2)α3

+ (8β2s20 − 4β3smsm0 − 4smsm0β
3 + 24β2sm0sm0)α

2

+ 16β3sm0sm0α+ 4β4sm0sm0

]
. (26)

By (25) and (26) it results that Ji = 0 if the following holds:

(cs0 − 2smsm0)α
4 + (2s20 + 2sm0sm0 − 4smsm0β − cs0β)α

3 + (6βsm0sm0

− 2smsm0β
2 + 6βs20)α

2 + 6β2sm0sm0α+ 2β3sm0 sm0 = 0. (27)

Therefore, by assumption, F is a weakly Landsberg metric. Thus, by the C-

reducibility, it follows that F reduces to a Landsberg metric, and hence F is a

Berwald metric. �

A Finsler spaces is said to be R-quadratic if its Riemann curvature Ry is

quadratic in y ∈ TxM [5]. By definition, every Berwald metric is R-quadratic. It

is proved that every R-quadratic metric is a stretch metric (see [15], [17]). Then

by Theorem 1.1, we get the following.

Corollary 3.1. Let F = α+β be a Douglas metric on a manifold M . Then

F is R-quadratic if and only if it is a Berwald metric.
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