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Douglas—Randers manifolds with vanishing stretch tensor

By AKBAR TAYEBI (Qom) and TAYEBEH TABATABAEIFAR (Qom)

Abstract. In this paper, we prove that every Douglas—Randers metric with van-
ishing stretch curvature is a Berwald metric. It results that, a Douglas—Randers metric
is R-quadratic if and only if it is a Berwald metric.

1. Introduction

The class of Randers metrics is among the simplest class of non-Riemannian
Finsler metrics, which arises from many areas in mathematics, physics and biol-
ogy [1]. A Randers metric is of the form F' = a + 3 where o = /a;;(x)yty? is
a Riemannian metric, and 8 = b;(z)y’ is a 1-form on M with ||3||o» < 1. Ran-
ders metrics were first studied by G. RANDERS, from the standpoint of general
relativity [16]. These metrics were used in the theory of the electron microscope
by INGARDEN, who first named them Randers metrics. Recently, BAO-ROBLES—
SHEN showed that Randers metrics arise naturally from the navigation problem
on a Riemannian manifold under the influence of an external force field [7]. The
least time path from one point to another is a geodesic of a Randers metric.
Randers metrics are computable and have very rich non-Riemannian curvature
properties [9], [10], [18].

The geodesic curves of a Finsler metric F' on a smooth manifold M are
determined by the system of SODE ¢ + 2G%(¢) = 0, where the local functions G*
are called the spray coeflicients. A Finsler metric F' is called a Berwald metric,
if the G¥’s are quadratic in y € T, M for any x € M. As a generalization of
Berwald curvature BACSO—MATSUMOTO [4] introduced the notion of Douglas
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metrics. They proved that a Randers metric F' = a 4 8 has vanishing Douglas
curvature if and only if g is a closed 1-form [4].

There exists another extension of Berwald metrics. Let (M, F') be a Finsler
manifold. The third order derivative of %FQJQ at y € T, My is the Cartan torsion
C, on T, M [6]. The rate of change of the Cartan torsion along geodesics is said to
be Landsberg curvature. Finsler metrics with vanishing Landsberg curvature are
called Landsberg metrics. Every Berwald metric is a Landsberg metric. In [12],
MATSUMOTO proved that F' = a + [ is a Landsberg metric if and only if 3 is
parallel. In [11], Hashiguchi-Ichijyo showed that for a Randers metric F = a+ 3,
if B is parallel, then F is a Berwald metric. Thus every Randers metric with
vanishing Landsberg curvature is a Berwald metric.

As a generalization of Landsberg curvature, Berwald introduced the notion
of stretch curvature and denoted it by X, [8]. He showed that ¥ = 0 if and only
if the length of a vector remains unchanged under the parallel displacement along
an infinitesimal parallelogram. Then, this curvature investigated by MATSUMOTO
in [13].

In [5], BACSO-MATSUMOTO proved that a Douglas metric with vanishing
stretch curvature is R-quadratic if and only if its E-curvature vanishes. It is
interesting to find some conditions under which Douglas metrics with vanishing
stretch curvature reduce to Berwald metrics. We prove the following:

Theorem 1.1. A Douglas—Randers manifold reduces to a Berwald manifold
if and only if, its stretch tensor vanishes.

According to BAcsO-ILosvAaY—Kis [2] and BAcs6-MATSUMOTO [3], every
Douglas metric with vanishing Landsberg curvature is a Berwald metric . Here
we weaken their condition on the curvature and impose the Randers metric on
the Finsler metric instead.

Throughout this paper, we use the Cartan connection on Finsler manifolds.
The h- and v- covariant derivatives of a Finsler tensor field are denoted by “|”
and “, 7, respectively.

2. Preliminaries

Let M be an n-dimensional C'*° manifold. Denote by T, M the tangent space
at ¢ € M, and by TM = U,y T, M the tangent bundle of M. A Finsler metric
on M is a function F : TM — [0, 00) which has the following properties: (i) F
is C* on TMy :=TM \ {0}; (ii) F is positive-homogeneous of degree 1; (iii) for
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each y € T, M, the quadratic form

1 92
g, (1,v) =555

[F?(y + su+tv)] |s =0, u,v € T, M.

is positive definite.
Let x € M and F, := F|r, . To measure the non-Euclidean feature of F,
define C, : T, M @ T, M ® T, M — R by

1d
Cy(u,v,w) := 2% [gy+tw(u,v)] li=0, w,v,w € T, M.

The family C := (Cy)yernm, is called the Cartan torsion. It is well known that
C=0 if and only if F' is Riemannian.
For y € T,,My, define mean Cartan torsion I, : T, M — R by L,(u) := I;(y)u’,
where I; := ¢?*C;;1,. By Deicke’s theorem, F' is Riemannian if and only if I, = 0.
For y € T, My, define the Matsumoto torsion M : T, M @ T, M @ T, M — R
by M, (u, v, w) := My, (y)uviw® where

1
M1, = Cyjr, — m{fihjk + Lk, + Ixhij },

hij == gij — F~2y;y; is the angular metric. F is called C-reducible if M, = 0.
Matsumoto proved that every Randers metric /' = o + 8 satisfies M, = 0. The
converse is also true:

Lemma 2.1 ([14]). A Finsler metric F' on a manifold of dimension n > 3 is
a Randers metric if and only if My, =0, for all y € T M.

For y € T, My, define the Landsberg curvature Ly, : T, M @ T, M @ T, M — R
by Ly (u, v, w):=Li;(y)u'vIw® where Liji:=Cijp|sy°. The family L:=(Ly)yernm,
is called the Landsberg curvature. F' is called a Landsberg metric if L = 0.

The horizontal covariant derivatives of I along geodesics give rise to the mean
Landsberg curvature J, (u) := J;(y)u’, where J; := I;;y°. A Finsler metric is said
to be weakly Landsbergian if J = 0.

For y € T, My, define the stretch curvature 3, : T, M @1, MQT, M T, M — R
by X, (u, v, w, 2) = Sk (y)uiviwkz!, where
Sijer = 2(Lijrp — Lijie)- (1)

A Finsler metric is said to be a stretch metric if 3 = 0. Every Landsberg metric
is a stretch metric.
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Given a Finsler manifold (M, F'), a global vector field G is induced by F on
T My, which in a standard local coordinate system (x?,y%) for T My is given by

G =y 3(; - 2G¢ 6?;“ where G’ are the spray coefficients. G is called the spray

associated to F'. For y € T, My, define B, : T, M @ T,M ® T, M — T, M and

D, : T,MT,MQT,M — ?M by By(u,v,w) = Bijkl(y)ujvsz a?:i
l

ozt

» and

Dy (u,v,w) := Dijkl(y)ujvkw «» Where

g . OC i g 9 [ 2 aGm ﬂ
ki .

= D', :=B", — -

Oyi Oykoyt’ gkl IR Qyidykoyt | n+ 1 dy™ Y
The B and D are called the Berwald curvature and Douglas curvature, respec-
tively. F is called a Berwald and Douglas metric if B = 0 and D = 0, respectively.

Ezample 2.1. A Finsler metric I satisfying F,x = FFy is called a Funk
metric. The standard Funk metric on the Euclidean unit ball is defined by
_ VP = (2PlyP = (=, 9)?)

F(.’E,y) = 17|£L'|2 +

(z,y)
1—|zf?

€ T,B"(1) ~ R",
y

where (,) and |.| denote the Euclidean inner product and norm on R"™, respec-
tively. It is easy to see that f3 is closed 1-form, hence F' is a Douglas metric. Since
1

G = §Fyi, then we get Xiju = F[Cijir — Cijipil, i-e., F is not a stretch metric.

Thus by Theorem 1.1, F' is not Berwald metric.

3. Proof of Theorem 1.1

Let F' = a+f be a Randers metric on a manifold M, where o = \/a;;(2)y'y?
is a Riemannian metric and B(y) = b;j(z)y" is a 1-form on M. Define b;; by
bi;07 = db; — b;0,7, where ¢ := dz' and 0,7 = fzkdxk denote the Levi-Civita
connection forms of a. Let

i ._ _ih .f
bﬂi), s';=a"spj, s;5:=0b;s

1 i
§(b je

In this section, we will prove a generalized version of Theorem 1.1. Indeed, we

1
ﬁwzi@u+%m»5m? ilj

prove the following.
Theorem 3.1. Let FF = a +  be a Randers metric on a manifold M.
Suppose that F' is a stretch metric and the following holds:
(cso — 2smsm0)a4 + (253 + 25"58mo — 45" Smo B — csoﬁ)a3 + (Gﬂs%smo
— 2550832 + 6ﬁ5(2))a2 + 6523775sm0a + 2633"6sm0 =0, (2

where c is scalar function on M. Then F reduces to a Berwald metric.
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Remark 3.1. According to Bécsé6-Matsumoto’s theorem, FF = o + [ is a
Douglas metric if and only if 8 is a closed 1-form [4]. Tt is obvious that any closed
1-form 3 satisfies (2).

To prove the Theorem 3.1, we need the following.
Lemma 3.2. Let F = a+f be a Randers metric. Then the stretch curvature

of F' is given by

Yijk = ] (ki — hadji + hykdip — hJye + (e — Jie)hij) - (3)
Thus, if the mean Landsberg curvature is horizontally constant along geodesics,
then F' has vanishing stretch curvature.

ProoOF. By Lemma 2.1, F' is C-reducible. Taking a horizontal derivation,
C-reducibility implies that

Liji = %H{Jihjk + Jjhig + Jihij }. @)

By (4), we get
Lijen = %-H{Jillhjk + Jjjihir + Jygihis - )
From (1) and (5), we obtain (3). =

Remark 3.2. Suppose that F' be a stretch metric, i.e., Lijpi = Lijjr- Then
we have Lijkuyl = 0. This equation is equivalent to that for any linearly parallel
vector fields u, v, w along a geodesic ¢, the following holds:

d

T [Lé(u, v, w)] =0.

The geometric meaning of this is that the rate of change of the Landsberg curva-
ture is constant along any Finslerian geodesic.

First, we prove the following.

Lemma 3.3. Let F' = o+ 8 be a Randers metric on a manifold M. Then
the mean Landsberg curvature of F satisfies

1

leo:a-l—ﬁ

2 217 —1 T
[arjo‘o —a”sjjp—a’b loSrj — & (roojo — asglo — ab ‘Osro)yj]

«

2(a+ p)? [

(To0j0 — 2800 — 200" |98r0)L; + (roo — 2as0)J;] + 8j00- (6)
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PROOF. Denote by I* = a~ !y’ the normalized supporting element. The
fundamental tensor and angular metric of a Randers metric is written as

F 1 3

9ij = @ij + bibj + a(biyj +bjyi) — 3 YilYis (7)
F Yilj

b= (=) ®)

The reciprocal tensor ¢% of gi; is given by

ba+ B i
AR

g7 == {a“ — WY+ b+

where b2 = b;b® and b° = a'/b;. Differentiating (7) with respect to y* yields

1
Cijr = %{Iihjk + Lihik + Ihis }, (10)
where
I; = b; — a?By;. (11)

To finding the relation between the Cartan connection of a and F, we put the
difference tensor D;; = I, —~";;, where 7', is the Christoffel symbols of o Tt
is computed in [13] by MATSUMOTO. Now, let V), be the covariant differentiation
by 2* with respect to associated Riemannian connection. Let
0b; ,

bij = iji = @ — by by Tijk = Virij,  Sijk = ViSij. (12)
We recall that the index 0 means contraction by y’. For example ro;i = 75y’
In [13], the following are obtained:

Dl = 2ozsf) + yi (

: i Y i YW ((Too — 20180
D', =as'; + E(Sjoy + shy;) + (6j — T2

012
Yy 1 T00 — 2080
+ f |:7"j0 — S0 — QS; — E(Soyj + ﬁSjo) — (M)

Too — 20180
F )

I]} . (13)

where s; = b's;; and s'; = a""s,;. By contracting (13) with b;, we have

) 1 «
biD'; = I [a28j + Soy; + ﬁrjo] + b2 [7“00 - 20180} I; (14)
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Plugging b;); = b;j — b.D;"; in (14) yields

« a? 1 «

bi\O = f?”jg —+ SjO — FS]‘ — FSOyj — W(TOO — ZQSO)Ij, (15)
[e%

bo‘o = F(TOO — 20&80). (16)

Since Fjg = 0, by (11), (15) and (16) we have

1
Jj =bjo — Ebmoyj

« 1 «
= f(rjo —as;) — Q—F(TOO —aso)y; — ﬁ(roo — 2as0)1; + sjo. (17)
By taking a horizontal derivation of (17) along geodesics, we get (6). O

Now, we are going to consider Randers metrics with vanishing stretch curva-
ture.

Lemma 3.4. Let F = a+ 8 be a Randers metric on a manifold M. Suppose
that F' is a stretch metric. Then

2
Too = ca”, 19 = cf, (18)
where c is a function on M.

PROOF. Contracting (6) with b’ we find

. Q@ a? B
b Jijo = mrom + Soj0 — mbrmsr - m(mo\o — asgjo — ab’|gsr0)
— m [(Too\o —2as0)0 — 2abr‘os,«0)bili + (roo — 20zso)biJi]7 (19)
where

N
Tolo = b 750|105

m m
Tiol0 = Ti00 — Tim Do o — Tmo Dy o5

2’1"00
= — 2 m m _ _“'00 . :
7’00|0 T000 aSmoTg o B (TOO OZSO)
birio = brion — 2075 — —C_ (1o — 250) — 8™ r1n0 —  (raoso + Brimos”y)
ri0/0 = b'rioo — 20, sy oy roo = 2as0) = as™ Tmo = —(ro0s0 + Brmos’y
T00
= Sat(a 4 gz 20 B)(@lro = s0)+2B50) = (oo — 2as0) (V0" — 5%
T
_ m(TOQQ _ BTOO)(’I”OO — 2@50), (20)
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) ) 3s
b'sioj0 = b"si00 — 3asmsy’ — 2(()[7_’(_)@(7"00 —2asgp) — gsg‘smo. (21)

Substituting (21) in (19) yields

aA+ B =0, (22)
where

A:=25,5mab + [85smsm — 25"08m — 27“7837”]0(5

+ [2b2sg —68s0"Sm — 4677 Sm + 2/32%5,,8™ + 2r050]a4

+ [257"030 — ToT00 — 66236"sm - 262r6"sm — 2b%rg0s0 — rooso]a3

1
+ [§b2r§0 — 4Brogso — 26%s3 — Brooro — 26357,156”]&2
1

+ [57”(2)0 - 527’0080]04 + 5527“(2)07 (23)

B:= [ — 6b2sm36” — 4750t — 2rmos’ — 206%™ 8,0 — GSglsm]aG

+ [szsg — 285" 8m0 + 6r9sg + 2b27“6”sm0 + 2b256"sm0 + 65%

— 12087y, 80" + 20%b% 8,00 + 2b2rm086" —308smsy’ — 12b268m86"

+ 2b% 100 + 2% si00 — 262 B Smo — Gﬁrmosm} ad

+ [Qﬂrglsmo — 632%7,,08™ 4+ 68b'ri00 4+ TooSo — Brores — ()‘l)zﬂ%smsgT

— 12827, 8T + 687050 + B6b? 5% 4 202 BT s mo + 26852 — 48375, 55"
— 282%™ Sm0 + 1287050 + 108b 5500 + 4b25rm088"” — V%7000 — 8b*r 0050
+ 267 B3 Smo + 402 Bb' sig0 | a* + [68%bri00 — 308 s,85" — Tb? Brogso
— 4B, s+ 282 s o — 13Bro0s0 + 243783 + 3b*ra, + 166%b 5400
— 10Broro0 — 28°rmos™ + 26> B2rmosgt — 2b° Brooo — 2Brooo + 68°r0s0
+ 262 %b 5500 — 63250 S0 — 2b% B2 80" S 1m0 + 1652rm058’]a3

+ [Gﬁ?’sg —208%ro0s0 — 53%roro0 — 65436"sm — 2b263$70"sm0

+ 1083b 5500 — 5B%r000 + 302 By + 28301 ri00 + 5B1rEs + 14831 mosy”

— b2B%roo0 — 14B° s smo o + [2B8* si00 — 48000 + 48" rmosy’

— 105456"sm0 + 7527'(2]0 — 7637'0030} o — 25536”sm0 — B 000 + 2ﬁ3r80. (24)

By (22), we have A = 0 and B = 0. Since A = 0, it follows that a? must be a
factor of rop and then we get (18). O

PROOF OF THEOREM 3.1. Substituting (18) in (23) yields

[4smsm + c2,62] ot + [SBSmsm — 6esp — 45" Sm — 4b2050] a®
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+ [4b250 — 128,888 — ¢* 3% — 12B%¢sq + 4smsm62]a2
— [12[328,”8”8 + 2cﬁ2$0]a — 45m5%63 — 46253 =0. (25)

By (17) and (18), we get

gijJiJj = 4—;4 [(lemsm + b%¢*)a’ + (85,,8™B — 4csg — 45™ Smo
—4b%csg — 45T s )0 + (452 — 125,853 — 12¢50
+ 4s,,s™B% + 45" Smo — 125 smo — Ap% + 4b253)a4
+ (1685 80 — 4csoB2 — 1258™ 5,082 + 16853 — 125,55 3%)
+ (88%52 — 4B35™ 5,0 — 48,8 5B + 24325 Sm0) 2

+ 165" smocr + 48" s o] (26)

By (25) and (26) it results that J; = 0 if the following holds:

(cso — 25™smo)a* + (252 4 25 88 m0 — 4™ 8 m0B — cs08)® + (685 5 mo

— 25™ 8,007 4+ 6853) % + 6% s moa + 26%50 5,00 = 0. (27)

Therefore, by assumption, F' is a weakly Landsberg metric. Thus, by the C-
reducibility, it follows that F' reduces to a Landsberg metric, and hence F' is a
Berwald metric. |

A Finsler spaces is said to be R-quadratic if its Riemann curvature R, is
quadratic in y € T, M [5]. By definition, every Berwald metric is R-quadratic. It
is proved that every R-quadratic metric is a stretch metric (see [15], [17]). Then
by Theorem 1.1, we get the following.

Corollary 3.1. Let F' = a+ 3 be a Douglas metric on a manifold M. Then
F' is R-quadratic if and only if it is a Berwald metric.
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